Yousof Haghshenas, Wei Ping Wong, Denny Gunawan, Alireza Khataee, Ramazan Keyikoğlu, Amir Razmjou, Priyank Vijaya Kumar, Cui Ying Toe, Hassan Masood, Rose Amal, Vidhyasaharan Sethu and Wey Yang Teoh
An accurate model for predicting TiO2 photocatalytic hydrogen evolution reaction (HER) rates is hereby presented. The model was constructed from a database of 971 entries extracted predominantly from the open literature. A key step that enabled high accuracy lies in the use of active photon flux (AcP, photons with energy equal to and greater than the bandgap energy of the photocatalyst) as the input feature describing the irradiation. The quantification of AcP, besides being a more direct feature describing the photocatalyst excitation, circumvents the use of lamp power ratings and light intensities as ambiguous inputs as they encompass varying degrees of AcP depending on the irradiation spectra. The AcP unifies four other key performing features (out of 46 initially screened), i.e., cocatalyst work functions, loadings of cocatalyst, alcohol type and concentrations, to afford a physically-intuitive model that can be generalized to a wide range of experimental conditions. The inclusion of AcP as an input to the machine learning model for HER prediction leads to a mean absolute error of 7 μmol h, which is a 90% reduction when compared to a model that does not use AcP. Verification of untested conditions with high HER rates, identified through Bayesian optimization, saw less than 9% deviation from the physically-measured kinetics, thus confirming the validity of the model.
{"title":"Predicting the rates of photocatalytic hydrogen evolution over cocatalyst-deposited TiO2 using machine learning with active photon flux as a unifying feature†","authors":"Yousof Haghshenas, Wei Ping Wong, Denny Gunawan, Alireza Khataee, Ramazan Keyikoğlu, Amir Razmjou, Priyank Vijaya Kumar, Cui Ying Toe, Hassan Masood, Rose Amal, Vidhyasaharan Sethu and Wey Yang Teoh","doi":"10.1039/D3EY00246B","DOIUrl":"10.1039/D3EY00246B","url":null,"abstract":"<p >An accurate model for predicting TiO<small><sub>2</sub></small> photocatalytic hydrogen evolution reaction (HER) rates is hereby presented. The model was constructed from a database of 971 entries extracted predominantly from the open literature. A key step that enabled high accuracy lies in the use of active photon flux (AcP, photons with energy equal to and greater than the bandgap energy of the photocatalyst) as the input feature describing the irradiation. The quantification of AcP, besides being a more direct feature describing the photocatalyst excitation, circumvents the use of lamp power ratings and light intensities as ambiguous inputs as they encompass varying degrees of AcP depending on the irradiation spectra. The AcP unifies four other key performing features (out of 46 initially screened), <em>i.e.</em>, cocatalyst work functions, loadings of cocatalyst, alcohol type and concentrations, to afford a physically-intuitive model that can be generalized to a wide range of experimental conditions. The inclusion of AcP as an input to the machine learning model for HER prediction leads to a mean absolute error of 7 μmol h, which is a 90% reduction when compared to a model that does not use AcP. Verification of untested conditions with high HER rates, identified through Bayesian optimization, saw less than 9% deviation from the physically-measured kinetics, thus confirming the validity of the model.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 2","pages":" 612-623"},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00246b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138515498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Freese, Jelmer T. Meijer, Maria B. Brands, Georgios Alachouzos, Marc C. A. Stuart, Rafael Tarozo, Dominic Gerlach, Joost Smits, Petra Rudolf, Joost N. H. Reek and Ben L. Feringa
Hydrogen peroxide (H2O2) is a valuable green oxidant with a wide range of applications. Furthermore, it is recognized as a possible future energy carrier achieving safe operation, storage and transportation. The photochemical production of H2O2 serves as a promising alternative to the waste- and energy-intensive anthraquinone process. Following the 12 principles of Green Chemistry, we demonstrate a facile and general approach to sustainable catalyst development utilizing earth-abundant iron and biobased sources only. We developed several iron oxide (FeOx) nanoparticles (NPs) for successful photochemical oxygen reduction to H2O2 under visible light illumination (445 nm). Achieving a selectivity for H2O2 of >99%, the catalyst material could be recycled for up to four consecutive rounds. An apparent quantum yield (AQY) of 0.11% was achieved for the photochemical oxygen reduction to H2O2 with visible light (445 nm) at ambient temperatures and pressures (9.4–14.8 mmol g−1 L−1). Reaching productivities of H2O2 of at least 1.7 ± 0.3 mmol g−1 L−1 h−1, production of H2O2 was further possible via sunlight irradiation and in seawater. Finally, a detailed mechanism has been proposed on the basis of experimental investigation of the catalyst's properties and computational results.
{"title":"Iron oxide-promoted photochemical oxygen reduction to hydrogen peroxide (H2O2)†","authors":"Thomas Freese, Jelmer T. Meijer, Maria B. Brands, Georgios Alachouzos, Marc C. A. Stuart, Rafael Tarozo, Dominic Gerlach, Joost Smits, Petra Rudolf, Joost N. H. Reek and Ben L. Feringa","doi":"10.1039/D3EY00256J","DOIUrl":"10.1039/D3EY00256J","url":null,"abstract":"<p >Hydrogen peroxide (H<small><sub>2</sub></small>O<small><sub>2</sub></small>) is a valuable green oxidant with a wide range of applications. Furthermore, it is recognized as a possible future energy carrier achieving safe operation, storage and transportation. The photochemical production of H<small><sub>2</sub></small>O<small><sub>2</sub></small> serves as a promising alternative to the waste- and energy-intensive anthraquinone process. Following the 12 principles of Green Chemistry, we demonstrate a facile and general approach to sustainable catalyst development utilizing earth-abundant iron and biobased sources only. We developed several iron oxide (FeO<small><sub><em>x</em></sub></small>) nanoparticles (NPs) for successful photochemical oxygen reduction to H<small><sub>2</sub></small>O<small><sub>2</sub></small> under visible light illumination (445 nm). Achieving a selectivity for H<small><sub>2</sub></small>O<small><sub>2</sub></small> of >99%, the catalyst material could be recycled for up to four consecutive rounds. An apparent quantum yield (AQY) of 0.11% was achieved for the photochemical oxygen reduction to H<small><sub>2</sub></small>O<small><sub>2</sub></small> with visible light (445 nm) at ambient temperatures and pressures (9.4–14.8 mmol g<small><sup>−1</sup></small> L<small><sup>−1</sup></small>). Reaching productivities of H<small><sub>2</sub></small>O<small><sub>2</sub></small> of at least 1.7 ± 0.3 mmol g<small><sup>−1</sup></small> L<small><sup>−1</sup></small> h<small><sup>−1</sup></small>, production of H<small><sub>2</sub></small>O<small><sub>2</sub></small> was further possible <em>via</em> sunlight irradiation and in seawater. Finally, a detailed mechanism has been proposed on the basis of experimental investigation of the catalyst's properties and computational results.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 262-275"},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00256j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138515497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electrocatalytic CO2 reduction is regarded as one of the most promising strategies for converting CO2 to valuable chemicals or fuels. However, developing efficient catalysts for enhanced multi-carbon production at industrial current densities is still a great challenge. Herein, we report a novel method to prepare bimetallic Cu–Zn catalysts for electrocatalytic CO2 reduction using magnetron sputtering and subsequent electrochemical cyclic voltammetry treatment. Due to the increase of the Cu–Zn interface and the shortening of mass transfer distance, the bimetallic Cu–Zn catalysts showed a faradaic efficiency (FE) of 29.3% for ethanol production at a current density of −250 mA cm−2 when testing in a flow cell. Our work provides a new strategy for the design and synthesis of bimetallic catalysts for electrocatalysis.
电催化CO2还原被认为是将CO2转化为有价值的化学品或燃料的最有前途的策略之一。然而,在工业电流密度下开发高效的多碳生产催化剂仍然是一个巨大的挑战。本文报道了一种利用磁控溅射和随后的电化学循环伏安处理制备双金属Cu-Zn催化剂用于电催化CO2还原的新方法。由于Cu-Zn界面的增加和传质距离的缩短,双金属Cu-Zn催化剂在电流密度为- 250 mA cm - 2时的乙醇生产效率(FE)为29.3%。本研究为电催化双金属催化剂的设计和合成提供了新的思路。
{"title":"Cyclic voltammetry activation of magnetron sputtered copper–zinc bilayer catalysts for electrochemical CO2 reduction†","authors":"Yang Fu, Shilei Wei, Dongfeng Du and Jingshan Luo","doi":"10.1039/D3EY00204G","DOIUrl":"10.1039/D3EY00204G","url":null,"abstract":"<p >Electrocatalytic CO<small><sub>2</sub></small> reduction is regarded as one of the most promising strategies for converting CO<small><sub>2</sub></small> to valuable chemicals or fuels. However, developing efficient catalysts for enhanced multi-carbon production at industrial current densities is still a great challenge. Herein, we report a novel method to prepare bimetallic Cu–Zn catalysts for electrocatalytic CO<small><sub>2</sub></small> reduction using magnetron sputtering and subsequent electrochemical cyclic voltammetry treatment. Due to the increase of the Cu–Zn interface and the shortening of mass transfer distance, the bimetallic Cu–Zn catalysts showed a faradaic efficiency (FE) of 29.3% for ethanol production at a current density of −250 mA cm<small><sup>−2</sup></small> when testing in a flow cell. Our work provides a new strategy for the design and synthesis of bimetallic catalysts for electrocatalysis.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 2","pages":" 603-611"},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00204g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138515508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this review, recent advances in the use of platinum single-crystal surfaces in electrochemistry are addressed. The starting point is the voltammetric characterization in a supporting electrolyte because the profile can be used as a fingerprint of the surface, allowing the surface quality and solution cleanliness to be established. The signals appearing in these voltammograms have been assigned to the adsorption of H, OH, and the anions in the supporting electrolyte. Then, the distinctive behavior of the Pt(111) electrode regarding the adsorption of species and the electrocatalysis in comparison with the other single-crystal surfaces is discussed. For the H/OH adsorption, the (111) ordered domain is the only one in which both processes appear in different potential windows. For the remaining ordered domains, steps, and kinks, both processes overlap, giving rise to signals that correspond to the competitive adsorption/desorption of OH and H. This fact implies that OH may be adsorbed on the surface at potentials as low as 0.15 V, which is a paradigm shift in the up-to-now prevailing understanding of the electrochemical behavior of platinum electrodes and has important implications for the elucidation of the mechanism of electrocatalytic reactions. The effects of this new knowledge on the proposed reaction mechanisms for the oxidation of CO and small organic molecules and the reduction of oxygen and hydrogen peroxide are discussed in detail. Since the elucidation of the reaction mechanisms requires in many cases the use of computational modeling, the conditions that the models should fulfill to reach valid conclusions are discussed. Relevant examples, which highlight the importance of the local structure of the interphase in the electrochemical behavior are given.
{"title":"Pt single crystal surfaces in electrochemistry and electrocatalysis","authors":"Juan M. Feliu and Enrique Herrero","doi":"10.1039/D3EY00260H","DOIUrl":"10.1039/D3EY00260H","url":null,"abstract":"<p >In this review, recent advances in the use of platinum single-crystal surfaces in electrochemistry are addressed. The starting point is the voltammetric characterization in a supporting electrolyte because the profile can be used as a fingerprint of the surface, allowing the surface quality and solution cleanliness to be established. The signals appearing in these voltammograms have been assigned to the adsorption of H, OH, and the anions in the supporting electrolyte. Then, the distinctive behavior of the Pt(111) electrode regarding the adsorption of species and the electrocatalysis in comparison with the other single-crystal surfaces is discussed. For the H/OH adsorption, the (111) ordered domain is the only one in which both processes appear in different potential windows. For the remaining ordered domains, steps, and kinks, both processes overlap, giving rise to signals that correspond to the competitive adsorption/desorption of OH and H. This fact implies that OH may be adsorbed on the surface at potentials as low as 0.15 V, which is a paradigm shift in the up-to-now prevailing understanding of the electrochemical behavior of platinum electrodes and has important implications for the elucidation of the mechanism of electrocatalytic reactions. The effects of this new knowledge on the proposed reaction mechanisms for the oxidation of CO and small organic molecules and the reduction of oxygen and hydrogen peroxide are discussed in detail. Since the elucidation of the reaction mechanisms requires in many cases the use of computational modeling, the conditions that the models should fulfill to reach valid conclusions are discussed. Relevant examples, which highlight the importance of the local structure of the interphase in the electrochemical behavior are given.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 2","pages":" 399-410"},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00260h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138515511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xijun Wang, Kaihang Shi, Anyang Peng and Randall Q. Snurr
Supported metal oxide nanoclusters (MeO-NCs) have gained significant attention for their remarkable versatility in various energy and sustainability applications. Despite rapid advancements in atomic-scale synthesis and characterization techniques, the rational design of MeO-NCs with desired catalytic properties remains challenging. This challenge arises from the elusive and difficult-to-quantify structure-catalytic property relationships, particularly in the case of amorphous nanoclusters. Exploiting first-principles calculations at the density functional theory (DFT) level, we conducted a systematic investigation into the growth, geometries, and catalytic performance of a series of tetra-copper oxide nanoclusters (Cu4O-NCs) for methane activation. Focusing on the most representative geometries, we applied machine learning to extract two physically insightful descriptors involving the spin density, the p-band center of the oxygen site, and the d-band center of adjacent Cu sites. These descriptors enable us to predict free energy barriers associated with both the homolytic and heterolytic mechanisms of methane activation. This descriptor-driven approach enables rapid and intuitive prediction of the preferred reaction mechanism. Our findings lay a solid foundation for future advancements in catalysts based on amorphous nanoclusters and provide valuable insights into the mechanistic landscape of methane activation.
{"title":"Probing the structure–property relationships of supported copper oxide nanoclusters for methane activation†","authors":"Xijun Wang, Kaihang Shi, Anyang Peng and Randall Q. Snurr","doi":"10.1039/D3EY00234A","DOIUrl":"10.1039/D3EY00234A","url":null,"abstract":"<p >Supported metal oxide nanoclusters (MeO-NCs) have gained significant attention for their remarkable versatility in various energy and sustainability applications. Despite rapid advancements in atomic-scale synthesis and characterization techniques, the rational design of MeO-NCs with desired catalytic properties remains challenging. This challenge arises from the elusive and difficult-to-quantify structure-catalytic property relationships, particularly in the case of amorphous nanoclusters. Exploiting first-principles calculations at the density functional theory (DFT) level, we conducted a systematic investigation into the growth, geometries, and catalytic performance of a series of tetra-copper oxide nanoclusters (Cu<small><sub>4</sub></small>O-NCs) for methane activation. Focusing on the most representative geometries, we applied machine learning to extract two physically insightful descriptors involving the spin density, the p-band center of the oxygen site, and the d-band center of adjacent Cu sites. These descriptors enable us to predict free energy barriers associated with both the homolytic and heterolytic mechanisms of methane activation. This descriptor-driven approach enables rapid and intuitive prediction of the preferred reaction mechanism. Our findings lay a solid foundation for future advancements in catalysts based on amorphous nanoclusters and provide valuable insights into the mechanistic landscape of methane activation.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 351-364"},"PeriodicalIF":0.0,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00234a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138542512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaqi Hu, Zhong Liang, Yabin Zhang, Yaping Du and Hongbo Zhang
Hydrogen production with high efficiency and low CO selectivity in methanol steam reforming (MSR) is of pivotal importance. However, there is limited understanding of the active sites and reaction mechanisms during catalysis. In this study, we maximized the interfacial site, known as the active component in MSR, of Ni–CeOx by atomically dispersed Ni and Ce over the carbon–nitrogen support to generate the Ni and Ce dual-atomic catalyst (DAC), which achieved 6.5 μmolH2 gcat.−1 s−1 H2 generation rate and 0.8% CO selectivity at 99.1% methanol conversion at 513 K. The finely dispersed Ni and Ce structure was confirmed by systematic characterization of AC HAADF-STEM and EXAFS. Electron transfer from Ce to Ni was confirmed simultaneously by quasi-in situ XPS analysis. Moreover, the reaction mechanism of methanol steam reforming was clarified by combining kinetic studies with isotope-tracing/exchange analysis (i.e., KIEs and steady-state isotopic transient kinetic analysis (SSITKA)), which suggests that the steam reforming consists of two tandem reaction processes: methanol decomposition (MD) and water–gas shift (WGS) reaction, with methanol and water activation at independent active sites (e.g., Ni and oxygen vacancy over CeOx), and that hydrogen generation was primarily determined by both C–H bond rupture and OL–H (OL represents the lattice oxygen) cleavage within methoxy and hydroxyl groups, respectively, with the catalytic surface mainly covered by CO and methoxy groups. A shift of WGS involvement in hydrogen generation from negligibly influenced to significantly promoted was selectively observed once modifying the reaction from differential conditions to a high methanol conversion regime, and two quantification methods have been established by comparing the molecule ratio between CO and CO2 or H2.
{"title":"Enhanced H2 production at the atomic Ni–Ce interface following methanol steam reforming†","authors":"Yaqi Hu, Zhong Liang, Yabin Zhang, Yaping Du and Hongbo Zhang","doi":"10.1039/D3EY00225J","DOIUrl":"10.1039/D3EY00225J","url":null,"abstract":"<p >Hydrogen production with high efficiency and low CO selectivity in methanol steam reforming (MSR) is of pivotal importance. However, there is limited understanding of the active sites and reaction mechanisms during catalysis. In this study, we maximized the interfacial site, known as the active component in MSR, of Ni–CeO<small><sub><em>x</em></sub></small> by atomically dispersed Ni and Ce over the carbon–nitrogen support to generate the Ni and Ce dual-atomic catalyst (DAC), which achieved 6.5 μmol<small><sub>H<small><sub>2</sub></small></sub></small> g<small><sub>cat.</sub></small><small><sup>−1</sup></small> s<small><sup>−1</sup></small> H<small><sub>2</sub></small> generation rate and 0.8% CO selectivity at 99.1% methanol conversion at 513 K. The finely dispersed Ni and Ce structure was confirmed by systematic characterization of AC HAADF-STEM and EXAFS. Electron transfer from Ce to Ni was confirmed simultaneously by quasi-<em>in situ</em> XPS analysis. Moreover, the reaction mechanism of methanol steam reforming was clarified by combining kinetic studies with isotope-tracing/exchange analysis (<em>i.e.</em>, KIEs and steady-state isotopic transient kinetic analysis (SSITKA)), which suggests that the steam reforming consists of two tandem reaction processes: methanol decomposition (MD) and water–gas shift (WGS) reaction, with methanol and water activation at independent active sites (<em>e.g.</em>, Ni and oxygen vacancy over CeO<small><sub><em>x</em></sub></small>), and that hydrogen generation was primarily determined by both C–H bond rupture and O<small><sub>L</sub></small>–H (O<small><sub>L</sub></small> represents the lattice oxygen) cleavage within methoxy and hydroxyl groups, respectively, with the catalytic surface mainly covered by CO and methoxy groups. A shift of WGS involvement in hydrogen generation from negligibly influenced to significantly promoted was selectively observed once modifying the reaction from differential conditions to a high methanol conversion regime, and two quantification methods have been established by comparing the molecule ratio between CO and CO<small><sub>2</sub></small> or H<small><sub>2</sub></small>.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 365-378"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00225j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138515492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chae Jeong-Potter, Martha A. Arellano-Treviño, W. Wilson McNeary, Alexander J. Hill, Daniel A. Ruddy and Anh T. To
Reactive carbon capture (RCC), an integrated CO2 capture and conversion process that does not require generating a purified CO2 stream, is an attractive carbon management strategy that can reduce costs and energy requirements associated with traditionally separate capture and conversion processes. Dual function materials (DFMs) comprised of co-supported sorbent sites and catalytic sites have emerged as a promising material design to enable RCC. DFMs have been extensively studied for methane production, but the noncompetitive economics of methane necessitates the development of DFMs to target more valuable, useful, and versatile products, like methanol. Herein, we report the development of modified Cu–Zn–Al mixed oxide (Alk/CZA, Alk = K, Ca) DFMs for combined capture and conversion of CO2 to methanol. CO2 chemisorption, in situ DRIFTS characterization, and co-fed hydrogenation performance revealed that K and Ca have different effects on the CO2 capture and catalytic behavior of the parent CZA. K-modification resulted in the greatest promotional effect on capture capacity but the most detrimental effect on co-fed hydrogenation catalytic activity. Interestingly, when used in a cyclic temperature-and-pressure-swing RCC operation, K/CZA exhibited a greater conversion of adsorbed CO2 (94.4%) with high methanol selectivity (46%), leading to greater methanol production (59.0 μmol gDFM−1) than the parent CZA or Ca/CZA (13.2 and 18.9 μmol gDFM−1, respectively). This study presents the foundational methodology for the design and evaluation of novel DFMs to target renewable methanol synthesis, highlighted by a critical learning that co-fed CO2 hydrogenation performance is not an effective indicator of RCC performance.
{"title":"Modified Cu–Zn–Al mixed oxide dual function materials enable reactive carbon capture to methanol†","authors":"Chae Jeong-Potter, Martha A. Arellano-Treviño, W. Wilson McNeary, Alexander J. Hill, Daniel A. Ruddy and Anh T. To","doi":"10.1039/D3EY00254C","DOIUrl":"10.1039/D3EY00254C","url":null,"abstract":"<p >Reactive carbon capture (RCC), an integrated CO<small><sub>2</sub></small> capture and conversion process that does not require generating a purified CO<small><sub>2</sub></small> stream, is an attractive carbon management strategy that can reduce costs and energy requirements associated with traditionally separate capture and conversion processes. Dual function materials (DFMs) comprised of co-supported sorbent sites and catalytic sites have emerged as a promising material design to enable RCC. DFMs have been extensively studied for methane production, but the noncompetitive economics of methane necessitates the development of DFMs to target more valuable, useful, and versatile products, like methanol. Herein, we report the development of modified Cu–Zn–Al mixed oxide (Alk/CZA, Alk = K, Ca) DFMs for combined capture and conversion of CO<small><sub>2</sub></small> to methanol. CO<small><sub>2</sub></small> chemisorption, <em>in situ</em> DRIFTS characterization, and co-fed hydrogenation performance revealed that K and Ca have different effects on the CO<small><sub>2</sub></small> capture and catalytic behavior of the parent CZA. K-modification resulted in the greatest promotional effect on capture capacity but the most detrimental effect on co-fed hydrogenation catalytic activity. Interestingly, when used in a cyclic temperature-and-pressure-swing RCC operation, K/CZA exhibited a greater conversion of adsorbed CO<small><sub>2</sub></small> (94.4%) with high methanol selectivity (46%), leading to greater methanol production (59.0 μmol g<small><sub>DFM</sub></small><small><sup>−1</sup></small>) than the parent CZA or Ca/CZA (13.2 and 18.9 μmol g<small><sub>DFM</sub></small><small><sup>−1</sup></small>, respectively). This study presents the foundational methodology for the design and evaluation of novel DFMs to target renewable methanol synthesis, highlighted by a critical learning that co-fed CO<small><sub>2</sub></small> hydrogenation performance is not an effective indicator of RCC performance.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 253-261"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00254c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138515490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guoquan Liu, He Zhang, Yi Li, Pengfei Wang and Sihui Zhan
Selective catalytic reduction of NO with NH3 (NH3-SCR) is a promising technology to reduce the emission of nitrogen oxides (NOx) from diesel engines and industrial flue gases. Due to their advantages of variable valence and high stability, Cu-based catalysts exhibit superior activity and have been widely employed in the NH3-SCR reaction. Herein, we expound the reaction mechanism of NH3-SCR, and summarize the comprehensive advances of Cu-based catalysts (Cu-based small-pore zeolites and Cu-containing metal oxides) developed in the last decade. In this review, the challenges and prospects for Cu-based catalysts are presented to meet the industrial need, and efficient design strategies for promoting the NH3-SCR performance of Cu-based catalysts through support derivation, precursor optimization engineering, secondary metal doping, crystal structure regulation, preparation method modification and interaction and interface engineering are comprehensively proposed and discussed. These proposed strategies are confirmed to be beneficial for enhancing catalysis by accelerating acid and redox cycles. Besides, we sum up the poisoning mechanism of impurities from flue gas on active sites, and provide the corresponding anti-inactivation measures to inhibit the deactivation of catalysts. Finally, we hope to focus on the current opportunities and challenges faced by Cu-based catalysts, further promoting their development and achieving practical applications.
{"title":"Selective catalytic reduction of NOx with NH3 over copper-based catalysts: recent advances and future prospects","authors":"Guoquan Liu, He Zhang, Yi Li, Pengfei Wang and Sihui Zhan","doi":"10.1039/D3EY00210A","DOIUrl":"10.1039/D3EY00210A","url":null,"abstract":"<p >Selective catalytic reduction of NO with NH<small><sub>3</sub></small> (NH<small><sub>3</sub></small>-SCR) is a promising technology to reduce the emission of nitrogen oxides (NO<small><sub><em>x</em></sub></small>) from diesel engines and industrial flue gases. Due to their advantages of variable valence and high stability, Cu-based catalysts exhibit superior activity and have been widely employed in the NH<small><sub>3</sub></small>-SCR reaction. Herein, we expound the reaction mechanism of NH<small><sub>3</sub></small>-SCR, and summarize the comprehensive advances of Cu-based catalysts (Cu-based small-pore zeolites and Cu-containing metal oxides) developed in the last decade. In this review, the challenges and prospects for Cu-based catalysts are presented to meet the industrial need, and efficient design strategies for promoting the NH<small><sub>3</sub></small>-SCR performance of Cu-based catalysts through support derivation, precursor optimization engineering, secondary metal doping, crystal structure regulation, preparation method modification and interaction and interface engineering are comprehensively proposed and discussed. These proposed strategies are confirmed to be beneficial for enhancing catalysis by accelerating acid and redox cycles. Besides, we sum up the poisoning mechanism of impurities from flue gas on active sites, and provide the corresponding anti-inactivation measures to inhibit the deactivation of catalysts. Finally, we hope to focus on the current opportunities and challenges faced by Cu-based catalysts, further promoting their development and achieving practical applications.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 231-252"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00210a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138515507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jisung Lee, Wooseok Lee, Seungho Back, Seung Yeop Yi, Seonggyu Lee, Seongseop Kim, Joonhee Moon, Dong-Yeun Koh, Kyeounghak Kim, Seoin Back and Jinwoo Lee
Aqueous rechargeable static zinc–iodine (Zn–I2) batteries are regarded as competitive candidates for next-generation energy storage devices owing to their safety and high energy density. However, their inherent limitations such as the shuttle effect, sluggish electrochemical kinetics, and the poor electrical conductivity of iodine have been challenging to mitigate when using methods that confer polarity to the surface of the carbon host through nitrogen doping. Moreover, the considerable prevalence of inactive pyridinic N sites significantly impedes the establishment of approaches to overcome issues associated with redox kinetics and iodine utilization. Herein, single Ni atoms were incorporated into an electrochemically inactive N-doped carbon matrix by carbonizing a zeolitic imidazolate framework and then thermally activating the Ni ions adsorbed onto the carbonized product. The single Ni atoms modulated the electronic structure of the surrounding N-doped carbon matrix, thereby improving its ability to adsorb polyiodides and exhibit bifunctional catalytic activity for iodine reduction and oxidation reactions. Consequently, the assembled Zn–I2 battery delivered an outstanding rate performance (193 mA h g−1 at a current density of 6 A g−1) and ultralong cyclability (10 000 cycles at a current density of 4 A g−1). Overall, this study illuminates the merits of using single-atom catalysts to revitalize inactive N pyridinic sites, thereby providing a promising direction for further advancement of Zn–I2 batteries.
水性可充电静态锌碘(Zn-I2)电池因其安全性和高能量密度而被视为下一代储能设备的候选产品。然而,当使用通过掺氮赋予碳宿主表面极性的方法时,其固有的局限性(如穿梭效应、缓慢的电化学动力学和碘的不良导电性)一直难以缓解。此外,不活泼的吡啶 N 位点相当普遍,这极大地阻碍了克服氧化还原动力学和碘利用相关问题的方法的建立。在这里,通过碳化沸石咪唑酸盐框架,然后热激活吸附在碳化产物上的镍离子,将单个镍原子掺入电化学不活泼的掺氮碳基质中。单个镍原子调节了周围掺杂 N 的碳基质的电子结构,从而提高了其吸附聚碘化物的能力,并在碘还原和氧化反应中表现出双功能催化活性。因此,组装后的 Zn-I2 电池具有出色的速率性能(电流密度为 6 A g-1 时为 193 mA h g-1)和超长的循环能力(电流密度为 4 A g-1 时为 10 000 次循环)。总之,这项研究阐明了使用单原子催化剂活化非活性 N 吡啶位点的优点,从而为进一步推动 Zn-I2 电池的发展提供了一个前景广阔的方向。
{"title":"Activating iodine redox by enabling single-atom coordination to dormant nitrogen sites to realize durable zinc–iodine batteries†","authors":"Jisung Lee, Wooseok Lee, Seungho Back, Seung Yeop Yi, Seonggyu Lee, Seongseop Kim, Joonhee Moon, Dong-Yeun Koh, Kyeounghak Kim, Seoin Back and Jinwoo Lee","doi":"10.1039/D3EY00228D","DOIUrl":"10.1039/D3EY00228D","url":null,"abstract":"<p >Aqueous rechargeable static zinc–iodine (Zn–I<small><sub>2</sub></small>) batteries are regarded as competitive candidates for next-generation energy storage devices owing to their safety and high energy density. However, their inherent limitations such as the shuttle effect, sluggish electrochemical kinetics, and the poor electrical conductivity of iodine have been challenging to mitigate when using methods that confer polarity to the surface of the carbon host through nitrogen doping. Moreover, the considerable prevalence of inactive pyridinic N sites significantly impedes the establishment of approaches to overcome issues associated with redox kinetics and iodine utilization. Herein, single Ni atoms were incorporated into an electrochemically inactive N-doped carbon matrix by carbonizing a zeolitic imidazolate framework and then thermally activating the Ni ions adsorbed onto the carbonized product. The single Ni atoms modulated the electronic structure of the surrounding N-doped carbon matrix, thereby improving its ability to adsorb polyiodides and exhibit bifunctional catalytic activity for iodine reduction and oxidation reactions. Consequently, the assembled Zn–I<small><sub>2</sub></small> battery delivered an outstanding rate performance (193 mA h g<small><sup>−1</sup></small> at a current density of 6 A g<small><sup>−1</sup></small>) and ultralong cyclability (10 000 cycles at a current density of 4 A g<small><sup>−1</sup></small>). Overall, this study illuminates the merits of using single-atom catalysts to revitalize inactive N pyridinic sites, thereby providing a promising direction for further advancement of Zn–I<small><sub>2</sub></small> batteries.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 276-285"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00228d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135506946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily K. Volk, Melissa E. Kreider, Stephanie Kwon and Shaun M. Alia
Anion exchange membrane water electrolyzers (AEMWEs) are poised to play a key role in reducing capital cost and materials criticality concerns associated with traditional low-temperature electrolysis technologies. To accelerate the development and deployment of this technology, an in-depth understanding of cell materials integration is essential. Notably, the complex chemistries and interactions within the catalyst layer (consisting of the anode/cathode catalyst, anion exchange ionomer, and their interfaces with the transport layers and membrane) collectively influence overall cell performances, lifetimes, and costs. This review outlines recent advances in understanding the catalyst layer in AEMWEs. Specifically, electrode development strategies (including catalyst deposition techniques and configurations as well as transport layer design strategies) and our current understanding of catalyst–ionomer interactions are discussed. Effects of cell assembly and operational variables (including compression, temperature, pressure, and electrolyte conditions) on cell performance are also discussed. Lastly, we consider cutting-edge in situ and ex situ diagnostic techniques to study the complex chemistries within the catalyst layer as well as discuss degradation mechanisms that arise due to the integration of cell components. Simultaneously, comparisons are made to proton exchange membrane water electrolyzers (PEMWEs) and liquid alkaline water electrolyzers (LAWE) throughout the review to provide context to researchers transitioning into the AEMWE space. We also include recommendations for standard operating procedures, configurations, and metrics for comparing activity and stability.
{"title":"Recent progress in understanding the catalyst layer in anion exchange membrane electrolyzers – durability, utilization, and integration","authors":"Emily K. Volk, Melissa E. Kreider, Stephanie Kwon and Shaun M. Alia","doi":"10.1039/D3EY00193H","DOIUrl":"10.1039/D3EY00193H","url":null,"abstract":"<p >Anion exchange membrane water electrolyzers (AEMWEs) are poised to play a key role in reducing capital cost and materials criticality concerns associated with traditional low-temperature electrolysis technologies. To accelerate the development and deployment of this technology, an in-depth understanding of cell materials integration is essential. Notably, the complex chemistries and interactions within the catalyst layer (consisting of the anode/cathode catalyst, anion exchange ionomer, and their interfaces with the transport layers and membrane) collectively influence overall cell performances, lifetimes, and costs. This review outlines recent advances in understanding the catalyst layer in AEMWEs. Specifically, electrode development strategies (including catalyst deposition techniques and configurations as well as transport layer design strategies) and our current understanding of catalyst–ionomer interactions are discussed. Effects of cell assembly and operational variables (including compression, temperature, pressure, and electrolyte conditions) on cell performance are also discussed. Lastly, we consider cutting-edge <em>in situ</em> and <em>ex situ</em> diagnostic techniques to study the complex chemistries within the catalyst layer as well as discuss degradation mechanisms that arise due to the integration of cell components. Simultaneously, comparisons are made to proton exchange membrane water electrolyzers (PEMWEs) and liquid alkaline water electrolyzers (LAWE) throughout the review to provide context to researchers transitioning into the AEMWE space. We also include recommendations for standard operating procedures, configurations, and metrics for comparing activity and stability.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 109-137"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00193h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135506047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}