首页 > 最新文献

Discovery immunology最新文献

英文 中文
Gut immune responses and evolution of the gut microbiome – a hypothesis 肠道免疫反应和肠道微生物群的进化--一个假设
Pub Date : 2023-11-23 DOI: 10.1093/discim/kyad025
Marcus W. Viney, Louise Cheynel
The gut microbiome is an assemblage of microbes that have profound effects on their hosts. The composition of the microbiome is affected by bottom-up, among-taxa interactions and by top-down, host effects, which includes the host immune response. While the high-level composition of the microbiome is generally stable over time, component strains and genotypes will constantly be evolving, with both bottom-up and top-down effects acting as selection pressures, so driving microbial evolution. Secretory IgA is a major feature of the gut’s adaptive immune response, and a substantial proportion of gut bacteria are coated with IgA, though the effect of this on bacteria is unclear. Here we hypothesise that IgA binding to gut bacteria is a selection pressure that will drive the evolution of IgA-bound bacteria, so that they will have a different evolutionary trajectory than those bacteria not bound by IgA. We know very little about the microbiome of wild animals and even less about their gut immune responses, but it must be a priority to investigate this hypothesis to understand if and how host immune responses contribute to microbiome evolution.
肠道微生物组是对宿主产生深远影响的微生物集合体。微生物组的组成受到自下而上的微生物间相互作用和自上而下的宿主效应(包括宿主免疫反应)的影响。虽然微生物组的高层次组成随着时间的推移一般是稳定的,但其组成菌株和基因型会不断演变,自下而上和自上而下的影响都会成为选择压力,从而推动微生物的进化。分泌型 IgA 是肠道适应性免疫反应的一个主要特征,相当一部分肠道细菌被 IgA 包被,但这对细菌的影响尚不清楚。在这里,我们假设肠道细菌与 IgA 的结合是一种选择压力,它将推动与 IgA 结合的细菌的进化,因此它们的进化轨迹将与那些没有被 IgA 结合的细菌不同。我们对野生动物的微生物组知之甚少,对它们的肠道免疫反应更是一无所知,但我们必须优先研究这一假设,以了解宿主免疫反应是否以及如何促进微生物组的进化。
{"title":"Gut immune responses and evolution of the gut microbiome – a hypothesis","authors":"Marcus W. Viney, Louise Cheynel","doi":"10.1093/discim/kyad025","DOIUrl":"https://doi.org/10.1093/discim/kyad025","url":null,"abstract":"The gut microbiome is an assemblage of microbes that have profound effects on their hosts. The composition of the microbiome is affected by bottom-up, among-taxa interactions and by top-down, host effects, which includes the host immune response. While the high-level composition of the microbiome is generally stable over time, component strains and genotypes will constantly be evolving, with both bottom-up and top-down effects acting as selection pressures, so driving microbial evolution. Secretory IgA is a major feature of the gut’s adaptive immune response, and a substantial proportion of gut bacteria are coated with IgA, though the effect of this on bacteria is unclear. Here we hypothesise that IgA binding to gut bacteria is a selection pressure that will drive the evolution of IgA-bound bacteria, so that they will have a different evolutionary trajectory than those bacteria not bound by IgA. We know very little about the microbiome of wild animals and even less about their gut immune responses, but it must be a priority to investigate this hypothesis to understand if and how host immune responses contribute to microbiome evolution.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139245146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RAM is upregulated during T cell activation and is required for RNA cap formation and gene expression RAM 在 T 细胞活化过程中上调,是 RNA 帽形成和基因表达所必需的
Pub Date : 2023-11-17 DOI: 10.1093/discim/kyad021
Katarzyna Knop, C. Gómez-Moreira, Alison Galloway, Dimitrinka Ditsova, V. Cowling
On T cell activation, upregulation of gene expression produces the protein required for the differentiation and proliferation of effector cell populations. RAM, the co-factor of the RNA cap methyltransferase RNMT, is upregulated following activation. Formation of the RNA cap protects RNA during synthesis and guides RNA processing and translation. Using conditional gene deletion, we found that Ram expression stabilises RNMT protein in T cells and is required for its upregulation on activation. When the Ram gene is deleted in naïve T cells, there are major impacts on activation-induced RNA cap formation and gene expression. Activated T cell proliferation is dependent on increased ribosome production; in Ram knock-out T cells activation-induced expression of ribosomal protein genes and snoRNAs is most severely reduced. Consistent with these changes, Ram deletion resulted in reduced protein synthesis, and reduced growth and proliferation of CD4 T cells. Deletion of Ram results in a similar but milder phenotype to Rnmt deletion, supporting the role of RAM as a RNMT co-factor.
T 细胞激活后,基因表达上调,产生效应细胞群分化和增殖所需的蛋白质。RAM是RNA帽甲基转移酶RNMT的辅助因子,在激活后上调。RNA 帽的形成可在合成过程中保护 RNA,并引导 RNA 的加工和翻译。通过条件性基因缺失,我们发现Ram的表达能稳定T细胞中的RNMT蛋白,并且是其激活时上调所必需的。当删除幼稚T细胞中的Ram基因时,会对活化诱导的RNA帽形成和基因表达产生重大影响。活化 T 细胞的增殖依赖于核糖体产量的增加;在敲除 Ram 基因的 T 细胞中,活化诱导的核糖体蛋白基因和 snoRNA 的表达严重减少。与这些变化一致的是,Ram 基因缺失导致蛋白质合成减少,CD4 T 细胞的生长和增殖减少。Ram缺失导致的表型与Rnmt缺失类似,但较为温和,这支持了RAM作为RNMT辅助因子的作用。
{"title":"RAM is upregulated during T cell activation and is required for RNA cap formation and gene expression","authors":"Katarzyna Knop, C. Gómez-Moreira, Alison Galloway, Dimitrinka Ditsova, V. Cowling","doi":"10.1093/discim/kyad021","DOIUrl":"https://doi.org/10.1093/discim/kyad021","url":null,"abstract":"On T cell activation, upregulation of gene expression produces the protein required for the differentiation and proliferation of effector cell populations. RAM, the co-factor of the RNA cap methyltransferase RNMT, is upregulated following activation. Formation of the RNA cap protects RNA during synthesis and guides RNA processing and translation. Using conditional gene deletion, we found that Ram expression stabilises RNMT protein in T cells and is required for its upregulation on activation. When the Ram gene is deleted in naïve T cells, there are major impacts on activation-induced RNA cap formation and gene expression. Activated T cell proliferation is dependent on increased ribosome production; in Ram knock-out T cells activation-induced expression of ribosomal protein genes and snoRNAs is most severely reduced. Consistent with these changes, Ram deletion resulted in reduced protein synthesis, and reduced growth and proliferation of CD4 T cells. Deletion of Ram results in a similar but milder phenotype to Rnmt deletion, supporting the role of RAM as a RNMT co-factor.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139265082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunotherapy in the context of immune-specialized environment of brain metastases 脑转移瘤免疫特化环境下的免疫疗法
Pub Date : 2023-11-16 DOI: 10.1093/discim/kyad023
F. James, M. Lorger
Brain metastases (BrM) develop in 20 to 40% of patients with advanced cancer. They mainly originate from lung cancer, melanoma, breast cancer and renal cell carcinoma, and are associated with a poor prognosis. While patients with BrM traditionally lack effective treatment options, immunotherapy is increasingly gaining in importance in this group of patients, with clinical trials in the past decade demonstrating efficacy and safety of immune checkpoint blockade in BrM originating from specific tumor types, foremost melanoma. The brain is an immune-specialized environment with several unique molecular, cellular, and anatomical features that affect immune responses, including those against tumors. In this review we discuss the potential role that some of these unique characteristics may play in the efficacy of immunotherapy, mainly focusing on the lymphatic drainage in the brain and the role of systemic anti-tumor immunity that develops due to the presence of concurrent extracranial disease in addition to BrM.
20%至40%的晚期癌症患者会出现脑转移(BrM)。脑转移瘤主要源于肺癌、黑色素瘤、乳腺癌和肾细胞癌,预后较差。虽然脑转移瘤患者传统上缺乏有效的治疗方案,但免疫疗法在这类患者中的重要性正与日俱增,过去十年的临床试验表明,免疫检查点阻断疗法对源自特定肿瘤类型(最重要的是黑色素瘤)的脑转移瘤具有疗效和安全性。大脑是一个免疫特化的环境,具有一些独特的分子、细胞和解剖特征,这些特征会影响免疫反应,包括针对肿瘤的免疫反应。在这篇综述中,我们将讨论其中一些独特特征在免疫疗法的疗效中可能发挥的作用,主要侧重于脑部淋巴引流以及除 BrM 外因并发颅外疾病而产生的全身性抗肿瘤免疫的作用。
{"title":"Immunotherapy in the context of immune-specialized environment of brain metastases","authors":"F. James, M. Lorger","doi":"10.1093/discim/kyad023","DOIUrl":"https://doi.org/10.1093/discim/kyad023","url":null,"abstract":"Brain metastases (BrM) develop in 20 to 40% of patients with advanced cancer. They mainly originate from lung cancer, melanoma, breast cancer and renal cell carcinoma, and are associated with a poor prognosis. While patients with BrM traditionally lack effective treatment options, immunotherapy is increasingly gaining in importance in this group of patients, with clinical trials in the past decade demonstrating efficacy and safety of immune checkpoint blockade in BrM originating from specific tumor types, foremost melanoma. The brain is an immune-specialized environment with several unique molecular, cellular, and anatomical features that affect immune responses, including those against tumors. In this review we discuss the potential role that some of these unique characteristics may play in the efficacy of immunotherapy, mainly focusing on the lymphatic drainage in the brain and the role of systemic anti-tumor immunity that develops due to the presence of concurrent extracranial disease in addition to BrM.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139268488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eosinophils in obesity and obesity-associated disorders 嗜酸性粒细胞在肥胖和肥胖相关疾病中的作用
Pub Date : 2023-11-14 DOI: 10.1093/discim/kyad022
Yanan Hu, Svetoslav Chakarov
Abstract Despite the rising prevalence and costs for the society, obesity etiology and its precise cellular and molecular mechanisms are still insufficiently understood. The excessive accumulation of fat by adipocytes plays a key role in obesity progression and has many repercussions on total body physiology. In recent years the immune system as a gatekeeper of adipose tissue homeostasis has been evidenced and has become a focal point of research. Herein we focus on eosinophils, an important component of type 2 immunity, assuming fundamental, yet ill-defined, roles in the genesis and progression of obesity and related metabolic disorders. We summarise eosinophilopoiesis and eosinophils recruitment into adipose tissue and discuss how adipose tissue environment shape their function and vice versa. Finally, we also detail how obesity transforms the local eosinophil niche. Understanding eosinophil crosstalk with the diverse cell types within the adipose tissue environment will allow us to framework the therapeutic potential of eosinophils in obesity.
尽管肥胖的患病率和社会成本不断上升,但肥胖的病因及其精确的细胞和分子机制仍未得到充分的了解。脂肪细胞的过度脂肪积累在肥胖的进展中起着关键作用,并对全身生理有许多影响。近年来,免疫系统作为脂肪组织稳态的守门人已被证实并成为研究的焦点。在此,我们将重点关注嗜酸性粒细胞,它是2型免疫的一个重要组成部分,在肥胖和相关代谢紊乱的发生和发展中扮演着基本的、但尚不明确的角色。我们总结了嗜酸性粒细胞生成和嗜酸性粒细胞募集到脂肪组织,并讨论了脂肪组织环境如何塑造它们的功能,反之亦然。最后,我们还详细介绍了肥胖如何改变局部嗜酸性粒细胞生态位。了解嗜酸性粒细胞与脂肪组织环境中不同细胞类型的串音将使我们能够构建嗜酸性粒细胞在肥胖中的治疗潜力。
{"title":"Eosinophils in obesity and obesity-associated disorders","authors":"Yanan Hu, Svetoslav Chakarov","doi":"10.1093/discim/kyad022","DOIUrl":"https://doi.org/10.1093/discim/kyad022","url":null,"abstract":"Abstract Despite the rising prevalence and costs for the society, obesity etiology and its precise cellular and molecular mechanisms are still insufficiently understood. The excessive accumulation of fat by adipocytes plays a key role in obesity progression and has many repercussions on total body physiology. In recent years the immune system as a gatekeeper of adipose tissue homeostasis has been evidenced and has become a focal point of research. Herein we focus on eosinophils, an important component of type 2 immunity, assuming fundamental, yet ill-defined, roles in the genesis and progression of obesity and related metabolic disorders. We summarise eosinophilopoiesis and eosinophils recruitment into adipose tissue and discuss how adipose tissue environment shape their function and vice versa. Finally, we also detail how obesity transforms the local eosinophil niche. Understanding eosinophil crosstalk with the diverse cell types within the adipose tissue environment will allow us to framework the therapeutic potential of eosinophils in obesity.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134957614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pericardial & Mediastinal Fat-Associated Lymphoid Clusters are rapidly activated in an alkane induced model of Systemic Lupus Erythematosus 心包,纵隔脂肪相关淋巴细胞簇在烷烃诱导的系统性红斑狼疮模型中被迅速激活
Pub Date : 2023-09-25 DOI: 10.1093/discim/kyad017
Karolina Bentkowska, Alex Hardgrave, Nadia Iqbal, Laura Gresty, Bethany Marsden, Sheila Macharia, Lucy Jackson-Jones
Abstract Systemic Lupus Erythematosus (SLE) is an autoimmune disease predominated by auto-antibodies that recognise cellular components. Pleural involvement is the most common SLE-related lung disease. Natural antibodies are rapidly secreted by innate-like B cells following perturbation of homeostasis and are important in the early stages of immune activation. The serous cavities are home to large numbers of innate-like B cells present both within serous fluid and resident within fat-associated lymphoid clusters (FALCs). FALCs are important hubs for B-cell activation and local antibody secretion within the body cavities. Patients with SLE can develop anti-phospholipid antibodies and in rare situations develop alveolar haemorrhage. Utilising delivery of the hydrocarbon oil pristane in C57BL/6 mice as a model of SLE we identify a rapid expansion of pleural cavity B cells as early as day 3 after intra-peritoneal pristane delivery. Following pristane delivery, pericardial B1 B cells are proliferative, express the plasma-cell surface marker CD138 and secrete both innate and class switched antibodies highlighting that this cavity niche may play an unrecognised role in the initiation of lupus pleuritis.
系统性红斑狼疮(SLE)是一种以识别细胞成分的自身抗体为主的自身免疫性疾病。胸膜受累是最常见的slee相关肺部疾病。天然抗体由先天样B细胞在体内平衡紊乱后迅速分泌,在免疫激活的早期阶段起重要作用。浆液腔是大量先天样B细胞的家园,它们存在于浆液中,也存在于脂肪相关淋巴细胞簇(FALCs)中。FALCs是b细胞活化和体腔内局部抗体分泌的重要枢纽。SLE患者可产生抗磷脂抗体,并在极少数情况下发生肺泡出血。通过给C57BL/6小鼠注入烃类油嘌呤作为SLE模型,研究人员发现,早在给药后第3天,胸膜腔B细胞就迅速扩张。前列腺素输送后,心包B1 B细胞增殖,表达浆细胞表面标记物CD138,并分泌先天和类别转换抗体,这表明该腔位可能在狼疮性胸膜炎的发生中起着未被认识的作用。
{"title":"Pericardial & Mediastinal Fat-Associated Lymphoid Clusters are rapidly activated in an alkane induced model of Systemic Lupus Erythematosus","authors":"Karolina Bentkowska, Alex Hardgrave, Nadia Iqbal, Laura Gresty, Bethany Marsden, Sheila Macharia, Lucy Jackson-Jones","doi":"10.1093/discim/kyad017","DOIUrl":"https://doi.org/10.1093/discim/kyad017","url":null,"abstract":"Abstract Systemic Lupus Erythematosus (SLE) is an autoimmune disease predominated by auto-antibodies that recognise cellular components. Pleural involvement is the most common SLE-related lung disease. Natural antibodies are rapidly secreted by innate-like B cells following perturbation of homeostasis and are important in the early stages of immune activation. The serous cavities are home to large numbers of innate-like B cells present both within serous fluid and resident within fat-associated lymphoid clusters (FALCs). FALCs are important hubs for B-cell activation and local antibody secretion within the body cavities. Patients with SLE can develop anti-phospholipid antibodies and in rare situations develop alveolar haemorrhage. Utilising delivery of the hydrocarbon oil pristane in C57BL/6 mice as a model of SLE we identify a rapid expansion of pleural cavity B cells as early as day 3 after intra-peritoneal pristane delivery. Following pristane delivery, pericardial B1 B cells are proliferative, express the plasma-cell surface marker CD138 and secrete both innate and class switched antibodies highlighting that this cavity niche may play an unrecognised role in the initiation of lupus pleuritis.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135864884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conventional and non-conventional antigen presentation by mast cells 肥大细胞的常规和非常规抗原呈递
Pub Date : 2023-09-19 DOI: 10.1093/discim/kyad016
Chi-Ching Tung, Abhay P S Rathore, Ashley L St. John
Abstract Mast cells (MCs) are multifunctional immune cells that express a diverse repertoire of surface receptors and pre-stored bioactive mediators. They are traditionally recognized for their involvement in allergic and inflammatory responses, yet there is a growing body of literature highlighting their contributions to mounting adaptive immune responses. In particular, there is growing evidence that MCs can serve as antigen presenting cells (APCs), owing to their often close proximity to T cells in both lymphoid organs and peripheral tissues. Recent studies have provided compelling support for this concept, by demonstrating the presence of antigen processing and presentation machinery in MCs and their ability to engage in classical and non-classical pathways of antigen presentation. However, there remain discrepancies and unresolved questions regarding the extent of the MC’s capabilities with respect to antigen presentation. In this review, we discuss our current understanding of the antigen presentation by MCs and its influence on adaptive immunity.
肥大细胞(MCs)是一种多功能免疫细胞,表达多种表面受体和预先储存的生物活性介质。传统上认为它们参与过敏和炎症反应,但越来越多的文献强调它们对增强适应性免疫反应的贡献。特别是,越来越多的证据表明,MCs可以作为抗原提呈细胞(APCs),因为它们在淋巴器官和外周组织中通常与T细胞非常接近。最近的研究为这一概念提供了令人信服的支持,证明了MCs中存在抗原加工和递呈机制,以及它们参与经典和非经典抗原递呈途径的能力。然而,关于MC在抗原呈递方面的能力程度,仍然存在差异和未解决的问题。在这篇综述中,我们讨论了我们目前对MCs抗原呈递及其对适应性免疫的影响的理解。
{"title":"Conventional and non-conventional antigen presentation by mast cells","authors":"Chi-Ching Tung, Abhay P S Rathore, Ashley L St. John","doi":"10.1093/discim/kyad016","DOIUrl":"https://doi.org/10.1093/discim/kyad016","url":null,"abstract":"Abstract Mast cells (MCs) are multifunctional immune cells that express a diverse repertoire of surface receptors and pre-stored bioactive mediators. They are traditionally recognized for their involvement in allergic and inflammatory responses, yet there is a growing body of literature highlighting their contributions to mounting adaptive immune responses. In particular, there is growing evidence that MCs can serve as antigen presenting cells (APCs), owing to their often close proximity to T cells in both lymphoid organs and peripheral tissues. Recent studies have provided compelling support for this concept, by demonstrating the presence of antigen processing and presentation machinery in MCs and their ability to engage in classical and non-classical pathways of antigen presentation. However, there remain discrepancies and unresolved questions regarding the extent of the MC’s capabilities with respect to antigen presentation. In this review, we discuss our current understanding of the antigen presentation by MCs and its influence on adaptive immunity.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135061332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triphasic production of IFNγ by innate and adaptive lymphocytes following influenza A virus infection. 甲型流感病毒感染后先天性和适应性淋巴细胞产生IFNγ的三相性。
Pub Date : 2023-08-19 eCollection Date: 2023-01-01 DOI: 10.1093/discim/kyad014
George E Finney, Kerrie E Hargrave, Marieke Pingen, Thomas Purnell, David Todd, Freya MacDonald, Julie C Worrell, Megan K L MacLeod

Interferon gamma (IFNγ) is a potent antiviral cytokine that can be produced by many innate and adaptive immune cells during infection. Currently, our understanding of which cells produce IFNγ and where they are located at different stages of an infection is limited. We have used reporter mice to investigate in vivo expression of Ifnγ mRNA in the lung and secondary lymphoid organs during and following influenza A virus (IAV) infection. We observed a triphasic production of Ifnγ expression. Unconventional T cells and innate lymphoid cells, particularly NK cells, were the dominant producers of early Ifnγ, while CD4 and CD8 T cells were the main producers by day 10 post-infection. Following viral clearance, some memory CD4 and CD8 T cells continued to express Ifnγ in the lungs and draining lymph node. Interestingly, Ifnγ production by lymph node natural killer (NK), NKT, and innate lymphoid type 1 cells also continued to be above naïve levels, suggesting memory-like phenotypes for these cells. Analysis of the localization of Ifnγ+ memory CD4 and CD8 T cells demonstrated that cytokine+ T cells were located near airways and in the lung parenchyma. Following a second IAV challenge, lung IAV-specific CD8 T cells rapidly increased their expression of Ifnγ while CD4 T cells in the draining lymph node increased their Ifnγ response. Together, these data suggest that Ifnγ production fluctuates based on cellular source and location, both of which could impact subsequent immune responses.

干扰素γ(IFNγ)是一种强效抗病毒细胞因子,可由许多先天和适应性免疫细胞在感染过程中产生。目前,我们对哪些细胞产生IFNγ以及它们在感染的不同阶段位于何处的了解有限。我们使用报告小鼠来研究在甲型流感病毒(IAV)感染期间和之后,IfnγmRNA在肺和次级淋巴器官中的体内表达。我们观察到Ifnγ表达的三相产生。非常规T细胞和先天性淋巴细胞,特别是NK细胞,是早期Ifnγ的主要产生者,而CD4和CD8 T细胞是感染后第10天的主要产生物。病毒清除后,一些记忆性CD4和CD8 T细胞在肺和引流淋巴结中继续表达Ifnγ。有趣的是,淋巴结自然杀伤细胞(NK)、NKT和先天性淋巴1型细胞产生的Ifnγ也继续高于幼稚水平,这表明这些细胞具有记忆样表型。对Ifnγ+记忆性CD4和CD8 T细胞定位的分析表明,细胞因子+T细胞位于气道附近和肺实质中。在第二次IAV攻击后,肺IAV特异性CD8 T细胞迅速增加了其Ifnγ的表达,而引流淋巴结中的CD4 T细胞增加了其Ifnγ反应。总之,这些数据表明,Ifnγ的产生根据细胞来源和位置而波动,这两者都可能影响随后的免疫反应。
{"title":"Triphasic production of IFN<i>γ</i> by innate and adaptive lymphocytes following influenza A virus infection.","authors":"George E Finney, Kerrie E Hargrave, Marieke Pingen, Thomas Purnell, David Todd, Freya MacDonald, Julie C Worrell, Megan K L MacLeod","doi":"10.1093/discim/kyad014","DOIUrl":"10.1093/discim/kyad014","url":null,"abstract":"<p><p>Interferon gamma (IFN<i>γ</i>) is a potent antiviral cytokine that can be produced by many innate and adaptive immune cells during infection. Currently, our understanding of which cells produce IFN<i>γ</i> and where they are located at different stages of an infection is limited. We have used reporter mice to investigate <i>in vivo</i> expression of <i>Ifn</i><i>γ</i> mRNA in the lung and secondary lymphoid organs during and following influenza A virus (IAV) infection. We observed a triphasic production of <i>Ifn</i><i>γ</i> expression. Unconventional T cells and innate lymphoid cells, particularly NK cells, were the dominant producers of early <i>Ifn</i><i>γ</i>, while CD4 and CD8 T cells were the main producers by day 10 post-infection. Following viral clearance, some memory CD4 and CD8 T cells continued to express <i>Ifn</i><i>γ</i> in the lungs and draining lymph node. Interestingly, <i>Ifn</i><i>γ</i> production by lymph node natural killer (NK), NKT, and innate lymphoid type 1 cells also continued to be above naïve levels, suggesting memory-like phenotypes for these cells. Analysis of the localization of <i>Ifn</i><i>γ</i>+ memory CD4 and CD8 T cells demonstrated that cytokine+ T cells were located near airways and in the lung parenchyma. Following a second IAV challenge, lung IAV-specific CD8 T cells rapidly increased their expression of <i>Ifn</i><i>γ</i> while CD4 T cells in the draining lymph node increased their <i>Ifn</i><i>γ</i> response. Together, these data suggest that <i>Ifn</i><i>γ</i> production fluctuates based on cellular source and location, both of which could impact subsequent immune responses.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10568397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CD56bright natural killer cells preferentially kill proliferating CD4+ T cells. 具有 CD56 标记的自然杀伤细胞会优先杀死增殖的 CD4+ T 细胞。
Pub Date : 2023-08-11 eCollection Date: 2023-01-01 DOI: 10.1093/discim/kyad012
Mercede Lee, Charles J M Bell, Arcadio Rubio Garcia, Leila Godfrey, Marcin Pekalski, Linda S Wicker, John A Todd, Ricardo C Ferreira

Human CD56br natural killer (NK) cells represent a small subset of CD56+ NK cells in circulation and are largely tissue-resident. The frequency and number of CD56br NK cells in blood has been shown to increase following administration of low-dose IL-2 (LD-IL2), a therapy aimed to specifically expand CD4+ regulatory T cells (Tregs). Given the potential clinical application of LD-IL-2 immunotherapy across several immune diseases, including the autoimmune disease type 1 diabetes, a better understanding of the functional consequences of this expansion is urgently needed. In this study, we developed an in vitro co-culture assay with activated CD4+ T cells to measure NK cell killing efficiency. We show that CD56br and CD56dim NK cells show similar efficiency at killing activated CD4+ conventional T (Tconv) and Treg cell subsets. However, in contrast to CD56dim cells, CD56br NK cells preferentially target highly proliferative cells. We hypothesize that CD56br NK cells have an immunoregulatory role through the elimination of proliferating autoreactive CD4+ Tconv cells that have escaped Treg suppression. These results have implications for the interpretation of current and future trials of LD-IL-2 by providing evidence for a new, possibly beneficial immunomodulatory mechanism of LD-IL-2-expanded CD56br NK cells.

人类 CD56br 自然杀伤(NK)细胞是循环中 CD56+ NK 细胞的一小部分,在很大程度上驻留在组织中。低剂量IL-2(LD-IL2)是一种旨在特异性扩增CD4+调节性T细胞(Tregs)的疗法,有研究表明,服用低剂量IL-2后,血液中CD56br NK细胞的频率和数量会增加。鉴于低剂量IL-2免疫疗法在包括自身免疫性疾病1型糖尿病在内的多种免疫性疾病中的潜在临床应用,迫切需要更好地了解这种扩增的功能性后果。在这项研究中,我们开发了一种与活化的 CD4+ T 细胞共培养的体外试验来测量 NK 细胞的杀伤效率。我们发现,CD56br 和 CD56dim NK 细胞在杀伤活化的 CD4+ 传统 T(Tconv)和 Treg 细胞亚群方面表现出相似的效率。然而,与 CD56dim 细胞不同的是,CD56br NK 细胞更倾向于靶向高度增殖的细胞。我们推测,CD56br NK 细胞通过消除摆脱了 Treg 抑制的增殖性自反应 CD4+ Tconv 细胞发挥免疫调节作用。这些结果为LD-IL-2扩增的CD56br NK细胞提供了一种新的、可能有益的免疫调节机制,从而对目前和未来的LD-IL-2试验的解释产生了影响。
{"title":"CD56<sup>bright</sup> natural killer cells preferentially kill proliferating CD4<sup>+</sup> T cells.","authors":"Mercede Lee, Charles J M Bell, Arcadio Rubio Garcia, Leila Godfrey, Marcin Pekalski, Linda S Wicker, John A Todd, Ricardo C Ferreira","doi":"10.1093/discim/kyad012","DOIUrl":"10.1093/discim/kyad012","url":null,"abstract":"<p><p>Human CD56<sup>br</sup> natural killer (NK) cells represent a small subset of CD56<sup>+</sup> NK cells in circulation and are largely tissue-resident. The frequency and number of CD56<sup>br</sup> NK cells in blood has been shown to increase following administration of low-dose IL-2 (LD-IL2), a therapy aimed to specifically expand CD4<sup>+</sup> regulatory T cells (Tregs). Given the potential clinical application of LD-IL-2 immunotherapy across several immune diseases, including the autoimmune disease type 1 diabetes, a better understanding of the functional consequences of this expansion is urgently needed. In this study, we developed an <i>in vitro</i> co-culture assay with activated CD4<sup>+</sup> T cells to measure NK cell killing efficiency. We show that CD56<sup>br</sup> and CD56<sup>dim</sup> NK cells show similar efficiency at killing activated CD4<sup>+</sup> conventional T (Tconv) and Treg cell subsets. However, in contrast to CD56<sup>dim</sup> cells, CD56<sup>br</sup> NK cells preferentially target highly proliferative cells. We hypothesize that CD56<sup>br</sup> NK cells have an immunoregulatory role through the elimination of proliferating autoreactive CD4<sup>+</sup> Tconv cells that have escaped Treg suppression. These results have implications for the interpretation of current and future trials of LD-IL-2 by providing evidence for a new, possibly beneficial immunomodulatory mechanism of LD-IL-2-expanded CD56<sup>br</sup> NK cells.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465185/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10169103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of macrophages by biophysical cues in health and beyond. 巨噬细胞在健康及其他方面的生物物理信号调节
Pub Date : 2023-08-10 eCollection Date: 2023-01-01 DOI: 10.1093/discim/kyad013
Heather M Wilson

Macrophages play a key role in tissue development and homeostasis, innate immune defence against microbes or tumours, and restoring homeostasis through tissue regeneration following infection or injury. The ability to adopt such diverse functions is due to their heterogeneous nature, which is driven largely by their developmental origin and their response to signals they encounter from the microenvironment. The most well-characterized signals driving macrophage phenotype and function are biochemical and metabolic. However, the way macrophages sense and respond to their extracellular biophysical environment is becoming increasingly recognized in the field of mechano-immunology. These biophysical cues can be signals from tissue components, such as the composition and charge of extracellular matrix or topography, elasticity, and stiffness of the tissue surrounding cells; and mechanical forces such as shear stress or stretch. Macrophages are important in determining whether a disease resolves or becomes chronic. Ageing and diseases such as cancer or fibrotic disorders are associated with significant changes in the tissue biophysical environment, and this provides signals that integrate with those from biochemical and metabolic stimuli to ultimately dictate the overall function of macrophages. This review provides a brief overview of macrophage polarization, followed by a selection of commonly recognized physiological and applied biophysical stimuli impacting macrophage activity, and the potential signalling mechanisms driving downstream responses. The effects of biophysical cues on macrophages' function in homeostasis and disease and the associated clinical implications are also highlighted.

巨噬细胞在组织发育和稳态、对微生物或肿瘤的先天免疫防御以及通过感染或损伤后的组织再生恢复稳态中发挥着关键作用。采用这种多样功能的能力是由于它们的异质性,这在很大程度上是由它们的发育起源和对微环境信号的反应所驱动的。驱动巨噬细胞表型和功能的最具特征的信号是生化和代谢信号。然而,巨噬细胞对细胞外生物物理环境的感知和反应方式在机械免疫学领域越来越得到认可。这些生物物理线索可以是来自组织成分的信号,例如细胞外基质的组成和电荷或细胞周围组织的形貌、弹性和硬度;以及诸如剪切应力或拉伸的机械力。巨噬细胞在决定疾病是消退还是变成慢性病方面很重要。衰老和疾病,如癌症或纤维化疾病,与组织生物物理环境的显著变化有关,这提供了与来自生物化学和代谢刺激的信号整合的信号,最终决定巨噬细胞的整体功能。这篇综述简要概述了巨噬细胞极化,随后选择了影响巨噬细胞活性的常见生理和应用生物物理刺激,以及驱动下游反应的潜在信号机制。生物物理线索对巨噬细胞稳态和疾病功能的影响,以及相关的临床意义也得到了强调。
{"title":"Modulation of macrophages by biophysical cues in health and beyond.","authors":"Heather M Wilson","doi":"10.1093/discim/kyad013","DOIUrl":"10.1093/discim/kyad013","url":null,"abstract":"<p><p>Macrophages play a key role in tissue development and homeostasis, innate immune defence against microbes or tumours, and restoring homeostasis through tissue regeneration following infection or injury. The ability to adopt such diverse functions is due to their heterogeneous nature, which is driven largely by their developmental origin and their response to signals they encounter from the microenvironment. The most well-characterized signals driving macrophage phenotype and function are biochemical and metabolic. However, the way macrophages sense and respond to their extracellular biophysical environment is becoming increasingly recognized in the field of mechano-immunology. These biophysical cues can be signals from tissue components, such as the composition and charge of extracellular matrix or topography, elasticity, and stiffness of the tissue surrounding cells; and mechanical forces such as shear stress or stretch. Macrophages are important in determining whether a disease resolves or becomes chronic. Ageing and diseases such as cancer or fibrotic disorders are associated with significant changes in the tissue biophysical environment, and this provides signals that integrate with those from biochemical and metabolic stimuli to ultimately dictate the overall function of macrophages. This review provides a brief overview of macrophage polarization, followed by a selection of commonly recognized physiological and applied biophysical stimuli impacting macrophage activity, and the potential signalling mechanisms driving downstream responses. The effects of biophysical cues on macrophages' function in homeostasis and disease and the associated clinical implications are also highlighted.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43369152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Friend or Foe - Tc17 cell generation and current evidence for their importance in human disease. 友或敌- Tc17细胞的产生及其在人类疾病中重要性的现有证据
Pub Date : 2023-07-20 eCollection Date: 2023-01-01 DOI: 10.1093/discim/kyad010
Anna Veronika Hipp, Bertram Bengsch, Anna-Maria Globig

The term Tc17 cells refers to interleukin 17 (IL-17)-producing CD8+ T cells. While IL-17 is an important mediator of mucosal defense, it is also centrally involved in driving the inflammatory response in immune-mediated diseases, such as psoriasis, multiple sclerosis, and inflammatory bowel disease. In this review, we aim to gather the current knowledge on the phenotypic and transcriptional profile, the in vitro and in vivo generation of Tc17 cells, and the evidence pointing towards a relevant role of Tc17 cells in human diseases such as infectious diseases, cancer, and immune-mediated diseases.

术语Tc17细胞是指产生白细胞介素17(IL-17)的CD8+T细胞。虽然IL-17是粘膜防御的重要介质,但它也在免疫介导的疾病中集中参与驱动炎症反应,如银屑病、多发性硬化症和炎症性肠病。在这篇综述中,我们的目的是收集关于Tc17细胞的表型和转录谱、体外和体内产生的最新知识,以及Tc17细胞在人类疾病(如传染病、癌症和免疫介导的疾病)中的相关作用的证据。
{"title":"Friend or Foe - Tc17 cell generation and current evidence for their importance in human disease.","authors":"Anna Veronika Hipp, Bertram Bengsch, Anna-Maria Globig","doi":"10.1093/discim/kyad010","DOIUrl":"10.1093/discim/kyad010","url":null,"abstract":"<p><p>The term <i>Tc17 cells</i> refers to interleukin 17 (IL-17)-producing CD8<sup>+</sup> T cells. While IL-17 is an important mediator of mucosal defense, it is also centrally involved in driving the inflammatory response in immune-mediated diseases, such as psoriasis, multiple sclerosis, and inflammatory bowel disease. In this review, we aim to gather the current knowledge on the phenotypic and transcriptional profile, the <i>in vitro</i> and <i>in vivo</i> generation of Tc17 cells, and the evidence pointing towards a relevant role of Tc17 cells in human diseases such as infectious diseases, cancer, and immune-mediated diseases.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917240/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41618643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Discovery immunology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1