首页 > 最新文献

Construction robotics最新文献

英文 中文
Oscillating wire cutting and robotic assembly of bespoke acoustic tile systems 振动线切割和定制声学瓷砖系统的机器人组装
Pub Date : 2021-01-22 DOI: 10.1007/s41693-020-00051-8
Gabriella Rossi, James Walker, Asbjørn Søndergaard, I. Foged, Anke Pasold, Jacob Hilmer
{"title":"Oscillating wire cutting and robotic assembly of bespoke acoustic tile systems","authors":"Gabriella Rossi, James Walker, Asbjørn Søndergaard, I. Foged, Anke Pasold, Jacob Hilmer","doi":"10.1007/s41693-020-00051-8","DOIUrl":"https://doi.org/10.1007/s41693-020-00051-8","url":null,"abstract":"","PeriodicalId":72697,"journal":{"name":"Construction robotics","volume":"5 1","pages":"63 - 72"},"PeriodicalIF":0.0,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41693-020-00051-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43127846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Soft Office: a human-robot collaborative system for adaptive spatial configuration. Soft Office:一个人机协作的自适应空间配置系统
Pub Date : 2021-01-01 Epub Date: 2021-03-10 DOI: 10.1007/s41693-021-00056-x
Maria Yablonina, Brian Ringley, Giulio Brugnaro, Achim Menges

The Soft Office project was developed in response to the rapidly changing context of commercial architecture, where accommodating fluid programmatic requirements of occupants has become key to sustainable interior space. The project is placed within a broader context of relevant research in architectural robotics, in situ robotic fabrication, and adaptive and reconfigurable architecture. It establishes a methodology for spatial configuration through the implementation of a custom collaborative robotic interior reconfiguration system. Within this system, human users and task-specific robots perform complementary tasks toward a dynamic spatial goal that is defined by a set of evaluative criteria intended to predict successful interior space configurations (Bailey et al. in Humanizing digital reality: design modeling symposium Paris 2017, Springer Singapore, Singapore, pp 337-348, 2018). Venturing beyond robotics as merely a means of construction automation, the presented research deploys an approach that critically engages future models of interaction between humans and robotic architecture, mediated by in situ, architecturally embedded machines. In contrast to a conventional collaborative robotic manufacturing process, where a human worker is executing fabrication and manufacturing tasks according to a pre-designed blueprint, the proposed approach engages the human user as the designer, the worker, and the consumer of the architectural outcome. This gives the occupant the agency to rapidly reconfigure their environment in response to changing programmatic needs as well as the ability to respond ad hoc to outside forces, such as social distancing requirements for the post-quarantine re-occupation of buildings. Furthermore, task-specificity of the presented robotic system allows us to speculate on future roles of designers in the development of architectural fabrication technology beyond the appropriation of existing hardware and to look towards systems that are architecture specific.

软办公室 "项目是针对快速变化的商业建筑环境而开发的,在这种环境下,满足居住者流动的程序要求已成为可持续室内空间的关键。该项目被置于建筑机器人技术、现场机器人制造、自适应和可重构建筑等相关研究的大背景下。它通过实施定制的协作式室内机器人重新配置系统,建立了一种空间配置方法。在该系统中,人类用户和特定任务机器人执行互补任务,以实现动态空间目标,该目标由一套旨在预测成功室内空间配置的评估标准所定义(Bailey 等人,载于《人性化数字现实:2017 年巴黎设计建模研讨会》,施普林格新加坡,新加坡,第 337-348 页,2018 年)。除了将机器人技术作为建筑自动化的一种手段之外,本文所介绍的研究还采用了一种批判性的方法,以原地嵌入式建筑机器为媒介,探讨人类与机器人建筑之间未来的互动模式。在传统的机器人协作制造过程中,人类工人根据事先设计好的蓝图执行制造和生产任务,与之相比,所提出的方法让人类用户作为设计者、工人和建筑成果的消费者参与其中。这样,居住者就有能力根据不断变化的计划需求快速重新配置环境,也有能力对外部力量(如隔离后重新入住建筑的社会距离要求)做出特别反应。此外,所介绍的机器人系统的任务特定性使我们能够推测设计师在建筑制造技术发展中的未来角色,而不仅仅是对现有硬件的利用,并将目光投向具有建筑特定性的系统。
{"title":"Soft Office: a human-robot collaborative system for adaptive spatial configuration.","authors":"Maria Yablonina, Brian Ringley, Giulio Brugnaro, Achim Menges","doi":"10.1007/s41693-021-00056-x","DOIUrl":"10.1007/s41693-021-00056-x","url":null,"abstract":"<p><p>The Soft Office project was developed in response to the rapidly changing context of commercial architecture, where accommodating fluid programmatic requirements of occupants has become key to sustainable interior space. The project is placed within a broader context of relevant research in architectural robotics, in situ robotic fabrication, and adaptive and reconfigurable architecture. It establishes a methodology for spatial configuration through the implementation of a custom collaborative robotic interior reconfiguration system. Within this system, human users and task-specific robots perform complementary tasks toward a dynamic spatial goal that is defined by a set of evaluative criteria intended to predict successful interior space configurations (Bailey et al. in Humanizing digital reality: design modeling symposium Paris 2017, Springer Singapore, Singapore, pp 337-348, 2018). Venturing beyond robotics as merely a means of construction automation, the presented research deploys an approach that critically engages future models of interaction between humans and robotic architecture, mediated by in situ, architecturally embedded machines. In contrast to a conventional collaborative robotic manufacturing process, where a human worker is executing fabrication and manufacturing tasks according to a pre-designed blueprint, the proposed approach engages the human user as the designer, the worker, and the consumer of the architectural outcome. This gives the occupant the agency to rapidly reconfigure their environment in response to changing programmatic needs as well as the ability to respond ad hoc to outside forces, such as social distancing requirements for the post-quarantine re-occupation of buildings. Furthermore, task-specificity of the presented robotic system allows us to speculate on future roles of designers in the development of architectural fabrication technology beyond the appropriation of existing hardware and to look towards systems that are architecture specific.</p>","PeriodicalId":72697,"journal":{"name":"Construction robotics","volume":"5 1","pages":"23-33"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7945618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47924632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hand-drawn digital fabrication: calibrating a visual communication method for robotic on-site fabrication. 手绘数字制作:校准机器人现场制作的视觉传达方法
Pub Date : 2021-01-01 Epub Date: 2021-04-19 DOI: 10.1007/s41693-020-00049-2
Jens Pedersen, Asbjørn Søndergaard, Dagmar Reinhardt

According to the 2016 Mckinsey report, the global construction industry is one of the least productive (The Construction Productivity Imperative, McKinsey Report, 2016), which can be attributed to a minimal implementation of digital and automation technology (Berger Digtization in the Construction industry-Building Europe's road to "Construction 4.0 THINK/ACT-BEYOND MAINSTREAM, 2015). This research argues that this relates to the skill base of construction workers since very few, if any, can operate digital fabrication systems. Here, a digital model is considered foundational knowledge and is used to communicate with a fabrication unit. The difficulty lies in communicating the digital model to the fabrication machine, which arguably requires a level of specialist knowledge. However, history shows that other methods of communicating complex construction information have existed, such as 1:1 on-site drawing, which used to be made by architects or construction workers to communicate complex information related to constructing jigs or building components (The Tracing Floor of York Minster." In Studies in the History of Civil Engineering, 1:81-86. The Engineering of Medieval Cathedrals. Routledge, 1997). We propose an alternative where we learn from history and amalgamate that knowledge with a robotic framework. We present the calibration process behind a parametric visual feedback method for robotic fabrication that detects on-object hand-drawn markings and allows us to assign digital information to detected markings. The technique is demonstrated through a 1:2 prototype that is fabricated using an ABB IRB 120 robot arm.

根据麦肯锡 2016 年的报告,全球建筑业是生产力最低的行业之一(《建筑业生产力的当务之急》,麦肯锡报告,2016 年),这可归因于数字化和自动化技术的实施程度极低(Berger Digtization in the Construction Industry-Building Europe's road to "Construction 4.0 THINK/ACT-BEYOND MAINSTREAM, 2015)。本研究认为,这与建筑工人的技能基础有关,因为能够操作数字化制造系统的工人即使有,也是寥寥无几。在这里,数字模型被视为基础知识,用于与制造单元进行交流。困难在于如何将数字模型传递给制造设备,这需要一定的专业知识。不过,历史表明,复杂建筑信息的交流还存在其他方法,例如 1:1 现场绘图,过去建筑师或建筑工人绘制这种图纸,以交流与建造夹具或建筑构件有关的复杂信息(《约克明斯特的描图地板》。见《土木工程史研究》,1:81-86。The Engineering of Medieval Cathedrals.Routledge, 1997)。我们提出了一种替代方案,即我们从历史中学习,并将这些知识与机器人框架相结合。我们介绍了用于机器人制造的参数视觉反馈方法背后的校准过程,该方法可检测物体上的手绘标记,并允许我们为检测到的标记分配数字信息。该技术通过使用 ABB IRB 120 机械臂制作的 1:2 原型进行演示。
{"title":"Hand-drawn digital fabrication: calibrating a visual communication method for robotic on-site fabrication.","authors":"Jens Pedersen, Asbjørn Søndergaard, Dagmar Reinhardt","doi":"10.1007/s41693-020-00049-2","DOIUrl":"10.1007/s41693-020-00049-2","url":null,"abstract":"<p><p>According to the 2016 Mckinsey report, the global construction industry is one of the least productive (The Construction Productivity Imperative, McKinsey Report, 2016), which can be attributed to a minimal implementation of digital and automation technology (Berger Digtization in the Construction industry-Building Europe's road to \"Construction 4.0 THINK/ACT-BEYOND MAINSTREAM, 2015). This research argues that this relates to the skill base of construction workers since very few, if any, can operate digital fabrication systems. Here, a digital model is considered foundational knowledge and is used to communicate with a fabrication unit. The difficulty lies in communicating the digital model to the fabrication machine, which arguably requires a level of specialist knowledge. However, history shows that other methods of communicating complex construction information have existed, such as 1:1 on-site drawing, which used to be made by architects or construction workers to communicate complex information related to constructing jigs or building components (The Tracing Floor of York Minster.\" In Studies in the History of Civil Engineering, 1:81-86. The Engineering of Medieval Cathedrals. Routledge, 1997). We propose an alternative where we learn from history and amalgamate that knowledge with a robotic framework. We present the calibration process behind a parametric visual feedback method for robotic fabrication that detects on-object hand-drawn markings and allows us to assign digital information to detected markings. The technique is demonstrated through a 1:2 prototype that is fabricated using an ABB IRB 120 robot arm.</p>","PeriodicalId":72697,"journal":{"name":"Construction robotics","volume":"5 1","pages":"159-173"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8054693/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42624459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial 编辑
Pub Date : 2020-12-01 DOI: 10.1007/s41693-020-00050-9
Mahesh Daas, C. Schlette, E. Kerber
{"title":"Editorial","authors":"Mahesh Daas, C. Schlette, E. Kerber","doi":"10.1007/s41693-020-00050-9","DOIUrl":"https://doi.org/10.1007/s41693-020-00050-9","url":null,"abstract":"","PeriodicalId":72697,"journal":{"name":"Construction robotics","volume":"4 1","pages":"115 - 116"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41693-020-00050-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45599786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive kinematic textile architecture 自适应运动纺织结构
Pub Date : 2020-11-30 DOI: 10.1007/s41693-020-00046-5
Maria Wyller, M. Yablonina, Martin E. Alvarez, A. Menges
{"title":"Adaptive kinematic textile architecture","authors":"Maria Wyller, M. Yablonina, Martin E. Alvarez, A. Menges","doi":"10.1007/s41693-020-00046-5","DOIUrl":"https://doi.org/10.1007/s41693-020-00046-5","url":null,"abstract":"","PeriodicalId":72697,"journal":{"name":"Construction robotics","volume":"4 1","pages":"227 - 237"},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41693-020-00046-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48587954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Skeletal composites: robotic fabrication processes for lightweight multi-nodal structural components 骨骼复合材料:轻型多节点结构部件的机器人制造工艺
Pub Date : 2020-11-24 DOI: 10.1007/s41693-020-00047-4
Marshall Prado
{"title":"Skeletal composites: robotic fabrication processes for lightweight multi-nodal structural components","authors":"Marshall Prado","doi":"10.1007/s41693-020-00047-4","DOIUrl":"https://doi.org/10.1007/s41693-020-00047-4","url":null,"abstract":"","PeriodicalId":72697,"journal":{"name":"Construction robotics","volume":"4 1","pages":"217 - 226"},"PeriodicalIF":0.0,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41693-020-00047-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43642756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
The digitization of the automated steel construction through the application of microcontrollers and MQTT 通过微控制器和MQTT的应用实现自动化钢结构的数字化
Pub Date : 2020-11-19 DOI: 10.1007/s41693-020-00042-9
Rushi Dai, E. Kerber, F. Reuter, S. Stumm, S. Brell-Çokcan
{"title":"The digitization of the automated steel construction through the application of microcontrollers and MQTT","authors":"Rushi Dai, E. Kerber, F. Reuter, S. Stumm, S. Brell-Çokcan","doi":"10.1007/s41693-020-00042-9","DOIUrl":"https://doi.org/10.1007/s41693-020-00042-9","url":null,"abstract":"","PeriodicalId":72697,"journal":{"name":"Construction robotics","volume":"4 1","pages":"251 - 259"},"PeriodicalIF":0.0,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41693-020-00042-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48439134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Crafting plaster through continuous mobile robotic fabrication on-site 通过连续的移动机器人现场制作石膏
Pub Date : 2020-11-12 DOI: 10.1007/s41693-020-00043-8
Selen Ercan Jenny, E. Lloret-Fritschi, F. Gramazio, M. Kohler
{"title":"Crafting plaster through continuous mobile robotic fabrication on-site","authors":"Selen Ercan Jenny, E. Lloret-Fritschi, F. Gramazio, M. Kohler","doi":"10.1007/s41693-020-00043-8","DOIUrl":"https://doi.org/10.1007/s41693-020-00043-8","url":null,"abstract":"","PeriodicalId":72697,"journal":{"name":"Construction robotics","volume":"4 1","pages":"261 - 271"},"PeriodicalIF":0.0,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41693-020-00043-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45316962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Robotic timber assembly 机器人木材组件
Pub Date : 2020-11-10 DOI: 10.1007/s41693-020-00045-6
Julia Koerner-Al-Rawi, Kyoung Eun Park, Tyson Keen Phillips, Michael Pickoff, Nichole Tortorici
{"title":"Robotic timber assembly","authors":"Julia Koerner-Al-Rawi, Kyoung Eun Park, Tyson Keen Phillips, Michael Pickoff, Nichole Tortorici","doi":"10.1007/s41693-020-00045-6","DOIUrl":"https://doi.org/10.1007/s41693-020-00045-6","url":null,"abstract":"","PeriodicalId":72697,"journal":{"name":"Construction robotics","volume":"4 1","pages":"175 - 185"},"PeriodicalIF":0.0,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41693-020-00045-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47907025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Craft to site 工艺到现场
Pub Date : 2020-11-06 DOI: 10.1007/s41693-020-00044-7
T. Shaked, K. L. Bar-Sinai, A. Sprecher
{"title":"Craft to site","authors":"T. Shaked, K. L. Bar-Sinai, A. Sprecher","doi":"10.1007/s41693-020-00044-7","DOIUrl":"https://doi.org/10.1007/s41693-020-00044-7","url":null,"abstract":"","PeriodicalId":72697,"journal":{"name":"Construction robotics","volume":"4 1","pages":"141 - 150"},"PeriodicalIF":0.0,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41693-020-00044-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43624587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Construction robotics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1