Pub Date : 2022-09-01DOI: 10.1016/j.engreg.2022.05.003
Shun Yao, Yuan Luo, Yongan Wang
Wound healing is the regenerative process of original skin structure after destructing by different damage sources. Due to their transdermal delivery capability and high specific surface area, microneedles arrays (MAs) have been recognized as encouraging biomaterials for wound healing. In this review, we have outlined the engineered MAs used for tissue regeneration and wound healing. Engineered MAs were first classified by design methodologies such as bionic design, intelligent-responsive design, actively-triggered design, matrix materials innovation, and composite smart design. Then, the MAs were divided into two categories based on the different loading substances: drug-loaded MAs and living component-loaded MAs. Finally, we have summed up the important elements of the preceding discussions and forecasted their future evolution.
{"title":"Engineered microneedles arrays for wound healing","authors":"Shun Yao, Yuan Luo, Yongan Wang","doi":"10.1016/j.engreg.2022.05.003","DOIUrl":"10.1016/j.engreg.2022.05.003","url":null,"abstract":"<div><p>Wound healing is the regenerative process of original skin structure after destructing by different damage sources. Due to their transdermal delivery capability and high specific surface area, microneedles arrays (MAs) have been recognized as encouraging biomaterials for wound healing. In this review, we have outlined the engineered MAs used for tissue regeneration and wound healing. Engineered MAs were first classified by design methodologies such as bionic design, intelligent-responsive design, actively-triggered design, matrix materials innovation, and composite smart design. Then, the MAs were divided into two categories based on the different loading substances: drug-loaded MAs and living component-loaded MAs. Finally, we have summed up the important elements of the preceding discussions and forecasted their future evolution.</p></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"3 3","pages":"Pages 232-240"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666138122000329/pdfft?md5=0b350664b698267a822b7d5e7db30a5f&pid=1-s2.0-S2666138122000329-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45400824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01DOI: 10.1016/j.engreg.2022.07.004
Changmin Shao , Qingfei Zhang , Gaizhen Kuang , Qihui Fan , Fangfu Ye
Primary liver cancer is the fifth most common malignancy and the third leading cause of cancer death worldwide. Although current advances in the treatment of liver cancer, the prognosis of this cancer remains unfavorable. Appropriate liver cancer model in vitro is an important way to study the pathogenesis and drug screening of liver cancer. This review provides a comprehensive summary and discussion on the construction and application of liver cancer models in vitro, in particular hepatocellular carcinoma (HCC). Specifically, after introducing the current methods or techniques for preparing 3D in vitro liver cancer models, this review summarizes the relevant applications of these liver cancer models in vitro, e.g. drug screening, personalized medicine, and other applications. In the end, this review discusses the advantages and disadvantages of the liver cancer models in vitro, and proposes future prospects and research directions.
{"title":"Construction and application of liver cancer models in vitro","authors":"Changmin Shao , Qingfei Zhang , Gaizhen Kuang , Qihui Fan , Fangfu Ye","doi":"10.1016/j.engreg.2022.07.004","DOIUrl":"10.1016/j.engreg.2022.07.004","url":null,"abstract":"<div><p>Primary liver cancer is the fifth most common malignancy and the third leading cause of cancer death worldwide. Although current advances in the treatment of liver cancer, the prognosis of this cancer remains unfavorable. Appropriate liver cancer model in vitro is an important way to study the pathogenesis and drug screening of liver cancer. This review provides a comprehensive summary and discussion on the construction and application of liver cancer models in vitro, in particular hepatocellular carcinoma (HCC). Specifically, after introducing the current methods or techniques for preparing 3D in vitro liver cancer models, this review summarizes the relevant applications of these liver cancer models in vitro, e.g. drug screening, personalized medicine, and other applications. In the end, this review discusses the advantages and disadvantages of the liver cancer models in vitro, and proposes future prospects and research directions.</p></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"3 3","pages":"Pages 310-322"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666138122000457/pdfft?md5=aac61a31f4e5484939ed38926bca2e71&pid=1-s2.0-S2666138122000457-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45871336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01DOI: 10.1016/j.engreg.2022.06.004
Wei-Wei Yu , Qian-Qian Wan , Yu Wei , Yu-Tao Li , Qi-Hong Li , Tao Ye , Ke-Hui Xu , Jing-Han Song , Chen Lei , Mei-Chen Wan , Kai Jiao , Franklin R Tay , Li-Na Niu
Osteoimmunology has gained momentum in recent years, focusing on the crosstalk between the skeleton and the immune system. Extracellular vesicles (EVs) are nanoscale vesicles that are potential candidates for cell-free tissue regeneration strategies. They may be used for repairing damaged tissues and regulating the body's immune system and bone-related metabolic activities. Because of the ability of EVs to deliver bioactive signals and mediate intercellular communication, they can decipher the complex mechanisms of interaction within the “osteoimmune system” at the molecular level. To address the lack of targeting ability caused by vesicle heterogeneity in the clinical applications of EVs, these nanoscopical entities may be modified by bioengineering techniques to optimize the interaction between bone repair and immunomodulation for improving treatment efficacy, specificity and safety. In the present review, the endogenous properties that make EVs natural delivery agents are outlined. Properties that may be improved by bioengineering are highlighted. The therapeutic applications of EVs in the rehabilitation of bone defects are discussed. The opportunities and challenges that need to be addressed for translating this field of research into clinical practice are brought into perspectives.
{"title":"Engineered extracellular vesicles: Regulating the crosstalk between the skeleton and immune system","authors":"Wei-Wei Yu , Qian-Qian Wan , Yu Wei , Yu-Tao Li , Qi-Hong Li , Tao Ye , Ke-Hui Xu , Jing-Han Song , Chen Lei , Mei-Chen Wan , Kai Jiao , Franklin R Tay , Li-Na Niu","doi":"10.1016/j.engreg.2022.06.004","DOIUrl":"10.1016/j.engreg.2022.06.004","url":null,"abstract":"<div><p>Osteoimmunology has gained momentum in recent years, focusing on the crosstalk between the skeleton and the immune system. Extracellular vesicles (EVs) are nanoscale vesicles that are potential candidates for cell-free tissue regeneration strategies. They may be used for repairing damaged tissues and regulating the body's immune system and bone-related metabolic activities. Because of the ability of EVs to deliver bioactive signals and mediate intercellular communication, they can decipher the complex mechanisms of interaction within the “osteoimmune system” at the molecular level. To address the lack of targeting ability caused by vesicle heterogeneity in the clinical applications of EVs, these nanoscopical entities may be modified by bioengineering techniques to optimize the interaction between bone repair and immunomodulation for improving treatment efficacy, specificity and safety. In the present review, the endogenous properties that make EVs natural delivery agents are outlined. Properties that may be improved by bioengineering are highlighted. The therapeutic applications of EVs in the rehabilitation of bone defects are discussed. The opportunities and challenges that need to be addressed for translating this field of research into clinical practice are brought into perspectives.</p></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"3 3","pages":"Pages 270-282"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266613812200041X/pdfft?md5=40c721e736ea55df4b9dcba95c381f09&pid=1-s2.0-S266613812200041X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45874124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01DOI: 10.1016/j.engreg.2022.07.002
Alicia Persaud , Alexander Maus , Lia Strait , Donghui Zhu
In recent years, the shortage of available organs for transplant patients has grown exponentially across the globe. Consequently, the healthcare industry is in dire need of artificial substitutes. Many recent research studies and tissue engineering groups have decided to utilize 3D bioprinting to produce these artificial organs. This synthetic organ printing is made possible by advancements in the materials required for the constructs, the printing methodologies used to produce them, and the final physical structures’ varying properties. The cutting-edge research and technology related to 3D and 4D live cell bioprinting have recently allowed researchers to produce multiple types of artificial organs and tissues. These tissues can be utilized for drug screening and organ replacement applications. This article provides an extensive review of all the pertinent 3D live cell bioprinting technologies. First, we describe scaffolding methods and their comparison with the traditional technologies. Second, we explain the 3D bioprinting technology, its evolution, and its multiple types. Moreover, we describe the pros and cons of each bioprinting method. Third, we have discussed the critical bioink properties and their impact on the formation of 3D bioprinting models. In addition, we also describe the mechanical properties of bioprinters. Fourth, we have thoroughly discussed the various types of hydrogels and their properties. Every kind of hydrogel is utilized in specific applications, and we have presented a comprehensive list of its advantages and disadvantages. Fifth, we have discussed various applications of 3D bioprinting technology. We have considered a case study of human organs and elaborated on how bioprinters can revolutionize the organ replacement industry. Finally, we evaluated the possibility of 4D printing in the future organ industry, incorporating temporal factors into the bioprinting process.
{"title":"3D Bioprinting with Live Cells","authors":"Alicia Persaud , Alexander Maus , Lia Strait , Donghui Zhu","doi":"10.1016/j.engreg.2022.07.002","DOIUrl":"10.1016/j.engreg.2022.07.002","url":null,"abstract":"<div><p>In recent years, the shortage of available organs for transplant patients has grown exponentially across the globe. Consequently, the healthcare industry is in dire need of artificial substitutes. Many recent research studies and tissue engineering groups have decided to utilize 3D bioprinting to produce these artificial organs. This synthetic organ printing is made possible by advancements in the materials required for the constructs, the printing methodologies used to produce them, and the final physical structures’ varying properties. The cutting-edge research and technology related to 3D and 4D live cell bioprinting have recently allowed researchers to produce multiple types of artificial organs and tissues. These tissues can be utilized for drug screening and organ replacement applications. This article provides an extensive review of all the pertinent 3D live cell bioprinting technologies. First, we describe scaffolding methods and their comparison with the traditional technologies. Second, we explain the 3D bioprinting technology, its evolution, and its multiple types. Moreover, we describe the pros and cons of each bioprinting method. Third, we have discussed the critical bioink properties and their impact on the formation of 3D bioprinting models. In addition, we also describe the mechanical properties of bioprinters. Fourth, we have thoroughly discussed the various types of hydrogels and their properties. Every kind of hydrogel is utilized in specific applications, and we have presented a comprehensive list of its advantages and disadvantages. Fifth, we have discussed various applications of 3D bioprinting technology. We have considered a case study of human organs and elaborated on how bioprinters can revolutionize the organ replacement industry. Finally, we evaluated the possibility of 4D printing in the future organ industry, incorporating temporal factors into the bioprinting process.</p></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"3 3","pages":"Pages 292-309"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666138122000433/pdfft?md5=c32d5492d1365b7393fe9b4f617ef698&pid=1-s2.0-S2666138122000433-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43242459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01DOI: 10.1016/j.engreg.2022.06.003
Wanqing Weng , Junjie Chi , Xiaocheng Wang , Keqing Shi , Fangfu Ye , Yuanjin Zhao
Scar formation has always been a difficult point to overcome in the field of clinical wound care. Here, we present an ellipsoidal porous patch with cell inducing ability for inhibiting scar formation. The patch was prepared by stretching a poly (lactic-co-glycolic acid) (PLGA) inverse opal film at the glass transition temperature to form a neatly arranged three-dimensional ellipsoidal porous structure. Such anisotropic structure showed dramatic capability in directing cell growth and arrangement by reconstructing cell morphology. Besides, the proliferation of cells growing on the stretched patch was significantly suppressed without cell cytotoxicity. In addition, benefitting from the abundant and connected nanopores, the patch could be imparted with a potent ability to promote cell migration by encapsulating fibroblast growth factor 2 (FGF2) via the second filling of functional gelatin methacryloyl (GelMA) hydrogel into its scaffold. In a typical scar model, we have demonstrated that the resultant patch performed well in inhibiting scar formation characterized by inhibiting the excessive proliferation of fibroblasts, decreasing the deposition of type I collagen, reducing the scar index and achieved complete tissue reconstruction. These results indicate the anisotropic inverse opal patch has an excellent application prospect in inhibiting scar formation during wound repair.
{"title":"Ellipsoidal porous patch with anisotropic cell inducing ability for inhibiting skin scar formation","authors":"Wanqing Weng , Junjie Chi , Xiaocheng Wang , Keqing Shi , Fangfu Ye , Yuanjin Zhao","doi":"10.1016/j.engreg.2022.06.003","DOIUrl":"10.1016/j.engreg.2022.06.003","url":null,"abstract":"<div><p>Scar formation has always been a difficult point to overcome in the field of clinical wound care. Here, we present an ellipsoidal porous patch with cell inducing ability for inhibiting scar formation. The patch was prepared by stretching a poly (lactic-co-glycolic acid) (PLGA) inverse opal film at the glass transition temperature to form a neatly arranged three-dimensional ellipsoidal porous structure. Such anisotropic structure showed dramatic capability in directing cell growth and arrangement by reconstructing cell morphology. Besides, the proliferation of cells growing on the stretched patch was significantly suppressed without cell cytotoxicity. In addition, benefitting from the abundant and connected nanopores, the patch could be imparted with a potent ability to promote cell migration by encapsulating fibroblast growth factor 2 (FGF2) <em>via</em> the second filling of functional gelatin methacryloyl (GelMA) hydrogel into its scaffold. In a typical scar model, we have demonstrated that the resultant patch performed well in inhibiting scar formation characterized by inhibiting the excessive proliferation of fibroblasts, decreasing the deposition of type I collagen, reducing the scar index and achieved complete tissue reconstruction. These results indicate the anisotropic inverse opal patch has an excellent application prospect in inhibiting scar formation during wound repair.</p></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"3 3","pages":"Pages 262-269"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666138122000354/pdfft?md5=ecf9a79c6e560983cb717c365498af79&pid=1-s2.0-S2666138122000354-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48668890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01DOI: 10.1016/j.engreg.2022.07.003
Rui Hu , Yuncong Yuan , Meijia Gu , You-Quan Zou
Over the past decade, aggregation-induced emission (AIE) molecules have played a pivotal role in bioimaging, anti-microbial, and photodynamic therapy, and have been at the forefront of several disciplines worldwide. When combined with chiral moieties, they can easily collide with dazzling sparks and exhibit exceptional and unique advantages. In the application of chiral recognition and measurement of enantiomeric excess, it can identify chiral molecules visually based on color change and precipitation reaction, quantitatively analyze chiral molecules while determining the enantiomeric composition based on the fluorescence intensity change at different wavelengths, and obtain two parameters about chiral molecules from one measurement, thereby demonstrating its high selectivity, sensitivity and accuracy in chiral identification. In the field of organic circularly polarized luminescent (CPL) materials, the asymmetry (glum) of common organic light emitting elements is usually between 10−5 and 10−2, whereas the CPL asymmetry factor (glum) of chiral AIE fluorogens (AIEgens) can reach 1.42, which is very close to the theoretical value of 2. Therefore, the combination of chiral elements and luminescent groups promotes their adoption in the field of organic CPL materials. Herein we have summarized the recent applications of chiral AIEgens in both chiral molecule recognition and circularly polarized organic light-emitting diode (CP-OLED) in order to provide future researchers with a more comprehensive and detailed understanding of chiral AIEgens and to encourage more scientists to contribute to the development of AIEgens.
{"title":"Recent advances in chiral aggregation-induced emission fluorogens","authors":"Rui Hu , Yuncong Yuan , Meijia Gu , You-Quan Zou","doi":"10.1016/j.engreg.2022.07.003","DOIUrl":"10.1016/j.engreg.2022.07.003","url":null,"abstract":"<div><p>Over the past decade, aggregation-induced emission (AIE) molecules have played a pivotal role in bioimaging, anti-microbial, and photodynamic therapy, and have been at the forefront of several disciplines worldwide. When combined with chiral moieties, they can easily collide with dazzling sparks and exhibit exceptional and unique advantages. In the application of chiral recognition and measurement of enantiomeric excess, it can identify chiral molecules visually based on color change and precipitation reaction, quantitatively analyze chiral molecules while determining the enantiomeric composition based on the fluorescence intensity change at different wavelengths, and obtain two parameters about chiral molecules from one measurement, thereby demonstrating its high selectivity, sensitivity and accuracy in chiral identification. In the field of organic circularly polarized luminescent (CPL) materials, the asymmetry (g<sub>lum</sub>) of common organic light emitting elements is usually between 10<sup>−5</sup> and 10<sup>−2</sup>, whereas the CPL asymmetry factor (g<sub>lum</sub>) of chiral AIE fluorogens (AIEgens) can reach 1.42, which is very close to the theoretical value of 2. Therefore, the combination of chiral elements and luminescent groups promotes their adoption in the field of organic CPL materials. Herein we have summarized the recent applications of chiral AIEgens in both chiral molecule recognition and circularly polarized organic light-emitting diode (CP-OLED) in order to provide future researchers with a more comprehensive and detailed understanding of chiral AIEgens and to encourage more scientists to contribute to the development of AIEgens.</p></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"3 3","pages":"Pages 323-338"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666138122000445/pdfft?md5=27ba85b89296089eac1826f370f7597a&pid=1-s2.0-S2666138122000445-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49100154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01DOI: 10.1016/j.engreg.2022.07.001
Anju MS , Athira RK , Ramesh Babu V , Anil Kumar PR , Naresh Kasoju
Temporary storage/ shipping of cell/ tissue engineering products from bench to bedside is a key aspect of regenerative medicine. The current proof-of-concept study presents a multipurpose device for temporary storage/ shipping of cell culture dishes containing cell/ tissue constructs. The device, made with readily available raw materials, contains three elements viz. a specialized lid, polymeric plates having grooves and a set of nuts and bolts. As part of the performance evaluation, the device was first subjected to a simulated storage/ shipping process, wherein the leak-proof and aseptic containment of the contents was demonstrated. Subsequently, the setup was used for temporary storage/ shipping of dishes having (a) L929 cell monolayers cultured on treated surfaces, (b) SIRC, HaCaT and A549 cell sheets cultured on thermo-responsive surfaces, (c) HOS-cell encapsulated agar gels and (d) HOS-cell seeded silk fibroin mats. The results showed that the health of cell monolayers/ cell sheets/ tissue constructs after the process was comparable to that before the process. The device was scalable, simple to handle, can be made for a single or multi-use purpose, and can be resizable to load other culture vessels. The design of the storage/ shipping device described in this report thus offers versatile features and applications.
{"title":"A versatile approach for temporary storage and shipping of in vitro cultured cells, cell sheets and tissue engineered constructs – a preliminary report","authors":"Anju MS , Athira RK , Ramesh Babu V , Anil Kumar PR , Naresh Kasoju","doi":"10.1016/j.engreg.2022.07.001","DOIUrl":"https://doi.org/10.1016/j.engreg.2022.07.001","url":null,"abstract":"<div><p>Temporary storage/ shipping of cell/ tissue engineering products from bench to bedside is a key aspect of regenerative medicine. The current proof-of-concept study presents a multipurpose device for temporary storage/ shipping of cell culture dishes containing cell/ tissue constructs. The device, made with readily available raw materials, contains three elements viz. a specialized lid, polymeric plates having grooves and a set of nuts and bolts. As part of the performance evaluation, the device was first subjected to a simulated storage/ shipping process, wherein the leak-proof and aseptic containment of the contents was demonstrated. Subsequently, the setup was used for temporary storage/ shipping of dishes having (a) L929 cell monolayers cultured on treated surfaces, (b) SIRC, HaCaT and A549 cell sheets cultured on thermo-responsive surfaces, (c) HOS-cell encapsulated agar gels and (d) HOS-cell seeded silk fibroin mats. The results showed that the health of cell monolayers/ cell sheets/ tissue constructs after the process was comparable to that before the process. The device was scalable, simple to handle, can be made for a single or multi-use purpose, and can be resizable to load other culture vessels. The design of the storage/ shipping device described in this report thus offers versatile features and applications.</p></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"3 3","pages":"Pages 283-291"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666138122000421/pdfft?md5=3d54539cc01fbfb24e8cfd021b0a78fc&pid=1-s2.0-S2666138122000421-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136843652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fluid manipulation plays an important role in biomedical applications such as biochemical assays, medical diagnostics, and drug development. Programmable fluidic manipulation at the microscale is highly desired in both fundamental and practical aspects. In this paper, we summarize some of the latest studies that achieve programmable fluidic manipulation through intricate capillaric circuits design, construction of biomimetic metasurface, and responsive surface wettability control. We highlight the working principle of each system and concisely discuss their design criterion, technical improvements, and implications for future study. We envision that with multidisciplinary efforts, microfluidics would continue to bring vast opportunities to biomedical fields and make contributions to human health.
{"title":"Programmable microfluidic manipulations for biomedical applications","authors":"Dagan Zhang , Wenzhao Li , Yixuan Shang , Luoran Shang","doi":"10.1016/j.engreg.2022.06.001","DOIUrl":"10.1016/j.engreg.2022.06.001","url":null,"abstract":"<div><p>Fluid manipulation plays an important role in biomedical applications such as biochemical assays, medical diagnostics, and drug development. Programmable fluidic manipulation at the microscale is highly desired in both fundamental and practical aspects. In this paper, we summarize some of the latest studies that achieve programmable fluidic manipulation through intricate capillaric circuits design, construction of biomimetic metasurface, and responsive surface wettability control. We highlight the working principle of each system and concisely discuss their design criterion, technical improvements, and implications for future study. We envision that with multidisciplinary efforts, microfluidics would continue to bring vast opportunities to biomedical fields and make contributions to human health.</p></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"3 3","pages":"Pages 258-261"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666138122000330/pdfft?md5=df0d0e84f4def27556d6c90f7c6e4c4c&pid=1-s2.0-S2666138122000330-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48582973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01DOI: 10.1016/j.engreg.2022.05.002
Meison Furtado, Liang Chen, Zehao Chen, Ao Chen, Wenguo Cui
Tissues rely on collagen for structural and biological integrity, as well as for function and strength. Several collagen sources have been investigated due to its wide variety of applications, such as collagen from cows and pigs. However, mammalian-based collagen has been limited by diseases like bovine spongiform encephalopathy (BSE) and other religious limitations. Hence, fish collagen has caught the attention of the research community because it is easy to extract, has a high level of collagen content, excellent absorption properties, a low molecular weight, biocompatibility, little risk of disease transmission from animals to humans, negligible environmental contamination, and fewer ethical and religious concerns, posing as an ideal resource for product development. This review focuses on the growing role of marine collagen in the advances of various biomedical applications, such as drug delivery, tissue engineering, regeneration, and wound healing, which will be covered in depth.
{"title":"Development of fish collagen in tissue regeneration and drug delivery","authors":"Meison Furtado, Liang Chen, Zehao Chen, Ao Chen, Wenguo Cui","doi":"10.1016/j.engreg.2022.05.002","DOIUrl":"10.1016/j.engreg.2022.05.002","url":null,"abstract":"<div><p>Tissues rely on collagen for structural and biological integrity, as well as for function and strength. Several collagen sources have been investigated due to its wide variety of applications, such as collagen from cows and pigs. However, mammalian-based collagen has been limited by diseases like bovine spongiform encephalopathy (BSE) and other religious limitations. Hence, fish collagen has caught the attention of the research community because it is easy to extract, has a high level of collagen content, excellent absorption properties, a low molecular weight, biocompatibility, little risk of disease transmission from animals to humans, negligible environmental contamination, and fewer ethical and religious concerns, posing as an ideal resource for product development. This review focuses on the growing role of marine collagen in the advances of various biomedical applications, such as drug delivery, tissue engineering, regeneration, and wound healing, which will be covered in depth.</p></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"3 3","pages":"Pages 217-231"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666138122000317/pdfft?md5=3694d2b417939215aa2d78c798242b62&pid=1-s2.0-S2666138122000317-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46028378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01DOI: 10.1016/j.engreg.2022.06.002
Lei Yu , Wenming Li , Peng Yang , Wei Zhang , Huaqiang Tao , Gaoran Ge , Huilin Yang , Jiaxiang Bai , Huaiyu Wang , Dechun Geng
Skeletal diseases normally represents a grievous imbalance between osteoblasts for bone formation and osteoclasts for bone resorption. A lack of osteogenic function can make it difficult to repair pathological bone erosion. Therefore, substantial efforts have been made to remedy these issues, with the aid of bioactive molecules, herbs and materials. Following recent insights, the importance of epigenetic gene regulation is increasingly evident, especially microRNAs. MicroRNAs can silence target genes by inhibiting mRNA translation or degrading mRNA molecules by binding to their 3′-untranslated region. There is accumulating evidence indicating that the miRNAs significantly involved in osteogenic gene expression, signaling pathway intervention and programmed cell death. Besides, numerous new target drugs (microRNA inhibitors or agonists) have been proposed to exploit its value in skeletal physiology and pathology. In this review, we mainly discuss the role of microRNAs in the context of skeletal disease-associated osteoblast differentiation, the applications of microRNA polymorphisms as biomarkers for diagnostic and therapeutic targets, and the challenges to meet this goal. Our summary provides novel horizon for improving the therapeutic effect of microRNAs, which may be beneficial to the further clinical translation of microRNAs in the treatments of skeletal diseases.
{"title":"Osteoblastic microRNAs in skeletal diseases: Biological functions and therapeutic implications","authors":"Lei Yu , Wenming Li , Peng Yang , Wei Zhang , Huaqiang Tao , Gaoran Ge , Huilin Yang , Jiaxiang Bai , Huaiyu Wang , Dechun Geng","doi":"10.1016/j.engreg.2022.06.002","DOIUrl":"10.1016/j.engreg.2022.06.002","url":null,"abstract":"<div><p>Skeletal diseases normally represents a grievous imbalance between osteoblasts for bone formation and osteoclasts for bone resorption. A lack of osteogenic function can make it difficult to repair pathological bone erosion. Therefore, substantial efforts have been made to remedy these issues, with the aid of bioactive molecules, herbs and materials. Following recent insights, the importance of epigenetic gene regulation is increasingly evident, especially microRNAs. MicroRNAs can silence target genes by inhibiting mRNA translation or degrading mRNA molecules by binding to their 3′-untranslated region. There is accumulating evidence indicating that the miRNAs significantly involved in osteogenic gene expression, signaling pathway intervention and programmed cell death. Besides, numerous new target drugs (microRNA inhibitors or agonists) have been proposed to exploit its value in skeletal physiology and pathology. In this review, we mainly discuss the role of microRNAs in the context of skeletal disease-associated osteoblast differentiation, the applications of microRNA polymorphisms as biomarkers for diagnostic and therapeutic targets, and the challenges to meet this goal. Our summary provides novel horizon for improving the therapeutic effect of microRNAs, which may be beneficial to the further clinical translation of microRNAs in the treatments of skeletal diseases.</p></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"3 3","pages":"Pages 241-257"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666138122000342/pdfft?md5=2d248a7eb9c23419aa2086dac28f29c8&pid=1-s2.0-S2666138122000342-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46827824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}