Interferon gamma (IFNγ) is a potent antiviral cytokine that can be produced by many innate and adaptive immune cells during infection. Currently, our understanding of which cells produce IFNγ and where they are located at different stages of an infection is limited. We have used reporter mice to investigate in vivo expression of Ifnγ mRNA in the lung and secondary lymphoid organs during and following influenza A virus (IAV) infection. We observed a triphasic production of Ifnγ expression. Unconventional T cells and innate lymphoid cells, particularly NK cells, were the dominant producers of early Ifnγ, while CD4 and CD8 T cells were the main producers by day 10 post-infection. Following viral clearance, some memory CD4 and CD8 T cells continued to express Ifnγ in the lungs and draining lymph node. Interestingly, Ifnγ production by lymph node natural killer (NK), NKT, and innate lymphoid type 1 cells also continued to be above naïve levels, suggesting memory-like phenotypes for these cells. Analysis of the localization of Ifnγ+ memory CD4 and CD8 T cells demonstrated that cytokine+ T cells were located near airways and in the lung parenchyma. Following a second IAV challenge, lung IAV-specific CD8 T cells rapidly increased their expression of Ifnγ while CD4 T cells in the draining lymph node increased their Ifnγ response. Together, these data suggest that Ifnγ production fluctuates based on cellular source and location, both of which could impact subsequent immune responses.
Human CD56br natural killer (NK) cells represent a small subset of CD56+ NK cells in circulation and are largely tissue-resident. The frequency and number of CD56br NK cells in blood has been shown to increase following administration of low-dose IL-2 (LD-IL2), a therapy aimed to specifically expand CD4+ regulatory T cells (Tregs). Given the potential clinical application of LD-IL-2 immunotherapy across several immune diseases, including the autoimmune disease type 1 diabetes, a better understanding of the functional consequences of this expansion is urgently needed. In this study, we developed an in vitro co-culture assay with activated CD4+ T cells to measure NK cell killing efficiency. We show that CD56br and CD56dim NK cells show similar efficiency at killing activated CD4+ conventional T (Tconv) and Treg cell subsets. However, in contrast to CD56dim cells, CD56br NK cells preferentially target highly proliferative cells. We hypothesize that CD56br NK cells have an immunoregulatory role through the elimination of proliferating autoreactive CD4+ Tconv cells that have escaped Treg suppression. These results have implications for the interpretation of current and future trials of LD-IL-2 by providing evidence for a new, possibly beneficial immunomodulatory mechanism of LD-IL-2-expanded CD56br NK cells.
Macrophages play a key role in tissue development and homeostasis, innate immune defence against microbes or tumours, and restoring homeostasis through tissue regeneration following infection or injury. The ability to adopt such diverse functions is due to their heterogeneous nature, which is driven largely by their developmental origin and their response to signals they encounter from the microenvironment. The most well-characterized signals driving macrophage phenotype and function are biochemical and metabolic. However, the way macrophages sense and respond to their extracellular biophysical environment is becoming increasingly recognized in the field of mechano-immunology. These biophysical cues can be signals from tissue components, such as the composition and charge of extracellular matrix or topography, elasticity, and stiffness of the tissue surrounding cells; and mechanical forces such as shear stress or stretch. Macrophages are important in determining whether a disease resolves or becomes chronic. Ageing and diseases such as cancer or fibrotic disorders are associated with significant changes in the tissue biophysical environment, and this provides signals that integrate with those from biochemical and metabolic stimuli to ultimately dictate the overall function of macrophages. This review provides a brief overview of macrophage polarization, followed by a selection of commonly recognized physiological and applied biophysical stimuli impacting macrophage activity, and the potential signalling mechanisms driving downstream responses. The effects of biophysical cues on macrophages' function in homeostasis and disease and the associated clinical implications are also highlighted.
The term Tc17 cells refers to interleukin 17 (IL-17)-producing CD8+ T cells. While IL-17 is an important mediator of mucosal defense, it is also centrally involved in driving the inflammatory response in immune-mediated diseases, such as psoriasis, multiple sclerosis, and inflammatory bowel disease. In this review, we aim to gather the current knowledge on the phenotypic and transcriptional profile, the in vitro and in vivo generation of Tc17 cells, and the evidence pointing towards a relevant role of Tc17 cells in human diseases such as infectious diseases, cancer, and immune-mediated diseases.
Monocytes are circulating myeloid cells that are derived from dedicated progenitors in the bone marrow. Originally thought of as mere precursors for the replacement of tissue macrophages, it is increasingly clear that monocytes execute distinct effector functions and may give rise to monocyte-derived cells with unique properties from tissue-resident macrophages. Recently, the advent of novel experimental approaches such as single-cell analysis and fate-mapping tools has uncovered an astonishing display of monocyte plasticity and heterogeneity, which we believe has emerged as a key theme in the field of monocyte biology in the last decade. Monocyte heterogeneity is now recognized to develop as early as the progenitor stage through specific imprinting mechanisms, giving rise to specialized effector cells in the tissue. At the same time, monocytes must overcome their susceptibility towards cellular death to persist as monocyte-derived cells in the tissues. Environmental signals that preserve their heterogenic phenotypes and govern their eventual fates remain incompletely understood. In this review, we will summarize recent advances on the developmental trajectory of monocytes and discuss emerging concepts that contributes to the burgeoning field of monocyte plasticity and heterogeneity.
The lung is a dynamic mucosal surface constantly exposed to a variety of immunological challenges including harmless environmental antigens, pollutants, and potentially invasive microorganisms. Dysregulation of the immune system at this crucial site is associated with a range of chronic inflammatory conditions including asthma and Chronic Pulmonary Obstructive Disease (COPD). However, due to its relative inaccessibility, our fundamental understanding of the human lung immune compartment is limited. To address this, we performed flow cytometric immune phenotyping of human lung tissue and matched blood samples that were isolated from 115 donors undergoing lung tissue resection. We provide detailed characterization of the lung mononuclear phagocyte and T cell compartments, demonstrating clear phenotypic differences between lung tissue cells and those in peripheral circulation. Additionally, we show that CD103 expression demarcates pulmonary T cells that have undergone recent TCR and IL-7R signalling. Unexpectedly, we discovered that the immune landscape from asthmatic or COPD donors was broadly comparable to controls. Our data provide a much-needed expansion of our understanding of the pulmonary immune compartment in both health and disease.
Innate lymphoid cells (ILCs) are sentinels of healthy organ function, yet it is unknown how ILCs adapt to distinct anatomical niches within tissues. Here, we used a unique humanized mouse model, MISTRG mice transplanted with human hematopoietic stem and progenitor cells (HSPCs), to define the gene signatures of human ILCs in the vascular versus the tissue (extravascular) compartment of the lung. Single-cell RNA sequencing in combination with intravascular cell labeling demonstrated that heterogeneous populations of human ILCs and natural killer (NK) cells occupied the vascular and tissue niches in the lung of HSPC-engrafted MISTRG mice. Moreover, we discovered that niche-specific cues shape the molecular programs of human ILCs in the distinct sub-anatomical compartments of the lung. Specifically, extravasation of ILCs into the lung tissue was associated with the upregulation of genes involved in the acquisition of tissue residency, cell positioning within the lung, sensing of tissue-derived signals, cellular stress responses, nutrient uptake, and interaction with other tissue-resident immune cells. We also defined a core tissue signature shared between human ILCs and NK cells in the extravascular space of the lung, consistent with imprinting by signals from the local microenvironment. The molecular characterization of human ILCs and NK cells in the vascular and tissue niches of the lung provides new knowledge on the mechanisms of ILC tissue adaptation and represents a resource for further studies.
The murine bone marrow has a central role in immune function and health as the primary source of leukocytes in adult mice. Laboratory mice provide a human-homologous, genetically manipulable and reproducible model that has enabled an immeasurable volume of high-quality immunological research. However, recent research has questioned the translatability of laboratory mouse research into humans and proposed that the exposure of mice to their wild and natural environment may hold the key to further immunological breakthroughs. To date, there have been no studies providing an in-depth cellular analysis of the wild mouse bone marrow. This study utilized wild mice from an isolated island population (Isle of May, Scotland, UK) and performed flow cytometric and histological analysis to characterize the myeloid, lymphoid, hematopoietic progenitor, and adipocyte compartments within the wild mouse bone marrow. We find that, compared to laboratory mouse bone marrow, the wild mouse bone marrow differs in every cell type assessed. Some of the major distinctions include; a smaller B cell compartment with an enriched presence of plasma cells, increased proportions of KLRG1+ CD8+ T cells, diminished CD11b expression in the myeloid lineage and a five-fold enlargement of the eosinophil compartment. We conclude that the wild mouse bone marrow is dramatically distinct from its laboratory counterparts, with multiple phenotypes that to our knowledge have never been observed in laboratory models. Further research into these unique features may uncover novel immunological mechanisms and grant a greater understanding of the role of the immune system in a natural setting.
The clinical success of immune checkpoint blockade in some patients has transformed treatment approaches in cancer and offers the hope of durable curative responses. Building from studies of chronic infection, the composition of tumour infiltrating lymphocytes and in particular, the spectrum of exhausted CD8 T cells has now been characterized in detail, profiling the phenotype, function, transcriptional regulation and even the epigenetic changes. However, what remains less clear is how intratumoural immune cells interface with populations in the periphery, both in terms of sustaining the response in cancer, but also in establishing systemic memory responses that can provide long-term protection. Here we will succinctly review the current understanding of the anti-tumour response, consider the tissue microenvironments that support key cellular subsets and the extent to which cellular migration between these sites impacts the response.

