首页 > 最新文献

Computational brain & behavior最新文献

英文 中文
Reconstructing the Einstellung Effect 重建爱因斯坦效应
Pub Date : 2021-08-10 DOI: 10.1007/s42113-022-00161-2
Marcel Binz, Eric Schulz
{"title":"Reconstructing the Einstellung Effect","authors":"Marcel Binz, Eric Schulz","doi":"10.1007/s42113-022-00161-2","DOIUrl":"https://doi.org/10.1007/s42113-022-00161-2","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"106 1","pages":"526 - 542"},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79293275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Approximating the Manifold Structure of Attributed Incentive Salience from Large-scale Behavioural Data 从大规模行为数据中逼近归因激励显著性的流形结构
Pub Date : 2021-08-03 DOI: 10.1007/s42113-022-00147-0
Valerio Bonometti, Mathieu J. Ruiz, Anders Drachen, Alex R. Wade
{"title":"Approximating the Manifold Structure of Attributed Incentive Salience from Large-scale Behavioural Data","authors":"Valerio Bonometti, Mathieu J. Ruiz, Anders Drachen, Alex R. Wade","doi":"10.1007/s42113-022-00147-0","DOIUrl":"https://doi.org/10.1007/s42113-022-00147-0","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"7 1","pages":"280 - 315"},"PeriodicalIF":0.0,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74670098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Measure-Theoretic Premises of Bayes Factor and Full Bayesian Significance Tests: a Critical Reevaluation 贝叶斯因子和全贝叶斯显著性检验的测度论前提:一个关键性的再评价
Pub Date : 2021-07-07 DOI: 10.1007/s42113-021-00110-5
Riko Kelter
{"title":"On the Measure-Theoretic Premises of Bayes Factor and Full Bayesian Significance Tests: a Critical Reevaluation","authors":"Riko Kelter","doi":"10.1007/s42113-021-00110-5","DOIUrl":"https://doi.org/10.1007/s42113-021-00110-5","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"1 1","pages":"572 - 582"},"PeriodicalIF":0.0,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90765717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Statistics in the Service of Science: Don’t Let the Tail Wag the Dog 为科学服务的统计学:不要本末倒置
Pub Date : 2021-06-20 DOI: 10.1007/s42113-022-00129-2
H. Singmann, David Kellen, Gregory E. Cox, Suyog H. Chandramouli, C. Davis-Stober, J. Dunn, Q. Gronau, M. Kalish, Sara D McMullin, D. Navarro, R. Shiffrin
{"title":"Statistics in the Service of Science: Don’t Let the Tail Wag the Dog","authors":"H. Singmann, David Kellen, Gregory E. Cox, Suyog H. Chandramouli, C. Davis-Stober, J. Dunn, Q. Gronau, M. Kalish, Sara D McMullin, D. Navarro, R. Shiffrin","doi":"10.1007/s42113-022-00129-2","DOIUrl":"https://doi.org/10.1007/s42113-022-00129-2","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"33 1","pages":"64-83"},"PeriodicalIF":0.0,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76373033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Scale-Dependent Relationships in Natural Language. 自然语言中的尺度依赖关系。
Pub Date : 2021-06-01 Epub Date: 2021-01-04 DOI: 10.1007/s42113-020-00094-8
Aakash Sarkar, Marc W Howard

Language, like other natural sequences, exhibits statistical dependencies at a wide range of scales (Lin & Tegmark, 2016). However, many statistical learning models applied to language impose a sampling scale while extracting statistical structure. For instance, Word2Vec creates vector embeddings by sampling context in a window around each word, the size of which defines a strong scale; relationships over much larger temporal scales would be invisible to the algorithm. This paper examines the family of Word2Vec embeddings generated while systematically manipulating the size of the context window. The primary result is that different linguistic relationships are preferentially encoded at different scales. Different scales emphasize different syntactic and semantic relations between words, as assessed both by analogical reasoning tasks in the Google Analogies test set and human similarity rating datasets WordSim-353 and SimLex-999. Moreover, the neighborhoods of a given word in the embeddings change considerably depending on the scale. These results suggest that sampling at any individual scale can only identify a subset of the meaningful relationships a word might have, and point toward the importance of developing scale-free models of semantic meaning.

与其他自然序列一样,语言在很大程度上表现出统计依赖性(Lin&Tegmark,2016)。然而,许多应用于语言的统计学习模型在提取统计结构时都施加了抽样量表。例如,Word2Vec通过在每个单词周围的窗口中对上下文进行采样来创建向量嵌入,其大小定义了强尺度;对于算法来说,在更大的时间尺度上的关系将是不可见的。本文研究了在系统地操作上下文窗口大小时生成的Word2Verc嵌入家族。主要结果是,不同的语言关系在不同的尺度上被优先编码。不同的量表强调单词之间不同的句法和语义关系,这是通过谷歌类比测试集中的类比推理任务和人类相似性评级数据集WordSim-353和SimLex-99进行评估的。此外,嵌入中给定单词的邻域根据尺度而发生显著变化。这些结果表明,在任何个体尺度上的抽样都只能识别一个词可能具有的有意义关系的子集,并指出了开发无尺度语义模型的重要性。
{"title":"Scale-Dependent Relationships in Natural Language.","authors":"Aakash Sarkar,&nbsp;Marc W Howard","doi":"10.1007/s42113-020-00094-8","DOIUrl":"10.1007/s42113-020-00094-8","url":null,"abstract":"<p><p>Language, like other natural sequences, exhibits statistical dependencies at a wide range of scales (Lin & Tegmark, 2016). However, many statistical learning models applied to language impose a sampling scale while extracting statistical structure. For instance, Word2Vec creates vector embeddings by sampling context in a window around each word, the size of which defines a strong scale; relationships over much larger temporal scales would be invisible to the algorithm. This paper examines the family of Word2Vec embeddings generated while systematically manipulating the size of the context window. The primary result is that different linguistic relationships are preferentially encoded at different scales. Different scales emphasize different syntactic and semantic relations between words, as assessed both by analogical reasoning tasks in the Google Analogies test set and human similarity rating datasets WordSim-353 and SimLex-999. Moreover, the neighborhoods of a given word in the embeddings change considerably depending on the scale. These results suggest that sampling at any individual scale can only identify a subset of the meaningful relationships a word might have, and point toward the importance of developing scale-free models of semantic meaning.</p>","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"4 ","pages":"164-177"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42113-020-00094-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39268103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Bayes Factor Model Comparisons Across Parameter Values for Mixed Models 混合模型跨参数值的贝叶斯因子模型比较
Pub Date : 2021-05-28 DOI: 10.1007/s42113-021-00117-y
M. Linde, D. van Ravenzwaaij
{"title":"Bayes Factor Model Comparisons Across Parameter Values for Mixed Models","authors":"M. Linde, D. van Ravenzwaaij","doi":"10.1007/s42113-021-00117-y","DOIUrl":"https://doi.org/10.1007/s42113-021-00117-y","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"91 1","pages":"14-27"},"PeriodicalIF":0.0,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83769816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Embracing New Techniques in Deep Learning for Estimating Image Memorability 采用深度学习的新技术来估计图像记忆性
Pub Date : 2021-05-21 DOI: 10.1007/s42113-022-00126-5
Coen D. Needell, Wilma A. Bainbridge
{"title":"Embracing New Techniques in Deep Learning for Estimating Image Memorability","authors":"Coen D. Needell, Wilma A. Bainbridge","doi":"10.1007/s42113-022-00126-5","DOIUrl":"https://doi.org/10.1007/s42113-022-00126-5","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"1 1","pages":"168 - 184"},"PeriodicalIF":0.0,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76353339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Exploring the Effects of Perceptual Separability on Human-Automation Team Efficiency 探索感知可分离性对人-自动化团队效率的影响
Pub Date : 2021-05-08 DOI: 10.1007/s42113-021-00108-z
Sidney T. Scott-Sharoni, Yusuke Yamani, Cara M. Kneeland, Shelby K. Long, Jing Chen, Joseph W. Houpt
{"title":"Exploring the Effects of Perceptual Separability on Human-Automation Team Efficiency","authors":"Sidney T. Scott-Sharoni, Yusuke Yamani, Cara M. Kneeland, Shelby K. Long, Jing Chen, Joseph W. Houpt","doi":"10.1007/s42113-021-00108-z","DOIUrl":"https://doi.org/10.1007/s42113-021-00108-z","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"28 1","pages":"486 - 496"},"PeriodicalIF":0.0,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74582651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Dynamic Perception of Well-Learned Perceptual Objects 学习良好的感知对象的动态感知
Pub Date : 2021-05-03 DOI: 10.1007/s42113-021-00107-0
Samuel M. Harding, D. Cousineau, R. Shiffrin
{"title":"Dynamic Perception of Well-Learned Perceptual Objects","authors":"Samuel M. Harding, D. Cousineau, R. Shiffrin","doi":"10.1007/s42113-021-00107-0","DOIUrl":"https://doi.org/10.1007/s42113-021-00107-0","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"12 1","pages":"497 - 518"},"PeriodicalIF":0.0,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42113-021-00107-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72530484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Discovery and Interpretation of Evidence Accumulation Stages 证据积累阶段的发现与解释
Pub Date : 2021-04-27 DOI: 10.1007/s42113-021-00105-2
Leendert van Maanen, Oscar Portoles, J. Borst
{"title":"The Discovery and Interpretation of Evidence Accumulation Stages","authors":"Leendert van Maanen, Oscar Portoles, J. Borst","doi":"10.1007/s42113-021-00105-2","DOIUrl":"https://doi.org/10.1007/s42113-021-00105-2","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"78 1","pages":"395 - 415"},"PeriodicalIF":0.0,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75084038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Computational brain & behavior
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1