首页 > 最新文献

Computational brain & behavior最新文献

英文 中文
Exploring the Performance Consequences of Target Prevalence and Ecological Display Designs When Using an Automated Aid 探索目标流行率和生态显示设计在使用自动化辅助时的性能后果
Pub Date : 2021-04-12 DOI: 10.1007/s42113-021-00104-3
Cara M. Kneeland, Joseph W. Houpt, K. Bennett
{"title":"Exploring the Performance Consequences of Target Prevalence and Ecological Display Designs When Using an Automated Aid","authors":"Cara M. Kneeland, Joseph W. Houpt, K. Bennett","doi":"10.1007/s42113-021-00104-3","DOIUrl":"https://doi.org/10.1007/s42113-021-00104-3","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"27 1","pages":"335 - 354"},"PeriodicalIF":0.0,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91291856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Neural Networks Trained on Natural Scenes Exhibit Gestalt Closure 在自然场景上训练的神经网络表现出完形闭合
Pub Date : 2021-04-09 DOI: 10.1007/s42113-021-00100-7
Been Kim, Emily Reif, M. Wattenberg, Samy Bengio, M. Mozer
{"title":"Neural Networks Trained on Natural Scenes Exhibit Gestalt Closure","authors":"Been Kim, Emily Reif, M. Wattenberg, Samy Bengio, M. Mozer","doi":"10.1007/s42113-021-00100-7","DOIUrl":"https://doi.org/10.1007/s42113-021-00100-7","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"8 1","pages":"251 - 263"},"PeriodicalIF":0.0,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86532706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 35
Alleviating the Cold Start Problem in Adaptive Learning using Data-Driven Difficulty Estimates 用数据驱动的难度估计缓解自适应学习中的冷启动问题
Pub Date : 2021-03-15 DOI: 10.1007/s42113-021-00101-6
Maarten van der Velde, Florian Sense, J. Borst, H. van Rijn
{"title":"Alleviating the Cold Start Problem in Adaptive Learning using Data-Driven Difficulty Estimates","authors":"Maarten van der Velde, Florian Sense, J. Borst, H. van Rijn","doi":"10.1007/s42113-021-00101-6","DOIUrl":"https://doi.org/10.1007/s42113-021-00101-6","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"406 5","pages":"231 - 249"},"PeriodicalIF":0.0,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42113-021-00101-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72448313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Modulation of Dopamine for Adaptive Learning: A Neurocomputational Model. 多巴胺对适应性学习的调节:一个神经计算模型。
Pub Date : 2021-03-01 Epub Date: 2020-06-12 DOI: 10.1007/s42113-020-00083-x
Jeffrey B Inglis, Vivian V Valentin, F Gregory Ashby

There have been many proposals that learning rates in the brain are adaptive, in the sense that they increase or decrease depending on environmental conditions. The majority of these models are abstract and make no attempt to describe the neural circuitry that implements the proposed computations. This article describes a biologically detailed computational model that overcomes this shortcoming. Specifically, we propose a neural circuit that implements adaptive learning rates by modulating the gain on the dopamine response to reward prediction errors, and we model activity within this circuit at the level of spiking neurons. The model generates a dopamine signal that depends on the size of the tonically active dopamine neuron population and the phasic spike rate. The model was tested successfully against results from two single-neuron recording studies and a fast-scan cyclic voltammetry study. We conclude by discussing the general applicability of the model to dopamine mediated tasks that transcend the experimental phenomena it was initially designed to address.

有很多人认为大脑的学习率是适应性的,也就是说,大脑的学习率会随着环境条件的变化而增加或减少。这些模型大多是抽象的,并没有试图描述实现所提出的计算的神经回路。本文描述了一个生物学上详细的计算模型,克服了这一缺点。具体来说,我们提出了一个神经回路,通过调节多巴胺对奖励预测错误的反应增益来实现自适应学习率,我们在尖峰神经元的水平上模拟了该回路中的活动。该模型产生的多巴胺信号取决于张力活跃的多巴胺神经元数量的大小和相尖峰率。该模型与两个单神经元记录研究和快速扫描循环伏安法研究的结果进行了成功的测试。最后,我们讨论了该模型对多巴胺介导的任务的一般适用性,这些任务超越了它最初设计用于解决的实验现象。
{"title":"Modulation of Dopamine for Adaptive Learning: A Neurocomputational Model.","authors":"Jeffrey B Inglis,&nbsp;Vivian V Valentin,&nbsp;F Gregory Ashby","doi":"10.1007/s42113-020-00083-x","DOIUrl":"https://doi.org/10.1007/s42113-020-00083-x","url":null,"abstract":"<p><p>There have been many proposals that learning rates in the brain are adaptive, in the sense that they increase or decrease depending on environmental conditions. The majority of these models are abstract and make no attempt to describe the neural circuitry that implements the proposed computations. This article describes a biologically detailed computational model that overcomes this shortcoming. Specifically, we propose a neural circuit that implements adaptive learning rates by modulating the gain on the dopamine response to reward prediction errors, and we model activity within this circuit at the level of spiking neurons. The model generates a dopamine signal that depends on the size of the tonically active dopamine neuron population and the phasic spike rate. The model was tested successfully against results from two single-neuron recording studies and a fast-scan cyclic voltammetry study. We conclude by discussing the general applicability of the model to dopamine mediated tasks that transcend the experimental phenomena it was initially designed to address.</p>","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"4 1","pages":"34-52"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42113-020-00083-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39250531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Bayes Factors for Mixed Models 混合模型的贝叶斯因子
Pub Date : 2021-02-22 DOI: 10.1007/s42113-021-00113-2
Johnny van Doorn, F. Aust, J. Haaf, A. Stefan, E. Wagenmakers
{"title":"Bayes Factors for Mixed Models","authors":"Johnny van Doorn, F. Aust, J. Haaf, A. Stefan, E. Wagenmakers","doi":"10.1007/s42113-021-00113-2","DOIUrl":"https://doi.org/10.1007/s42113-021-00113-2","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"23 1","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85253041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Brief at the Risk of Being Misunderstood: Consolidating Population- and Individual-Level Tendencies 冒着被误解的风险:巩固群体和个人层面的趋势
Pub Date : 2021-02-02 DOI: 10.1007/s42113-021-00099-x
T. Brochhagen
{"title":"Brief at the Risk of Being Misunderstood: Consolidating Population- and Individual-Level Tendencies","authors":"T. Brochhagen","doi":"10.1007/s42113-021-00099-x","DOIUrl":"https://doi.org/10.1007/s42113-021-00099-x","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"239 1","pages":"305 - 317"},"PeriodicalIF":0.0,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74189346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Improving Human Decision-making by Discovering Efficient Strategies for Hierarchical Planning 通过发现层级规划的有效策略来改进人类决策
Pub Date : 2021-01-31 DOI: 10.1007/s42113-022-00128-3
Saksham Consul, Lovis Heindrich, Jugoslav Stojcheski, Falk Lieder
{"title":"Improving Human Decision-making by Discovering Efficient Strategies for Hierarchical Planning","authors":"Saksham Consul, Lovis Heindrich, Jugoslav Stojcheski, Falk Lieder","doi":"10.1007/s42113-022-00128-3","DOIUrl":"https://doi.org/10.1007/s42113-022-00128-3","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"9 1","pages":"185 - 216"},"PeriodicalIF":0.0,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75250564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
A Critical Evaluation of the FBST ev for Bayesian Hypothesis Testing 贝叶斯假设检验中FBST ev的关键评价
Pub Date : 2021-01-04 DOI: 10.1007/s42113-021-00109-y
Alexander Ly, E. Wagenmakers
{"title":"A Critical Evaluation of the FBST ev for Bayesian Hypothesis Testing","authors":"Alexander Ly, E. Wagenmakers","doi":"10.1007/s42113-021-00109-y","DOIUrl":"https://doi.org/10.1007/s42113-021-00109-y","url":null,"abstract":"","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"42 1","pages":"564 - 571"},"PeriodicalIF":0.0,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79526895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Recovering Reliable Idiographic Biological Parameters from Noisy Behavioral Data: the Case of Basal Ganglia Indices in the Probabilistic Selection Task. 从嘈杂的行为数据中恢复可靠的个体生物学参数:以概率选择任务中的基底神经节指数为例。
Pub Date : 2021-01-01 Epub Date: 2021-03-24 DOI: 10.1007/s42113-021-00102-5
Yinan Xu, Andrea Stocco

Behavioral data, despite being a common index of cognitive activity, is under scrutiny for having poor reliability as a result of noise or lacking replications of reliable effects. Here, we argue that cognitive modeling can be used to enhance the test-retest reliability of the behavioral measures by recovering individual-level parameters from behavioral data. We tested this empirically with the Probabilistic Stimulus Selection (PSS) task, which is used to measure a participant's sensitivity to positive or negative reinforcement. An analysis of 400,000 simulations from an Adaptive Control of Thought-Rational (ACT-R) model of this task showed that the poor reliability of the task is due to the instability of the end-estimates: because of the way the task works, the same participants might sometimes end up having apparently opposite scores. To recover the underlying interpretable parameters and enhance reliability, we used a Bayesian Maximum A Posteriori (MAP) procedure. We were able to obtain reliable parameters across sessions (intraclass correlation coefficient ≈ 0.5). A follow-up study on a modified version of the task also found the same pattern of results, with very poor test-retest reliability in behavior but moderate reliability in recovered parameters (intraclass correlation coefficient ≈ 0.4). Collectively, these results imply that this approach can further be used to provide superior measures in terms of reliability, and bring greater insights into individual differences.

行为数据,尽管是认知活动的一种常见指标,但由于噪音或缺乏可靠效果的重复,其可靠性较差,正受到审查。在此,我们认为认知建模可以通过从行为数据中恢复个体层面的参数来提高行为测量的重测信度。我们通过概率刺激选择(PSS)任务进行了实证检验,该任务用于测量参与者对积极或消极强化的敏感性。对这项任务的自适应思维控制(ACT-R)模型进行的40万次模拟分析表明,这项任务的低可靠性是由于最终估计的不稳定性:由于任务的工作方式,相同的参与者有时可能会得到明显相反的分数。为了恢复潜在的可解释参数并提高可靠性,我们使用了贝叶斯最大后验(MAP)过程。我们能够获得跨会话的可靠参数(类内相关系数≈0.5)。对该任务的修改版本的后续研究也发现了相同的结果模式,行为的重测信度非常差,但恢复参数的信度中等(类内相关系数≈0.4)。总的来说,这些结果意味着这种方法可以进一步用于提供可靠性方面的优越测量,并对个体差异有更深入的了解。
{"title":"Recovering Reliable Idiographic Biological Parameters from Noisy Behavioral Data: the Case of Basal Ganglia Indices in the Probabilistic Selection Task.","authors":"Yinan Xu,&nbsp;Andrea Stocco","doi":"10.1007/s42113-021-00102-5","DOIUrl":"https://doi.org/10.1007/s42113-021-00102-5","url":null,"abstract":"<p><p>Behavioral data, despite being a common index of cognitive activity, is under scrutiny for having poor reliability as a result of noise or lacking replications of reliable effects. Here, we argue that cognitive modeling can be used to enhance the test-retest reliability of the behavioral measures by recovering individual-level parameters from behavioral data. We tested this empirically with the Probabilistic Stimulus Selection (PSS) task, which is used to measure a participant's sensitivity to positive or negative reinforcement. An analysis of 400,000 simulations from an Adaptive Control of Thought-Rational (ACT-R) model of this task showed that the poor reliability of the task is due to the instability of the end-estimates: because of the way the task works, the same participants might sometimes end up having apparently opposite scores. To recover the underlying interpretable parameters and enhance reliability, we used a Bayesian Maximum A Posteriori (MAP) procedure. We were able to obtain reliable parameters across sessions (intraclass correlation coefficient ≈ 0.5). A follow-up study on a modified version of the task also found the same pattern of results, with very poor test-retest reliability in behavior but moderate reliability in recovered parameters (intraclass correlation coefficient ≈ 0.4). Collectively, these results imply that this approach can further be used to provide superior measures in terms of reliability, and bring greater insights into individual differences.</p>","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"4 3","pages":"318-334"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42113-021-00102-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25529221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Human Belief State-Based Exploration and Exploitation in an Information-Selective Symmetric Reversal Bandit Task. 基于人类信念状态的信息选择对称逆贼任务探索与开发。
Pub Date : 2021-01-01 DOI: 10.1007/s42113-021-00112-3
Lilla Horvath, Stanley Colcombe, Michael Milham, Shruti Ray, Philipp Schwartenbeck, Dirk Ostwald

Humans often face sequential decision-making problems, in which information about the environmental reward structure is detached from rewards for a subset of actions. In the current exploratory study, we introduce an information-selective symmetric reversal bandit task to model such situations and obtained choice data on this task from 24 participants. To arbitrate between different decision-making strategies that participants may use on this task, we developed a set of probabilistic agent-based behavioral models, including exploitative and explorative Bayesian agents, as well as heuristic control agents. Upon validating the model and parameter recovery properties of our model set and summarizing the participants' choice data in a descriptive way, we used a maximum likelihood approach to evaluate the participants' choice data from the perspective of our model set. In brief, we provide quantitative evidence that participants employ a belief state-based hybrid explorative-exploitative strategy on the information-selective symmetric reversal bandit task, lending further support to the finding that humans are guided by their subjective uncertainty when solving exploration-exploitation dilemmas.

Supplementary information: The online version contains supplementary material available at 10.1007/s42113-021-00112-3.

人类经常面临顺序决策问题,其中关于环境奖励结构的信息与行动子集的奖励是分离的。在目前的探索性研究中,我们引入了一个信息选择对称反转强盗任务来模拟这种情况,并从24名参与者中获得了该任务的选择数据。为了在参与者可能使用的不同决策策略之间进行仲裁,我们开发了一套基于概率代理的行为模型,包括利用性和探索性贝叶斯代理,以及启发式控制代理。在验证了模型集的模型和参数恢复特性,并以描述性的方式总结了参与者的选择数据后,我们使用最大似然法从模型集的角度对参与者的选择数据进行了评估。简而言之,我们提供了定量证据,证明参与者在信息选择对称反转强盗任务中采用基于信念状态的混合探索-利用策略,进一步支持了人类在解决探索-利用困境时受主观不确定性指导的发现。补充信息:在线版本包含补充资料,下载地址:10.1007/s42113-021-00112-3。
{"title":"Human Belief State-Based Exploration and Exploitation in an Information-Selective Symmetric Reversal Bandit Task.","authors":"Lilla Horvath,&nbsp;Stanley Colcombe,&nbsp;Michael Milham,&nbsp;Shruti Ray,&nbsp;Philipp Schwartenbeck,&nbsp;Dirk Ostwald","doi":"10.1007/s42113-021-00112-3","DOIUrl":"https://doi.org/10.1007/s42113-021-00112-3","url":null,"abstract":"<p><p>Humans often face sequential decision-making problems, in which information about the environmental reward structure is detached from rewards for a subset of actions. In the current exploratory study, we introduce an information-selective symmetric reversal bandit task to model such situations and obtained choice data on this task from 24 participants. To arbitrate between different decision-making strategies that participants may use on this task, we developed a set of probabilistic agent-based behavioral models, including exploitative and explorative Bayesian agents, as well as heuristic control agents. Upon validating the model and parameter recovery properties of our model set and summarizing the participants' choice data in a descriptive way, we used a maximum likelihood approach to evaluate the participants' choice data from the perspective of our model set. In brief, we provide quantitative evidence that participants employ a belief state-based hybrid explorative-exploitative strategy on the information-selective symmetric reversal bandit task, lending further support to the finding that humans are guided by their subjective uncertainty when solving exploration-exploitation dilemmas.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42113-021-00112-3.</p>","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"4 4","pages":"442-462"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42113-021-00112-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10654312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
Computational brain & behavior
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1