首页 > 最新文献

Discovery immunology最新文献

英文 中文
Diversification of immunoglobulin genes by gene conversion in the domestic chicken (Gallus gallus domesticus). 通过基因转化实现家鸡免疫球蛋白基因多样化
Pub Date : 2023-01-19 eCollection Date: 2023-01-01 DOI: 10.1093/discim/kyad002
Jessica Mallaby, William Mwangi, Joseph Ng, Alexander Stewart, Daniel Dorey-Robinson, David Kipling, Uri Hershberg, Franca Fraternali, Venugopal Nair, Deborah Dunn-Walters

Sustainable modern poultry production depends on effective protection against infectious diseases and a diverse range of antibodies is key for an effective immune response. In the domestic chicken, somatic gene conversion is the dominant process in which the antibody immunoglobulin genes are diversified. Affinity maturation by somatic hypermutation (SHM) also occurs, but the relative contribution of gene conversion versus somatic hypermutation to immunoglobulin (Ig) gene diversity is poorly understood. In this study, we use high throughput long-read sequencing to study immunoglobulin diversity in multiple immune-associated tissues in Rhode Island Red chickens. To better understand the impact of genetic diversification in the chicken, a novel gene conversion identification software was developed (BrepConvert). In this study, BrepConvert enabled the identification of over 1 million gene conversion events. Mapping the occurrence of putative somatic gene conversion (SGC) events throughout the variable gene region revealed repetitive and highly restricted patterns of genetic insertions in both the antibody heavy and light chains. These patterns coincided with the locations of genetic variability in available pseudogenes and align with antigen binding sites, predominately the complementary determining regions (CDRs). We found biased usage of pseudogenes during gene conversion, as well as immunoglobulin heavy chain diversity gene (IGHD) preferences during V(D)J gene rearrangement, suggesting that antibody diversification in chickens is more focused than the genetic potential for diversity would suggest.

可持续的现代家禽生产依赖于对传染病的有效保护,而多种抗体是有效免疫反应的关键。在家鸡中,体细胞基因转化是抗体免疫球蛋白基因多样化的主要过程。体细胞超突变(SHM)的亲和成熟也会发生,但基因转化与体细胞超突变对免疫球蛋白(Ig)基因多样性的相对贡献尚不清楚。在这项研究中,我们使用高通量长读测序研究了罗德岛红鸡多种免疫相关组织的免疫球蛋白多样性。为了更好地了解基因多样化对鸡的影响,开发了一种新的基因转换鉴定软件(BrepConvert)。在这项研究中,BrepConvert能够识别超过100万个基因转换事件。在整个可变基因区域绘制假定的体细胞基因转换(SGC)事件的发生图谱,揭示了抗体重链和轻链中重复和高度受限的遗传插入模式。这些模式与可用假基因的遗传变异位置一致,并与抗原结合位点一致,主要是互补决定区(cdr)。我们发现在基因转换过程中假基因的使用有偏倚,以及在V(D)J基因重排过程中免疫球蛋白重链多样性基因(IGHD)偏好,这表明鸡的抗体多样化比遗传多样性潜力更集中。
{"title":"Diversification of immunoglobulin genes by gene conversion in the domestic chicken (<i>Gallus gallus</i> domesticus).","authors":"Jessica Mallaby, William Mwangi, Joseph Ng, Alexander Stewart, Daniel Dorey-Robinson, David Kipling, Uri Hershberg, Franca Fraternali, Venugopal Nair, Deborah Dunn-Walters","doi":"10.1093/discim/kyad002","DOIUrl":"10.1093/discim/kyad002","url":null,"abstract":"<p><p>Sustainable modern poultry production depends on effective protection against infectious diseases and a diverse range of antibodies is key for an effective immune response. In the domestic chicken, somatic gene conversion is the dominant process in which the antibody immunoglobulin genes are diversified. Affinity maturation by somatic hypermutation (SHM) also occurs, but the relative contribution of gene conversion versus somatic hypermutation to immunoglobulin (Ig) gene diversity is poorly understood. In this study, we use high throughput long-read sequencing to study immunoglobulin diversity in multiple immune-associated tissues in Rhode Island Red chickens. To better understand the impact of genetic diversification in the chicken, a novel gene conversion identification software was developed (BrepConvert). In this study, BrepConvert enabled the identification of over 1 million gene conversion events. Mapping the occurrence of putative somatic gene conversion (SGC) events throughout the variable gene region revealed repetitive and highly restricted patterns of genetic insertions in both the antibody heavy and light chains. These patterns coincided with the locations of genetic variability in available pseudogenes and align with antigen binding sites, predominately the complementary determining regions (CDRs). We found biased usage of pseudogenes during gene conversion, as well as immunoglobulin heavy chain diversity gene (IGHD) preferences during V(D)J gene rearrangement, suggesting that antibody diversification in chickens is more focused than the genetic potential for diversity would suggest.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"1 1","pages":"kyad002"},"PeriodicalIF":0.0,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917233/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41469775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protection from T cell-dependent colitis by the helminth-derived immunomodulatory mimic of transforming growth factor-β, Hp-TGM. 来自蠕虫的转化生长因子-β免疫调节模拟物Hp-TGM可防止T细胞依赖性结肠炎。
Pub Date : 2023-01-18 eCollection Date: 2023-01-01 DOI: 10.1093/discim/kyad001
Danielle J Smyth, Madeleine P J White, Chris J C Johnston, Anne-Marie Donachie, Marta Campillo Poveda, Henry J McSorley, Rick M Maizels

In animal models of inflammatory colitis, pathology can be ameliorated by several intestinal helminth parasites, including the mouse nematode Heligmosomoides polygyrus. To identify parasite products that may exert anti-inflammatory effects in vivo, we tested H. polygyrus excretory-secretory (HES) products, as well as a recombinantly expressed parasite protein, transforming growth factor mimic (TGM), that functionally mimics the mammalian immunomodulatory cytokine TGF-β. HES and TGM showed a degree of protection in dextran sodium sulphate-induced colitis, with a reduction in inflammatory cytokines, but did not fully block the development of pathology. HES also showed little benefit in a similar acute trinitrobenzene sulphonic acid-induced model. However, in a T cell transfer-mediated model with recombination activation gene (RAG)-deficient mice, HES-reduced disease scores if administered throughout the first 2 or 4 weeks following transfer but was less effective if treatment was delayed until 14 days after T cell transfer. Recombinant TGM similarly dampened colitis in RAG-deficient recipients of effector T cells, and was effective even if introduced only once symptoms had begun to be manifest. These results are a promising indication that TGM may replicate, and even surpass, the modulatory properties of native parasite HES.

在炎症性结肠炎的动物模型中,包括小鼠多角螺旋体线虫在内的几种肠道蠕虫寄生虫可改善病理学。为了找出可能在体内发挥抗炎作用的寄生虫产物,我们测试了多钩吻蛭的排泄-分泌(HES)产物以及一种重组表达的寄生虫蛋白--转化生长因子模拟物(TGM),后者在功能上模拟哺乳动物的免疫调节细胞因子 TGF-β。HES 和 TGM 对葡聚糖硫酸钠诱导的结肠炎有一定程度的保护作用,可减少炎性细胞因子,但并不能完全阻止病变的发展。在类似的急性三硝基苯磺酸诱导模型中,HES 也没有显示出什么益处。然而,在由 T 细胞转移介导的重组活化基因(RAG)缺陷小鼠模型中,如果在 T 细胞转移后的头 2 周或 4 周内给药,HES 可降低疾病评分,但如果延迟到 T 细胞转移后 14 天才给药,则效果较差。重组 TGM 同样能抑制 RAG 缺陷受体效应 T 细胞的结肠炎,而且即使在症状开始显现时才使用也有效。这些结果很有希望地表明,TGM 可能复制甚至超越原生寄生虫 HES 的调节特性。
{"title":"Protection from T cell-dependent colitis by the helminth-derived immunomodulatory mimic of transforming growth factor-β, <i>Hp</i>-TGM.","authors":"Danielle J Smyth, Madeleine P J White, Chris J C Johnston, Anne-Marie Donachie, Marta Campillo Poveda, Henry J McSorley, Rick M Maizels","doi":"10.1093/discim/kyad001","DOIUrl":"10.1093/discim/kyad001","url":null,"abstract":"<p><p>In animal models of inflammatory colitis, pathology can be ameliorated by several intestinal helminth parasites, including the mouse nematode <i>Heligmosomoides polygyrus</i>. To identify parasite products that may exert anti-inflammatory effects <i>in vivo</i>, we tested <i>H. polygyrus</i> excretory-secretory (HES) products, as well as a recombinantly expressed parasite protein, transforming growth factor mimic (TGM), that functionally mimics the mammalian immunomodulatory cytokine TGF-β. HES and TGM showed a degree of protection in dextran sodium sulphate-induced colitis, with a reduction in inflammatory cytokines, but did not fully block the development of pathology. HES also showed little benefit in a similar acute trinitrobenzene sulphonic acid-induced model. However, in a T cell transfer-mediated model with recombination activation gene (RAG)-deficient mice, HES-reduced disease scores if administered throughout the first 2 or 4 weeks following transfer but was less effective if treatment was delayed until 14 days after T cell transfer. Recombinant TGM similarly dampened colitis in RAG-deficient recipients of effector T cells, and was effective even if introduced only once symptoms had begun to be manifest. These results are a promising indication that TGM may replicate, and even surpass, the modulatory properties of native parasite HES.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"2 1","pages":"kyad001"},"PeriodicalIF":0.0,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958376/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9329589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The association of microbial infection and adaptive immune cell activation in Alzheimer’s Disease 阿尔茨海默病中微生物感染与适应性免疫细胞激活的关系
Pub Date : 2023-01-01 DOI: 10.1093/discim/kyad015
Mathew Clement
Summary Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Early symptoms include the loss of memory and mild cognitive ability; however, as the disease progresses, these symptoms can present with increased severity manifesting as mood and behaviour changes, disorientation, and a loss of motor/body control. AD is one of the leading causes of death in the UK, and with an ever-increasing ageing society, patient numbers are predicted to rise posing a significant global health emergency. AD is a complex neurophysiological disorder where pathology is characterized by the deposition and aggregation of misfolded amyloid-beta (Aβ)-protein that in-turn promotes excessive tau-protein production which together drives neuronal cell dysfunction, neuroinflammation, and neurodegeneration. It is widely accepted that AD is driven by a combination of both genetic and immunological processes with recent data suggesting that adaptive immune cell activity within the parenchyma occurs throughout disease. The mechanisms behind these observations remain unclear but suggest that manipulating the adaptive immune response during AD may be an effective therapeutic strategy. Using immunotherapy for AD treatment is not a new concept as the only two approved treatments for AD use antibody-based approaches to target Aβ. However, these have been shown to only temporarily ease symptoms or slow progression highlighting the urgent need for newer treatments. This review discusses the role of the adaptive immune system during AD, how microbial infections may be contributing to inflammatory immune activity and suggests how adaptive immune processes can pose as therapeutic targets for this devastating disease.
阿尔茨海默病(AD)是一种进行性神经退行性疾病,也是痴呆症最常见的形式。早期症状包括记忆和轻度认知能力的丧失;然而,随着疾病的进展,这些症状的严重程度可能会增加,表现为情绪和行为改变、定向障碍以及运动/身体控制丧失。在英国,阿尔茨海默病是导致死亡的主要原因之一,随着老龄化社会的不断加剧,预计患者人数将会增加,这将构成重大的全球卫生紧急情况。AD是一种复杂的神经生理疾病,其病理特征是错误折叠的淀粉样蛋白沉积和聚集,进而促进过量的tau蛋白产生,共同驱动神经元细胞功能障碍、神经炎症和神经退行性变。人们普遍认为,阿尔茨海默病是由遗传和免疫过程共同驱动的,最近的数据表明,薄壁组织内的适应性免疫细胞活性在整个疾病过程中都会发生。这些观察结果背后的机制尚不清楚,但表明在AD期间操纵适应性免疫反应可能是一种有效的治疗策略。使用免疫疗法治疗阿尔茨海默病并不是一个新概念,因为只有两种批准的阿尔茨海默病治疗方法使用基于抗体的方法靶向a β。然而,这些已被证明只能暂时缓解症状或减缓进展,强调迫切需要新的治疗方法。这篇综述讨论了适应性免疫系统在AD中的作用,微生物感染如何促进炎症免疫活性,并提出适应性免疫过程如何成为这种毁灭性疾病的治疗靶点。
{"title":"The association of microbial infection and adaptive immune cell activation in Alzheimer’s Disease","authors":"Mathew Clement","doi":"10.1093/discim/kyad015","DOIUrl":"https://doi.org/10.1093/discim/kyad015","url":null,"abstract":"Summary Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Early symptoms include the loss of memory and mild cognitive ability; however, as the disease progresses, these symptoms can present with increased severity manifesting as mood and behaviour changes, disorientation, and a loss of motor/body control. AD is one of the leading causes of death in the UK, and with an ever-increasing ageing society, patient numbers are predicted to rise posing a significant global health emergency. AD is a complex neurophysiological disorder where pathology is characterized by the deposition and aggregation of misfolded amyloid-beta (Aβ)-protein that in-turn promotes excessive tau-protein production which together drives neuronal cell dysfunction, neuroinflammation, and neurodegeneration. It is widely accepted that AD is driven by a combination of both genetic and immunological processes with recent data suggesting that adaptive immune cell activity within the parenchyma occurs throughout disease. The mechanisms behind these observations remain unclear but suggest that manipulating the adaptive immune response during AD may be an effective therapeutic strategy. Using immunotherapy for AD treatment is not a new concept as the only two approved treatments for AD use antibody-based approaches to target Aβ. However, these have been shown to only temporarily ease symptoms or slow progression highlighting the urgent need for newer treatments. This review discusses the role of the adaptive immune system during AD, how microbial infections may be contributing to inflammatory immune activity and suggests how adaptive immune processes can pose as therapeutic targets for this devastating disease.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135701444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The link between T cell activation and development of functionally useful tumour-associated high endothelial venules. T细胞活化与功能有用的肿瘤相关高内皮小静脉发育之间的联系。
Pub Date : 2023-01-01 DOI: 10.1093/discim/kyad006
Stefan Milutinovic, Awen Gallimore

High endothelial venules (HEVs) are specialized postcapillary venules that specifically serve to recruit circulating lymphocytes to secondary lymphoid organs (SLOs) where cognate antigens can be encountered, and immune responses can be initiated. The presence of HEV-like vessels in primary human solid tumours and their association with lymphocyte infiltration and favourable clinical outcomes and response to immunotherapy have provided a rationale for therapeutically inducing these vessels in tumours for immunotherapeutic benefit. Here we specifically discuss evidence for a link between T-cell activation and development of useful tumour-associated HEV (TA-HEV). We discuss the molecular and functional features of TA-HEV, highlighting the benefits for promoting tumour immunity and the important unanswered questions that need to be addressed before TA-HEV induction can be optimized for immunotherapeutic benefit.

高内皮小静脉(HEVs)是特化的毛细血管后小静脉,专门用于招募循环淋巴细胞到次要淋巴器官(slo),在次要淋巴器官中可以遇到同源抗原,并启动免疫反应。原发性人实体瘤中hev样血管的存在及其与淋巴细胞浸润的关联、良好的临床结果和对免疫治疗的反应,为在肿瘤中诱导这些血管以获得免疫治疗益处提供了理论依据。在这里,我们特别讨论了t细胞活化和有用的肿瘤相关HEV (TA-HEV)发展之间联系的证据。我们讨论了TA-HEV的分子和功能特征,强调了促进肿瘤免疫的益处,以及在优化TA-HEV诱导以获得免疫治疗益处之前需要解决的重要未解问题。
{"title":"The link between T cell activation and development of functionally useful tumour-associated high endothelial venules.","authors":"Stefan Milutinovic,&nbsp;Awen Gallimore","doi":"10.1093/discim/kyad006","DOIUrl":"https://doi.org/10.1093/discim/kyad006","url":null,"abstract":"<p><p>High endothelial venules (HEVs) are specialized postcapillary venules that specifically serve to recruit circulating lymphocytes to secondary lymphoid organs (SLOs) where cognate antigens can be encountered, and immune responses can be initiated. The presence of HEV-like vessels in primary human solid tumours and their association with lymphocyte infiltration and favourable clinical outcomes and response to immunotherapy have provided a rationale for therapeutically inducing these vessels in tumours for immunotherapeutic benefit. Here we specifically discuss evidence for a link between T-cell activation and development of useful tumour-associated HEV (TA-HEV). We discuss the molecular and functional features of TA-HEV, highlighting the benefits for promoting tumour immunity and the important unanswered questions that need to be addressed before TA-HEV induction can be optimized for immunotherapeutic benefit.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"2 1","pages":"kyad006"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243744/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9652973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time to treat the climate and nature crisis as one indivisible global health emergency 是时候将气候和自然危机视为一个不可分割的全球卫生紧急事件
Pub Date : 2023-01-01 DOI: 10.1093/discim/kyad020
Kamran Abbasi, Parveen Ali, Virginia Barbour, Thomas Benfield, Kirsten Bibbins-Domingo, Stephen Hancocks, Richard Horton, Laurie Laybourn-Langton, Robert Mash, Peush Sahni, Wadeia Mohammad Sharief, Paul Yonga, Chris Zielinski
{"title":"Time to treat the climate and nature crisis as one indivisible global health emergency","authors":"Kamran Abbasi, Parveen Ali, Virginia Barbour, Thomas Benfield, Kirsten Bibbins-Domingo, Stephen Hancocks, Richard Horton, Laurie Laybourn-Langton, Robert Mash, Peush Sahni, Wadeia Mohammad Sharief, Paul Yonga, Chris Zielinski","doi":"10.1093/discim/kyad020","DOIUrl":"https://doi.org/10.1093/discim/kyad020","url":null,"abstract":"","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134980680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel in vitro model of the small intestinal epithelium in co-culture with “gut-like” dendritic cells 小肠上皮与“肠样”树突状细胞共培养的新型体外模型
Pub Date : 2023-01-01 DOI: 10.1093/discim/kyad018
Luke J Johnston, Liam Barningham, Eric L Campbell, Vuk Cerovic, Carrie A Duckworth, Lisa Luu, Jonathan Wastling, Hayley Derricott, Janine L Coombes
Abstract Cross-talk between dendritic cells (DCs) and the intestinal epithelium is important in the decision to mount a protective immune response to a pathogen or to regulate potentially damaging responses to food antigens and the microbiota. Failures in this decision-making process contribute to the development of intestinal inflammation, making the molecular signals that pass between DCs and intestinal epithelial cells potential therapeutic targets. Until now, in vitro models with sufficient complexity to understand these interactions have been lacking. Here, we outline the development of a co-culture model of in vitro differentiated ‘gut-like’ DCs with small intestinal organoids (enteroids). Sequential exposure of murine bone marrow progenitors to Flt3L, granulocyte macrophage colony-stimulating factor (GM-CSF) and all-trans-retinoic acid (RA) resulted in the generation of a distinct population of conventional DCs expressing CD11b+SIRPα+CD103+/− (cDC2) exhibiting retinaldehyde dehydrogenase (RALDH) activity. These ‘gut-like’ DCs extended transepithelial dendrites across the intact epithelium of enteroids. ‘Gut-like’ DC in co-culture with enteroids can be utilized to define how epithelial cells and cDCs communicate in the intestine under a variety of different physiological conditions, including exposure to different nutrients, natural products, components of the microbiota, or pathogens. Surprisingly, we found that co-culture with enteroids resulted in a loss of RALDH activity in ‘gut-like’ DCs. Continued provision of GM-CSF and RA during co-culture was required to oppose putative negative signals from the enteroid epithelium. Our data contribute to a growing understanding of how intestinal cDCs assess environmental conditions to ensure appropriate activation of the immune response.
树突状细胞(dc)和肠上皮之间的串扰在决定对病原体发起保护性免疫反应或调节对食物抗原和微生物群的潜在破坏性反应中是重要的。这一决策过程的失败有助于肠道炎症的发展,使在dc和肠上皮细胞之间传递的分子信号成为潜在的治疗靶点。到目前为止,缺乏足够复杂的体外模型来理解这些相互作用。在这里,我们概述了体外分化的“肠样”dc与小肠类器官(肠样)共培养模型的发展。小鼠骨髓祖细胞连续暴露于Flt3L、粒细胞巨噬细胞集落刺激因子(GM-CSF)和全反式维甲酸(RA)中,导致产生不同的传统dc群体,表达CD11b+SIRPα+CD103+/−(cDC2),表现出视黄醛脱氢酶(RALDH)活性。这些“肠样”树突状细胞将经上皮树突延伸至完整的肠样上皮。与类肠共培养的“肠样”DC可用于定义上皮细胞和cdc在各种不同生理条件下如何在肠道内交流,包括暴露于不同的营养物质、天然产物、微生物群成分或病原体。令人惊讶的是,我们发现与肠样细胞共培养导致“肠样”dc中RALDH活性的丧失。在共培养期间,需要继续提供GM-CSF和RA,以对抗来自肠样上皮的推定阴性信号。我们的数据有助于加深对肠道cdc如何评估环境条件以确保适当激活免疫反应的理解。
{"title":"A novel <i>in vitro</i> model of the small intestinal epithelium in co-culture with “gut-like” dendritic cells","authors":"Luke J Johnston, Liam Barningham, Eric L Campbell, Vuk Cerovic, Carrie A Duckworth, Lisa Luu, Jonathan Wastling, Hayley Derricott, Janine L Coombes","doi":"10.1093/discim/kyad018","DOIUrl":"https://doi.org/10.1093/discim/kyad018","url":null,"abstract":"Abstract Cross-talk between dendritic cells (DCs) and the intestinal epithelium is important in the decision to mount a protective immune response to a pathogen or to regulate potentially damaging responses to food antigens and the microbiota. Failures in this decision-making process contribute to the development of intestinal inflammation, making the molecular signals that pass between DCs and intestinal epithelial cells potential therapeutic targets. Until now, in vitro models with sufficient complexity to understand these interactions have been lacking. Here, we outline the development of a co-culture model of in vitro differentiated ‘gut-like’ DCs with small intestinal organoids (enteroids). Sequential exposure of murine bone marrow progenitors to Flt3L, granulocyte macrophage colony-stimulating factor (GM-CSF) and all-trans-retinoic acid (RA) resulted in the generation of a distinct population of conventional DCs expressing CD11b+SIRPα+CD103+/− (cDC2) exhibiting retinaldehyde dehydrogenase (RALDH) activity. These ‘gut-like’ DCs extended transepithelial dendrites across the intact epithelium of enteroids. ‘Gut-like’ DC in co-culture with enteroids can be utilized to define how epithelial cells and cDCs communicate in the intestine under a variety of different physiological conditions, including exposure to different nutrients, natural products, components of the microbiota, or pathogens. Surprisingly, we found that co-culture with enteroids resulted in a loss of RALDH activity in ‘gut-like’ DCs. Continued provision of GM-CSF and RA during co-culture was required to oppose putative negative signals from the enteroid epithelium. Our data contribute to a growing understanding of how intestinal cDCs assess environmental conditions to ensure appropriate activation of the immune response.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136053190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic regulation of γδ intraepithelial lymphocytes. γδ上皮内淋巴细胞的代谢调节
Pub Date : 2023-01-01 Epub Date: 2023-08-10 DOI: 10.1093/discim/kyad011
Sara Alonso, Karen Edelblum

Elucidating the relationship between cellular metabolism and T cell function has substantially advanced our understanding of how T cells are regulated in response to activation. The metabolic profiles of circulating or peripheral T cells have been well-described, yet less is known regarding how complex local microenvironments shape or modulate the bioenergetic profile of tissue-resident T lymphocytes. Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IEL) provide immunosurveillance of the intestinal epithelium to limit tissue injury and microbial invasion; however, their activation and effector responses occur independently of antigen recognition. In this review, we will summarize the current knowledge regarding γδ T cell and IEL metabolic profiles and how this informs our understanding of γδ IEL metabolism. We will also discuss the role of the gut microbiota in shaping the metabolic profile of these sentinel lymphocytes, and in turn, how these bioenergetics contribute to regulation of γδ IEL surveillance behavior and effector function. Improved understanding of the metabolic processes involved in γδ IEL homeostasis and function may yield novel strategies to amplify the protective functions of these cells in the context of intestinal health and disease.

阐明细胞代谢和T细胞功能之间的关系,大大提高了我们对T细胞如何在响应激活时受到调节的理解。循环或外周T细胞的代谢谱已经被很好地描述,但关于复杂的局部微环境如何塑造或调节组织驻留T淋巴细胞的生物能量谱,人们知之甚少。表达γδ T细胞受体(γδ IEL)的上皮内淋巴细胞提供肠上皮的免疫监视,以限制组织损伤和微生物入侵;然而,它们的激活和效应反应独立于抗原识别而发生。在这篇综述中,我们将总结目前关于γδ T细胞和IEL代谢谱的知识,以及这些知识如何影响我们对γδ IEL代谢的理解。我们还将讨论肠道微生物群在形成这些前哨淋巴细胞代谢谱中的作用,以及这些生物能量学如何促进γδ IEL监测行为和效应功能的调节。对参与γδ IEL稳态和功能的代谢过程的进一步了解可能会产生新的策略来增强这些细胞在肠道健康和疾病中的保护功能。
{"title":"Metabolic regulation of γδ intraepithelial lymphocytes.","authors":"Sara Alonso, Karen Edelblum","doi":"10.1093/discim/kyad011","DOIUrl":"10.1093/discim/kyad011","url":null,"abstract":"<p><p>Elucidating the relationship between cellular metabolism and T cell function has substantially advanced our understanding of how T cells are regulated in response to activation. The metabolic profiles of circulating or peripheral T cells have been well-described, yet less is known regarding how complex local microenvironments shape or modulate the bioenergetic profile of tissue-resident T lymphocytes. Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IEL) provide immunosurveillance of the intestinal epithelium to limit tissue injury and microbial invasion; however, their activation and effector responses occur independently of antigen recognition. In this review, we will summarize the current knowledge regarding γδ T cell and IEL metabolic profiles and how this informs our understanding of γδ IEL metabolism. We will also discuss the role of the gut microbiota in shaping the metabolic profile of these sentinel lymphocytes, and in turn, how these bioenergetics contribute to regulation of γδ IEL surveillance behavior and effector function. Improved understanding of the metabolic processes involved in γδ IEL homeostasis and function may yield novel strategies to amplify the protective functions of these cells in the context of intestinal health and disease.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10766425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44885219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery Immunology 2023. Highlights from our first full year Discovery Immunology 2023。我们第一年的亮点
Pub Date : 2023-01-01 DOI: 10.1093/discim/kyad019
Simon Milling
{"title":"Discovery Immunology 2023. Highlights from our first full year","authors":"Simon Milling","doi":"10.1093/discim/kyad019","DOIUrl":"https://doi.org/10.1093/discim/kyad019","url":null,"abstract":"","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135152804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review: Unravelling the Role of DNA Sensing in Alum Adjuvant Activity. 综述:揭示DNA传感在明矾佐剂活性中的作用
Pub Date : 2022-12-29 eCollection Date: 2023-01-01 DOI: 10.1093/discim/kyac012
Zara Gatt, Utku Gunes, Arianna Raponi, Larissa Camargo da Rosa, James M Brewer

Public interest in vaccines is at an all-time high following the SARS-CoV-2 global pandemic. Currently, over 6 billion doses of various vaccines are administered globally each year. Most of these vaccines contain Aluminium-based adjuvants (alum), which have been known and used for almost 100 years to enhance vaccine immunogenicity. However, despite the historical use and importance of alum, we still do not have a complete understanding of how alum works to drive vaccine immunogenicity. In this article, we critically review studies investigating the mechanisms of action of alum adjuvants, highlighting some of the misconceptions and controversies within the area. Although we have emerged with a clearer understanding of how this ubiquitous adjuvant works, we have also highlighted some of the outstanding questions in the field. While these may seem mainly of academic interest, developing a more complete understanding of these mechanisms has the potential to rationally modify and improve the immune response generated by alum-adjuvanted vaccines.

在SARS-CoV-2全球大流行之后,公众对疫苗的兴趣达到了历史最高水平。目前,全球每年使用的各种疫苗超过60亿剂。这些疫苗大多含有铝基佐剂(明矾),这种佐剂已被发现并用于增强疫苗的免疫原性近100年。然而,尽管明矾的历史用途和重要性,我们仍然没有完全了解明矾是如何推动疫苗免疫原性的。在本文中,我们批判性地回顾了调查明矾佐剂作用机制的研究,强调了该领域的一些误解和争议。虽然我们对这种无处不在的佐剂如何起作用有了更清晰的理解,但我们也强调了该领域的一些悬而未决的问题。虽然这些似乎主要是学术兴趣,但对这些机制进行更全面的了解有可能合理地修改和改善铝佐剂疫苗产生的免疫反应。
{"title":"Review: Unravelling the Role of DNA Sensing in Alum Adjuvant Activity.","authors":"Zara Gatt, Utku Gunes, Arianna Raponi, Larissa Camargo da Rosa, James M Brewer","doi":"10.1093/discim/kyac012","DOIUrl":"10.1093/discim/kyac012","url":null,"abstract":"<p><p>Public interest in vaccines is at an all-time high following the SARS-CoV-2 global pandemic. Currently, over 6 billion doses of various vaccines are administered globally each year. Most of these vaccines contain Aluminium-based adjuvants (alum), which have been known and used for almost 100 years to enhance vaccine immunogenicity. However, despite the historical use and importance of alum, we still do not have a complete understanding of how alum works to drive vaccine immunogenicity. In this article, we critically review studies investigating the mechanisms of action of alum adjuvants, highlighting some of the misconceptions and controversies within the area. Although we have emerged with a clearer understanding of how this ubiquitous adjuvant works, we have also highlighted some of the outstanding questions in the field. While these may seem mainly of academic interest, developing a more complete understanding of these mechanisms has the potential to rationally modify and improve the immune response generated by alum-adjuvanted vaccines.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":" ","pages":"kyac012"},"PeriodicalIF":0.0,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47196393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nur77-Tempo mice reveal T cell steady state antigen recognition. Nur77-Tempo小鼠显示了T细胞稳态抗原识别能力。
Pub Date : 2022-12-22 DOI: 10.1093/discim/kyac009
Thomas A E Elliot, Emma K Jennings, David A J Lecky, Sophie Rouvray, Gillian M Mackie, Lisa Scarfe, Lozan Sheriff, Masahiro Ono, Kendle M Maslowski, David Bending

In lymphocytes, Nr4a gene expression is specifically regulated by antigen receptor signalling, making them ideal targets for use as distal T cell receptor (TCR) reporters. Nr4a3-Timer of cell kinetics and activity (Tocky) mice are a ground-breaking tool to report TCR-driven Nr4a3 expression using Fluorescent Timer protein (FT). FT undergoes a time-dependent shift in its emission spectrum following translation, allowing for the temporal reporting of transcriptional events. Our recent work suggested that Nr4a1/Nur77 may be a more sensitive gene to distal TCR signals compared to Nr4a3, so we, therefore, generated Nur77-Timer-rapidly-expressed-in-lymphocytes (Tempo) mice that express FT under the regulation of Nur77. We validated the ability of Nur77-Tempo mice to report TCR and B cell receptor signals and investigated the signals regulating Nur77-FT expression. We found that Nur77-FT was sensitive to low-strength TCR signals, and its brightness was graded in response to TCR signal strength. Nur77-FT detected positive selection signals in the thymus, and analysis of FT expression revealed that positive selection signals are often persistent in nature, with most thymic Treg expressing FT Blue. We found that active TCR signals in the spleen are low frequency, but CD69+ lymphoid T cells are enriched for FT Blue+ Red+ T cells, suggesting frequent TCR signalling. In non-lymphoid tissue, we saw a dissociation of FT protein from CD69 expression, indicating that tissue residency is not associated with tonic TCR signals. Nur77-Tempo mice, therefore, combine the temporal dynamics from the Tocky innovation with increased sensitivity of Nr4a1 to lower TCR signal strengths.

在淋巴细胞中,Nr4a 基因的表达受抗原受体信号的特异性调控,使其成为远端 T 细胞受体(TCR)报告的理想靶标。Nr4a3-细胞动力学和活性定时器(Tocky)小鼠是一种开创性的工具,利用荧光定时器蛋白(FT)报告 TCR 驱动的 Nr4a3 表达。荧光定时器蛋白(FT)在翻译后其发射光谱会发生随时间变化的转变,从而可以在时间上报告转录事件。我们最近的工作表明,与 Nr4a3 相比,Nur4a1/Nur77 可能是对远端 TCR 信号更敏感的基因,因此我们产生了在 Nur77 调控下表达 FT 的 Nur77-Timer-在淋巴细胞中快速表达(Tempo)小鼠。我们验证了 Nur77-Tempo 小鼠报告 TCR 和 B 细胞受体信号的能力,并研究了 Nur77-FT 表达的调控信号。我们发现,Nur77-FT 对低强度的 TCR 信号很敏感,其亮度随 TCR 信号强度而分级。Nur77-FT能检测到胸腺中的正选择信号,对FT表达的分析表明,正选择信号往往具有持久性,大多数胸腺Treg都表达FT蓝。我们发现,脾脏中活跃的 TCR 信号频率很低,但 CD69+ 淋巴 T 细胞富集了 FT 蓝+ 红+ T 细胞,这表明 TCR 信号频繁出现。在非淋巴组织中,我们看到 FT 蛋白与 CD69 表达分离,这表明组织驻留与强直性 TCR 信号无关。因此,Nur77-Tempo 小鼠将 Tocky 创新的时间动态与 Nr4a1 对较低 TCR 信号强度的敏感性相结合。
{"title":"Nur77-Tempo mice reveal T cell steady state antigen recognition.","authors":"Thomas A E Elliot, Emma K Jennings, David A J Lecky, Sophie Rouvray, Gillian M Mackie, Lisa Scarfe, Lozan Sheriff, Masahiro Ono, Kendle M Maslowski, David Bending","doi":"10.1093/discim/kyac009","DOIUrl":"10.1093/discim/kyac009","url":null,"abstract":"<p><p>In lymphocytes, <i>Nr4a</i> gene expression is specifically regulated by antigen receptor signalling, making them ideal targets for use as distal T cell receptor (TCR) reporters. <i>Nr4a3</i>-Timer of cell kinetics and activity (Tocky) mice are a ground-breaking tool to report TCR-driven <i>Nr4a3</i> expression using Fluorescent Timer protein (FT). FT undergoes a time-dependent shift in its emission spectrum following translation, allowing for the temporal reporting of transcriptional events. Our recent work suggested that <i>Nr4a1</i>/Nur77 may be a more sensitive gene to distal TCR signals compared to <i>Nr4a3</i>, so we, therefore, generated Nur77-Timer-rapidly-expressed-in-lymphocytes (Tempo) mice that express FT under the regulation of Nur77. We validated the ability of Nur77-Tempo mice to report TCR and B cell receptor signals and investigated the signals regulating Nur77-FT expression. We found that Nur77-FT was sensitive to low-strength TCR signals, and its brightness was graded in response to TCR signal strength. Nur77-FT detected positive selection signals in the thymus, and analysis of FT expression revealed that positive selection signals are often persistent in nature, with most thymic Treg expressing FT Blue. We found that active TCR signals in the spleen are low frequency, but CD69<sup>+</sup> lymphoid T cells are enriched for FT Blue<sup>+</sup> Red<sup>+</sup> T cells, suggesting frequent TCR signalling. In non-lymphoid tissue, we saw a dissociation of FT protein from CD69 expression, indicating that tissue residency is not associated with tonic TCR signals. Nur77-Tempo mice, therefore, combine the temporal dynamics from the Tocky innovation with increased sensitivity of <i>Nr4a1</i> to lower TCR signal strengths.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"1 1","pages":"kyac009"},"PeriodicalIF":0.0,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10630120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Discovery immunology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1