首页 > 最新文献

Advanced Sustainable Systems最新文献

英文 中文
Rational Design of 3D Hierarchical Fe3S4 for Superior Sodium-Ion Battery Anode Material
IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-10-22 DOI: 10.1002/adsu.202400679
Yuteng Gong, Yufeng Sun, Yu Li, Chuan Wu, Ying Bai

Among various transition metal sulfides, iron-based sulfides have attracted wide attention due to their abundant resources, low cost, and non-toxicity, showing considerable research value in the field of secondary batteries. Thereinto, Fe3S4 has a high theoretical specific capacity of 785 mAh g−1. However, at present, the research related to Fe3S4 anode for sodium-ion batteries (SIBs) is still in its infancy, and it also suffers from severe volume expansion and limited preparation. Therefore, to further boost its sodium storage potential, the Fe3S4@rGO composite with hierarchical structure and carbonaceous network is proposed in this study. Beneficial from the ingenious hierarchitectures and flexible graphene coating, the Fe3S4@rGO anode exhibits outstanding sodium storage performance, which can deliver a high capacity of 603 mAh g−1 after 1500 cycles with a superior capacity retention of 98%. The micron flower-like structure composed of 2D nanosheets can provide sufficient active sites and promote the rapid transport of Na+. Meanwhile, the 3D interconnected graphene carbon network makes a crucial contribution to alleviating volume changes and enhancing electrical conductivity. This work reveals the application potential of Fe3S4 as an anode electrode for SIBs and provides available insights for the development of other electrode materials.

{"title":"Rational Design of 3D Hierarchical Fe3S4 for Superior Sodium-Ion Battery Anode Material","authors":"Yuteng Gong,&nbsp;Yufeng Sun,&nbsp;Yu Li,&nbsp;Chuan Wu,&nbsp;Ying Bai","doi":"10.1002/adsu.202400679","DOIUrl":"https://doi.org/10.1002/adsu.202400679","url":null,"abstract":"<p>Among various transition metal sulfides, iron-based sulfides have attracted wide attention due to their abundant resources, low cost, and non-toxicity, showing considerable research value in the field of secondary batteries. Thereinto, Fe<sub>3</sub>S<sub>4</sub> has a high theoretical specific capacity of 785 mAh g<sup>−1</sup>. However, at present, the research related to Fe<sub>3</sub>S<sub>4</sub> anode for sodium-ion batteries (SIBs) is still in its infancy, and it also suffers from severe volume expansion and limited preparation. Therefore, to further boost its sodium storage potential, the Fe<sub>3</sub>S<sub>4</sub>@rGO composite with hierarchical structure and carbonaceous network is proposed in this study. Beneficial from the ingenious hierarchitectures and flexible graphene coating, the Fe<sub>3</sub>S<sub>4</sub>@rGO anode exhibits outstanding sodium storage performance, which can deliver a high capacity of 603 mAh g<sup>−1</sup> after 1500 cycles with a superior capacity retention of 98%. The micron flower-like structure composed of 2D nanosheets can provide sufficient active sites and promote the rapid transport of Na<sup>+</sup>. Meanwhile, the 3D interconnected graphene carbon network makes a crucial contribution to alleviating volume changes and enhancing electrical conductivity. This work reveals the application potential of Fe<sub>3</sub>S<sub>4</sub> as an anode electrode for SIBs and provides available insights for the development of other electrode materials.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-Dimensional VTe2/MXene/CNT Ternary Architectures for the Development of High Performance Microsupercapacitors
IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-10-22 DOI: 10.1002/adsu.202400529
Sithara Radhakrishnan, Mohan Monisha, Sree Raj KA, Manav Saxena, Sang Mun Jeong, Chandra Sekhar Rout

Rapid advancements in portable electronics have created a demand for ultrathin power sources. Microsupercapacitors (MSCs) are becoming a competitive and advantageous option for these applications. It is widely recognized that to develop MSCs with exceptional performance, electrode materials having two-dimensonal (2D) permeable channels, structural scaffolds with high-conductivity and large surface area are suitable. Vanadium ditelluride (VTe2) stands out as an ideal material platform in this context. Its unique combination of metallic properties and exfoliative characteristics-stemming from the conducting Te–V–Te layers held together by weak van der Waals interlayer interactions- renders it highly promising for high-performance MSCs.  This study is the first to report that the restacking issues and electrochemical performance of VTe2 can be successfully avoided by the simultaneous incorporation of MXene and CNT to form a ternary hybrid. Here, a laser-induced graphene (LIG)-based MSC utilizing VTe2/MXene/CNT as the active electrode material is fabricated. This MSC achieve fabrications an outstanding maximum energy density of 6.84 µWh cm−2 and a power density of 304.7 µW cm−2. This significant achievement demonstrates the potential of this LIG-based MSC to advance the design of high-performance micro-energy storage devices.

{"title":"Three-Dimensional VTe2/MXene/CNT Ternary Architectures for the Development of High Performance Microsupercapacitors","authors":"Sithara Radhakrishnan,&nbsp;Mohan Monisha,&nbsp;Sree Raj KA,&nbsp;Manav Saxena,&nbsp;Sang Mun Jeong,&nbsp;Chandra Sekhar Rout","doi":"10.1002/adsu.202400529","DOIUrl":"https://doi.org/10.1002/adsu.202400529","url":null,"abstract":"<p>Rapid advancements in portable electronics have created a demand for ultrathin power sources. Microsupercapacitors (MSCs) are becoming a competitive and advantageous option for these applications. It is widely recognized that to develop MSCs with exceptional performance, electrode materials having two-dimensonal (2D) permeable channels, structural scaffolds with high-conductivity and large surface area are suitable. Vanadium ditelluride (VTe<sub>2</sub>) stands out as an ideal material platform in this context. Its unique combination of metallic properties and exfoliative characteristics-stemming from the conducting Te–V–Te layers held together by weak van der Waals interlayer interactions- renders it highly promising for high-performance MSCs.  This study is the first to report that the restacking issues and electrochemical performance of VTe<sub>2</sub> can be successfully avoided by the simultaneous incorporation of MXene and CNT to form a ternary hybrid. Here, a laser-induced graphene (LIG)-based MSC utilizing VTe<sub>2</sub>/MXene/CNT as the active electrode material is fabricated. This MSC achieve fabrications an outstanding maximum energy density of 6.84 µWh cm<sup>−2</sup> and a power density of 304.7 µW cm<sup>−2</sup>. This significant achievement demonstrates the potential of this LIG-based MSC to advance the design of high-performance micro-energy storage devices.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202400529","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diatoms Inspired Green Janus Fabric for Efficient Fog Harvesting
IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-10-22 DOI: 10.1002/adsu.202400664
Yinjie Chen, Yating Ji, Xiaoyan Li, Keru Hou, Zaisheng Cai

Fog harvesting is a promising path against the global freshwater scarcity. Asymmetric wettability fabric-based fog collection materials inspired by the Namib desert beetle have been reported widely due to their easy access and adjustable structures. Nevertheless, the single drive force for water transportation produced by the asymmetric wettability is insufficient, causing a non-ideal fog harvesting efficiency. Moreover, sustainability challenges persist for fog collection materials, primarily due to their heavy dependence on chemical treatments. Herein, a diatom-inspired Janus fabric (Ly/Csp-3) based on asymmetric wettability and aperture gradient is developed without additional physical or chemical treatment. The wettability gradient and aperture gradient generate dual directional drive forces that regulate the water transport direction more accurately and enhance the transportation rate more effectively. Ly/Csp-3 reaches a one-way transport index of 390.7% and a water collecting rate (WCR) of 1170.5 mg cm−2 h−1, while exhibiting the capability of anti-acid rain and the resistance to sunlight. This work provides an efficient and programmable biomimetic design proposal for fibrous fog harvesting devices.

{"title":"Diatoms Inspired Green Janus Fabric for Efficient Fog Harvesting","authors":"Yinjie Chen,&nbsp;Yating Ji,&nbsp;Xiaoyan Li,&nbsp;Keru Hou,&nbsp;Zaisheng Cai","doi":"10.1002/adsu.202400664","DOIUrl":"https://doi.org/10.1002/adsu.202400664","url":null,"abstract":"<p>Fog harvesting is a promising path against the global freshwater scarcity. Asymmetric wettability fabric-based fog collection materials inspired by the Namib desert beetle have been reported widely due to their easy access and adjustable structures. Nevertheless, the single drive force for water transportation produced by the asymmetric wettability is insufficient, causing a non-ideal fog harvesting efficiency. Moreover, sustainability challenges persist for fog collection materials, primarily due to their heavy dependence on chemical treatments. Herein, a diatom-inspired Janus fabric (Ly/Csp-3) based on asymmetric wettability and aperture gradient is developed without additional physical or chemical treatment. The wettability gradient and aperture gradient generate dual directional drive forces that regulate the water transport direction more accurately and enhance the transportation rate more effectively. Ly/Csp-3 reaches a one-way transport index of 390.7% and a water collecting rate (WCR) of 1170.5 mg cm<sup>−2</sup> h<sup>−1</sup>, while exhibiting the capability of anti-acid rain and the resistance to sunlight. This work provides an efficient and programmable biomimetic design proposal for fibrous fog harvesting devices.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: (Adv. Sustainable Syst. 10/2024) 刊头:(Adv. Sustainable Syst.)
IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-10-16 DOI: 10.1002/adsu.202470036
{"title":"Masthead: (Adv. Sustainable Syst. 10/2024)","authors":"","doi":"10.1002/adsu.202470036","DOIUrl":"https://doi.org/10.1002/adsu.202470036","url":null,"abstract":"","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"8 10","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202470036","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Nanocellulose Production from Cotton and Textile Waste Using Binary and Ternary Natural Deep Eutectic Solvents
IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-10-16 DOI: 10.1002/adsu.202400525
Davud Karimian, Vincenzo Anzuoni, Zoe Smania, Laura Orian, Silvia Gross, Mauro Carraro

The growing accumulation of textile waste poses significant environmental challenges, as only a small percentage of materials is currently recycled. However, cotton waste offers a valuable feedstock for the regeneration of cellulose and nanocellulose (NC). This study presents a sustainable and efficient method for producing NC from textile waste using both binary and ternary natural deep eutectic solvents (NADESs). By treating cotton wool, pre-consumer standard cotton fabrics, and post-consumer denim textiles, with NADESs, NC generation is achieved in high yields (up to ≈90%) in all cases. The most promising NADESs, composed of choline chloride and gallic acid (and tartaric acid), effectively dissolve cotton-based materials when subjected to heating and sonication, producing cellulose nanocrystals with length ranging from 100 to 300 nm and crystallinity level up to ≈80%. The NADESs are characterized by thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FT-IR), as well as modeled by density functional theory (DFT), to investigate their hydrogen bond network. Eventually, their recyclability is also investigated. This approach opens promising applications in the fields of sustainable nanomaterial production and textile recycling, providing a greener alternative for waste valorization and promoting circular economy practices.

{"title":"Enhanced Nanocellulose Production from Cotton and Textile Waste Using Binary and Ternary Natural Deep Eutectic Solvents","authors":"Davud Karimian,&nbsp;Vincenzo Anzuoni,&nbsp;Zoe Smania,&nbsp;Laura Orian,&nbsp;Silvia Gross,&nbsp;Mauro Carraro","doi":"10.1002/adsu.202400525","DOIUrl":"https://doi.org/10.1002/adsu.202400525","url":null,"abstract":"<p>The growing accumulation of textile waste poses significant environmental challenges, as only a small percentage of materials is currently recycled. However, cotton waste offers a valuable feedstock for the regeneration of cellulose and nanocellulose (NC). This study presents a sustainable and efficient method for producing NC from textile waste using both binary and ternary natural deep eutectic solvents (NADESs). By treating cotton wool, pre-consumer standard cotton fabrics, and post-consumer denim textiles, with NADESs, NC generation is achieved in high yields (up to ≈90%) in all cases. The most promising NADESs, composed of choline chloride and gallic acid (and tartaric acid), effectively dissolve cotton-based materials when subjected to heating and sonication, producing cellulose nanocrystals with length ranging from 100 to 300 nm and crystallinity level up to ≈80%. The NADESs are characterized by thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FT-IR), as well as modeled by density functional theory (DFT), to investigate their hydrogen bond network. Eventually, their recyclability is also investigated. This approach opens promising applications in the fields of sustainable nanomaterial production and textile recycling, providing a greener alternative for waste valorization and promoting circular economy practices.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202400525","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ce3+/Ce4+–TiO2 Nano-Octahedra as Active Photocatalysts for Ciprofloxacin Photodegradation Under Solar Light (Adv. Sustainable Syst. 10/2024) 在太阳光下作为环丙沙星光降解活性光催化剂的 Ce3+/Ce4+-TiO2 纳米八面体(Adv. Sustainable Syst.)
IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-10-16 DOI: 10.1002/adsu.202470035
Baliana Shani, Letizia Liccardo, Matteo Bordin, Isabel Barroso Martín, Antonia Infantes-Molina, Enrique Rodríguez-Castellón, Kassa Belay Ibrahim, Alberto Vomiero, Elisa Moretti

Ciprofloxacin Photodegradation

In article number 2400375, Alberto Vomiero, Elisa Moretti, and co-workers synthesize cerium containing-titania nano-octahedra from commercial titania which are tested as photocatalysts for the removal of ciprofloxacin, in aqueous solution under simulated solar light. The optimized Ce concentration leads to an 83% degradation of ciprofloxacin after 360 min under simulated solar light, demonstrating the effectiveness of the new photocatalyst.

环丙沙星的光降解在文章编号 2400375 中,Alberto Vomiero、Elisa Moretti 及其合作者从商用二氧化钛中合成了含铈的二氧化钛纳米八面体,并将其作为光催化剂进行了测试,以在模拟太阳光下去除水溶液中的环丙沙星。优化的铈浓度使环丙沙星在模拟太阳光下 360 分钟后的降解率达到 83%,证明了这种新型光催化剂的有效性。
{"title":"Ce3+/Ce4+–TiO2 Nano-Octahedra as Active Photocatalysts for Ciprofloxacin Photodegradation Under Solar Light (Adv. Sustainable Syst. 10/2024)","authors":"Baliana Shani,&nbsp;Letizia Liccardo,&nbsp;Matteo Bordin,&nbsp;Isabel Barroso Martín,&nbsp;Antonia Infantes-Molina,&nbsp;Enrique Rodríguez-Castellón,&nbsp;Kassa Belay Ibrahim,&nbsp;Alberto Vomiero,&nbsp;Elisa Moretti","doi":"10.1002/adsu.202470035","DOIUrl":"https://doi.org/10.1002/adsu.202470035","url":null,"abstract":"<p><b>Ciprofloxacin Photodegradation</b></p><p>In article number 2400375, Alberto Vomiero, Elisa Moretti, and co-workers synthesize cerium containing-titania nano-octahedra from commercial titania which are tested as photocatalysts for the removal of ciprofloxacin, in aqueous solution under simulated solar light. The optimized Ce concentration leads to an 83% degradation of ciprofloxacin after 360 min under simulated solar light, demonstrating the effectiveness of the new photocatalyst.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"8 10","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202470035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradable Substrates for Rigid and Flexible Circuit Boards: A Review
IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-10-16 DOI: 10.1002/adsu.202400518
Karel Dušek, Daniel Koc, Petr Veselý, Denis Froš, Attila Géczy

Biodegradable materials represent a promising path toward green and sustainable electronics on a global scale in the future. Plastics play a pivotal role in contemporary electronics, including printed circuit boards (PCB), where petroleum-based polymers such as epoxies form the base insulating substrate. In this review paper, several promising bio-based alternatives to conventional PCB materials that are recently developed and investigated are stated and discussed regarding their properties, practical utilization, and further perspective. The given list includes polylactic acid (PLA), cellulose acetate (CA), polyvinyl alcohol (PVA), and others, with the development of PLA-based PCB substrates being the furthest along regarding the use in industry practice. Yet, all of the provided solutions are still only suitable for prototypes or low-cost electronics without high-reliability requirements. The reason for this is inferior mechanical and thermal properties of biopolymers compared to traditional petroleum-based polymers. Further development is therefore essential, including new types of reinforcements and other additives. However, as Life Cycle Assessment analyses discussed in the paper show, biopolymers are capable of significantly reducing the environmental impact and are likely to play a major role in shaping a sustainable path for the electronics industry, which will be a key challenge in the current decade.

{"title":"Biodegradable Substrates for Rigid and Flexible Circuit Boards: A Review","authors":"Karel Dušek,&nbsp;Daniel Koc,&nbsp;Petr Veselý,&nbsp;Denis Froš,&nbsp;Attila Géczy","doi":"10.1002/adsu.202400518","DOIUrl":"https://doi.org/10.1002/adsu.202400518","url":null,"abstract":"<p>Biodegradable materials represent a promising path toward green and sustainable electronics on a global scale in the future. Plastics play a pivotal role in contemporary electronics, including printed circuit boards (PCB), where petroleum-based polymers such as epoxies form the base insulating substrate. In this review paper, several promising bio-based alternatives to conventional PCB materials that are recently developed and investigated are stated and discussed regarding their properties, practical utilization, and further perspective. The given list includes polylactic acid (PLA), cellulose acetate (CA), polyvinyl alcohol (PVA), and others, with the development of PLA-based PCB substrates being the furthest along regarding the use in industry practice. Yet, all of the provided solutions are still only suitable for prototypes or low-cost electronics without high-reliability requirements. The reason for this is inferior mechanical and thermal properties of biopolymers compared to traditional petroleum-based polymers. Further development is therefore essential, including new types of reinforcements and other additives. However, as Life Cycle Assessment analyses discussed in the paper show, biopolymers are capable of significantly reducing the environmental impact and are likely to play a major role in shaping a sustainable path for the electronics industry, which will be a key challenge in the current decade.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202400518","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cost-Responsive Optimization of Nickel Nanoparticle Synthesis (Adv. Sustainable Syst. 10/2024) 镍纳米粒子合成的成本响应优化(Adv. Sustainable Syst.)
IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-10-16 DOI: 10.1002/adsu.202470037
Brittney E. Petel, Kurt M. Van Allsburg, Frederick G. Baddour

Nickel Nanoparticle Synthesis

Early-stage cost evaluation during catalyst development holds the potential to accelerate the commercialization and deployment of advanced catalytic materials for sustainable chemical processes. In article number 2300030, Frederick G. Baddour, Brittney E. Petel, and Kurt M. Van Allsburg, utilize CatCost, a free and publicly available estimation tool for the evaluation of catalyst manufacturing costs, to perform a cost-responsive optimization of the synthesis of nickel nanoparticles.

镍纳米颗粒合成催化剂开发过程中的早期成本评估有可能加速用于可持续化学工艺的先进催化材料的商业化和应用。在文章编号 2300030 中,Frederick G. Baddour、Brittney E. Petel 和 Kurt M. Van Allsburg 利用 CatCost(一种用于评估催化剂制造成本的免费公开估算工具)对镍纳米粒子的合成进行了成本响应优化。
{"title":"Cost-Responsive Optimization of Nickel Nanoparticle Synthesis (Adv. Sustainable Syst. 10/2024)","authors":"Brittney E. Petel,&nbsp;Kurt M. Van Allsburg,&nbsp;Frederick G. Baddour","doi":"10.1002/adsu.202470037","DOIUrl":"https://doi.org/10.1002/adsu.202470037","url":null,"abstract":"<p><b>Nickel Nanoparticle Synthesis</b></p><p>Early-stage cost evaluation during catalyst development holds the potential to accelerate the commercialization and deployment of advanced catalytic materials for sustainable chemical processes. In article number 2300030, Frederick G. Baddour, Brittney E. Petel, and Kurt M. Van Allsburg, utilize CatCost, a free and publicly available estimation tool for the evaluation of catalyst manufacturing costs, to perform a cost-responsive optimization of the synthesis of nickel nanoparticles.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"8 10","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202470037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring of Time for Hydrothermal Synthesis of 2D MoSe2 with Enhanced Adsorption and Electro-Catalytic Efficiency for Applications in Self-Cleaning and Hydrogen Energy Generation
IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-10-15 DOI: 10.1002/adsu.202400585
Rashbihari Layek, Pathik Kumbhakar

Molybdenum diselenide (MoSe2), a 2D layered transition metal dichalcogenide, has garnered significant scientific research interest for its catalytic and electrocatalytic activities. Here, a straightforward hydrothermal procedure is used to synthesize MoSe2 nanosheets (NSs) and focus on their adsorption capabilities and hydrogen evolution reaction (HER) activity. The MoSe2 NSs which are synthesized by 12 h of hydrothermal treatment found to exhibit the highest adsorption capacity of 91.67 mg g−1. The kinetics of the adsorption process have been found to follow the pseudo-second-order model, signifying chemisorption and multilayer adsorption as described by the Freundlich isotherm. The thermodynamic analysis further suggests that the adsorption proceeds by endothermic and spontaneous mechanisms. The self-cleaning property of the adsorbent is demonstrated by degrading the dye on the adsorbent-coated cotton fabric. The sample created using a 12 h hydrothermal method has been shown to have a minimal Tafel slope of 58 mV dec−1. It also shows excellent HER activity at low over-potential and possesses long-term durability. The dual functionality of MoSe2 NSs in both adsorption and electrocatalytic activity highlights their potential for application in environmental remediation and renewable energy production.

{"title":"Tailoring of Time for Hydrothermal Synthesis of 2D MoSe2 with Enhanced Adsorption and Electro-Catalytic Efficiency for Applications in Self-Cleaning and Hydrogen Energy Generation","authors":"Rashbihari Layek,&nbsp;Pathik Kumbhakar","doi":"10.1002/adsu.202400585","DOIUrl":"https://doi.org/10.1002/adsu.202400585","url":null,"abstract":"<p>Molybdenum diselenide (MoSe<sub>2</sub>), a 2D layered transition metal dichalcogenide, has garnered significant scientific research interest for its catalytic and electrocatalytic activities. Here, a straightforward hydrothermal procedure is used to synthesize MoSe<sub>2</sub> nanosheets (NSs) and focus on their adsorption capabilities and hydrogen evolution reaction (HER) activity. The MoSe<sub>2</sub> NSs which are synthesized by 12 h of hydrothermal treatment found to exhibit the highest adsorption capacity of 91.67 mg g<sup>−1</sup>. The kinetics of the adsorption process have been found to follow the pseudo-second-order model, signifying chemisorption and multilayer adsorption as described by the Freundlich isotherm. The thermodynamic analysis further suggests that the adsorption proceeds by endothermic and spontaneous mechanisms. The self-cleaning property of the adsorbent is demonstrated by degrading the dye on the adsorbent-coated cotton fabric. The sample created using a 12 h hydrothermal method has been shown to have a minimal Tafel slope of 58 mV dec<sup>−1</sup>. It also shows excellent HER activity at low over-potential and possesses long-term durability. The dual functionality of MoSe<sub>2</sub> NSs in both adsorption and electrocatalytic activity highlights their potential for application in environmental remediation and renewable energy production.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202400585","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Design of Hydrogenated Monolayer Pyrite for Enhanced Energy Storage
IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-10-15 DOI: 10.1002/adsu.202400421
Pedro Guerra Demingos, Adwitiya Rao, Chandra Veer Singh

In the search for clean energy technologies, it is crucial to develop low-cost batteries with enhanced performance, and 2D materials are promising for electrode applications owing to their high surface area where fast ionic diffusion can occur. In this work, density functional theory calculations that demonstrate the great potential of recently synthesized 2D pyrite as a battery electrode are reported. An extensive analysis of its performance toward Li-ion batteries and post-lithium technologies (Na, K, Mg, Ca, Zn, Al), as well as how point defects can be leveraged to engineer its electronic properties are reported. First, the results explain that the main drawback of the unmodified material, namely its voltammetric peaks at high voltages, is due to the overly strong adsorption of lithium ions. Second, it is demonstrated that hydrogenation of the material leads to milder open-circuit voltages without compromising the capacity of the anode, and lowers the diffusion barrier to only 0.06eV for both Li and K ions. With a capacity as high as 1317 mAh g−1 for Al-ion, hydrogenated monolayer pyrite is demonstrated to be a promising material for energy storage applications.

{"title":"Computational Design of Hydrogenated Monolayer Pyrite for Enhanced Energy Storage","authors":"Pedro Guerra Demingos,&nbsp;Adwitiya Rao,&nbsp;Chandra Veer Singh","doi":"10.1002/adsu.202400421","DOIUrl":"https://doi.org/10.1002/adsu.202400421","url":null,"abstract":"<p>In the search for clean energy technologies, it is crucial to develop low-cost batteries with enhanced performance, and 2D materials are promising for electrode applications owing to their high surface area where fast ionic diffusion can occur. In this work, density functional theory calculations that demonstrate the great potential of recently synthesized 2D pyrite as a battery electrode are reported. An extensive analysis of its performance toward Li-ion batteries and post-lithium technologies (Na, K, Mg, Ca, Zn, Al), as well as how point defects can be leveraged to engineer its electronic properties are reported. First, the results explain that the main drawback of the unmodified material, namely its voltammetric peaks at high voltages, is due to the overly strong adsorption of lithium ions. Second, it is demonstrated that hydrogenation of the material leads to milder open-circuit voltages without compromising the capacity of the anode, and lowers the diffusion barrier to only 0.06eV for both Li and K ions. With a capacity as high as 1317 mAh g<sup>−1</sup> for Al-ion, hydrogenated monolayer pyrite is demonstrated to be a promising material for energy storage applications.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202400421","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Sustainable Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1