We propose a novel method for multisample anti-aliasing in deferred shading. Our technique successfully reduces memory and bandwidth usage. The new model uses per-pixel linked lists to store the samples. We also introduce algorithms to construct the new G-Buffer in the geometry pass and to calculate the shading in the lighting pass. The algorithms are designed to enable further optimizations, similar to variable rate shading. We also propose methods to satisfy constraints of memory usage and processing time. We integrated the new method into a Vulkan based renderer. CCS Concepts • Computing methodologies → Rasterization; Antialiasing;
{"title":"Multisample Anti-aliasing in Deferred Rendering","authors":"András Fridvalszky, B. Tóth","doi":"10.2312/egs.20201008","DOIUrl":"https://doi.org/10.2312/egs.20201008","url":null,"abstract":"We propose a novel method for multisample anti-aliasing in deferred shading. Our technique successfully reduces memory and bandwidth usage. The new model uses per-pixel linked lists to store the samples. We also introduce algorithms to construct the new G-Buffer in the geometry pass and to calculate the shading in the lighting pass. The algorithms are designed to enable further optimizations, similar to variable rate shading. We also propose methods to satisfy constraints of memory usage and processing time. We integrated the new method into a Vulkan based renderer. CCS Concepts • Computing methodologies → Rasterization; Antialiasing;","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"98 1","pages":"21-24"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76524634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Nylén, Pontus Pall, Y. Ishiwaka, Kazutoshi Suda, M. Fratarcangeli
We present a novel real-time tool for sewing together 2D patterns, enabling quick assembly of visually plausible, interactively animated garments for virtual characters. The process is assisted by ad-hoc visual hints and allows designers to import 2D patterns from any CAD-tool, connect them using seams around a 3D character with any body type, and assess the overall quality during the character animation. The cloth is numerically simulated including robust modeling of contact of the cloth with itself and with the character's body. Overall, our tool allows for fast prototyping of virtual garments, achieving immediate feedback on their behaviour and visual quality on an animated character, in effect speeding up the content production pipeline for visual effects applications involving clothed characters.
{"title":"Interactive Assembly and Animation of 3D Digital Garments","authors":"O. Nylén, Pontus Pall, Y. Ishiwaka, Kazutoshi Suda, M. Fratarcangeli","doi":"10.2312/egs.20201021","DOIUrl":"https://doi.org/10.2312/egs.20201021","url":null,"abstract":"We present a novel real-time tool for sewing together 2D patterns, enabling quick assembly of visually plausible, interactively animated garments for virtual characters. The process is assisted by ad-hoc visual hints and allows designers to import 2D patterns from any CAD-tool, connect them using seams around a 3D character with any body type, and assess the overall quality during the character animation. The cloth is numerically simulated including robust modeling of contact of the cloth with itself and with the character's body. Overall, our tool allows for fast prototyping of virtual garments, achieving immediate feedback on their behaviour and visual quality on an animated character, in effect speeding up the content production pipeline for visual effects applications involving clothed characters.","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"22 1","pages":"73-76"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75074680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Giachetti, S. Biasotti, E. M. Thompson, L. Fraccarollo, Quang-Thuc Nguyen, Hai-Dang Nguyen, M. Tran, Gerasimos Arvanitis, Ioannis Romanelis, V. Fotis, K. Moustakas, Claudio Tortorici, N. Werghi, S. Berretti
{"title":"SHREC 2020 Track: River Gravel Characterization","authors":"Andrea Giachetti, S. Biasotti, E. M. Thompson, L. Fraccarollo, Quang-Thuc Nguyen, Hai-Dang Nguyen, M. Tran, Gerasimos Arvanitis, Ioannis Romanelis, V. Fotis, K. Moustakas, Claudio Tortorici, N. Werghi, S. Berretti","doi":"10.2312/3dor.20201162","DOIUrl":"https://doi.org/10.2312/3dor.20201162","url":null,"abstract":"","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"51 1","pages":"27-35"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76404284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
When matching non-rigid shapes, the regular or scale-invariant Laplace-Beltrami Operator (LBO) eigenfunctions could potentially serve as intrinsic descriptors which are invariant to isometric transformations. However, the computed eigenfunctions of two quasi-isometric surfaces could be substantially different. Such discrepancies include sign ambiguities and possible rotations and reflections within subspaces spanned by eigenfunctions that correspond to similar eigenvalues. Thus, without aligning the corresponding eigenspaces it is difficult to use the eigenfunctions as descriptors. Here, we propose to model the relative transformation between the eigenspaces of two quasi-isometric shapes using a band orthogonal matrix, as well as present a framework that aims to estimate this matrix. Estimating this transformation allows us to align the eigenfunctions of one shape with those of the other, that could then be used as intrinsic, consistent, and robust descriptors. To estimate the transformation we use an unsupervised spectral-net framework that uses descriptors given by the eigenfunctions of the scale-invariant version of the LBO. Then, using a spectral training mechanism, we find a band limited orthogonal matrix that aligns the two sets of eigenfunctions.
{"title":"Shape Correspondence by Aligning Scale-invariant LBO Eigenfunctions","authors":"Amit Bracha, Oshri Halimi, R. Kimmel","doi":"10.2312/3dor.20201159","DOIUrl":"https://doi.org/10.2312/3dor.20201159","url":null,"abstract":"When matching non-rigid shapes, the regular or scale-invariant Laplace-Beltrami Operator (LBO) eigenfunctions could potentially serve as intrinsic descriptors which are invariant to isometric transformations. However, the computed eigenfunctions of two quasi-isometric surfaces could be substantially different. Such discrepancies include sign ambiguities and possible rotations and reflections within subspaces spanned by eigenfunctions that correspond to similar eigenvalues. Thus, without aligning the corresponding eigenspaces it is difficult to use the eigenfunctions as descriptors. Here, we propose to model the relative transformation between the eigenspaces of two quasi-isometric shapes using a band orthogonal matrix, as well as present a framework that aims to estimate this matrix. Estimating this transformation allows us to align the eigenfunctions of one shape with those of the other, that could then be used as intrinsic, consistent, and robust descriptors. To estimate the transformation we use an unsupervised spectral-net framework that uses descriptors given by the eigenfunctions of the scale-invariant version of the LBO. Then, using a spectral training mechanism, we find a band limited orthogonal matrix that aligns the two sets of eigenfunctions.","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"27 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82125661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Vitsas, A. Gkaravelis, Andreas Vasilakis, K. Vardis, Georgios Papaioannou
In this paper, we present Rayground; an online, interactive education tool for richer in-class teaching and gradual self-study, which provides a convenient introduction into practical ray tracing through a standard shader-based programming interface. Setting up a basic ray tracing framework via modern graphics APIs, such as DirectX 12 and Vulkan, results in complex and verbose code that can be intimidating even for very competent students. On the other hand, Rayground aims to demystify ray tracing fundamentals, by providing a well-defined WebGL-based programmable graphics pipeline of configurable distinct ray tracing stages coupled with a simple scene description format. An extensive discussion is further offered describing how both undergraduate and postgraduate computer graphics theoretical lectures and laboratory sessions can be enhanced by our work, to achieve a broad understanding of the underlying concepts. Rayground is open, cross-platform, and available to everyone. CCS Concepts • Social and professional topics → Computer science education; • Computing methodologies → Ray tracing; • Software and its engineering → Software prototyping;
{"title":"Rayground: An Online Educational Tool for Ray Tracing","authors":"N. Vitsas, A. Gkaravelis, Andreas Vasilakis, K. Vardis, Georgios Papaioannou","doi":"10.2312/eged.20201027","DOIUrl":"https://doi.org/10.2312/eged.20201027","url":null,"abstract":"In this paper, we present Rayground; an online, interactive education tool for richer in-class teaching and gradual self-study, which provides a convenient introduction into practical ray tracing through a standard shader-based programming interface. Setting up a basic ray tracing framework via modern graphics APIs, such as DirectX 12 and Vulkan, results in complex and verbose code that can be intimidating even for very competent students. On the other hand, Rayground aims to demystify ray tracing fundamentals, by providing a well-defined WebGL-based programmable graphics pipeline of configurable distinct ray tracing stages coupled with a simple scene description format. An extensive discussion is further offered describing how both undergraduate and postgraduate computer graphics theoretical lectures and laboratory sessions can be enhanced by our work, to achieve a broad understanding of the underlying concepts. Rayground is open, cross-platform, and available to everyone. CCS Concepts • Social and professional topics → Computer science education; • Computing methodologies → Ray tracing; • Software and its engineering → Software prototyping;","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"4 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86271572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Scagnostics is a set of features that characterizes the data distribution in a scatterplot. These visual features have been used in various applications to detect unusual correlations of bivariate data. However, there is no formally published implementation for 3D or higher. This project aims to provide the Scagnostics implementation in JavaScript, called ScagnosticsJS, and also extend these measures for higher dimensional scattered points. We also present a Scagnostics exploration webpage, which makes the underlying algorithms transparent to users.
{"title":"ScagnosticsJS: Extended Scatterplot Visual Features for the Web","authors":"Vung V. Pham, Tommy Dang","doi":"10.2312/egs.20201022","DOIUrl":"https://doi.org/10.2312/egs.20201022","url":null,"abstract":"Scagnostics is a set of features that characterizes the data distribution in a scatterplot. These visual features have been used in various applications to detect unusual correlations of bivariate data. However, there is no formally published implementation for 3D or higher. This project aims to provide the Scagnostics implementation in JavaScript, called ScagnosticsJS, and also extend these measures for higher dimensional scattered points. We also present a Scagnostics exploration webpage, which makes the underlying algorithms transparent to users.","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"15 1","pages":"77-80"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87633743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In movie production, lighting is commonly used to redirect attention or to set the mood in a scene. The detailed editing of complex lighting phenomena, however, is as tedious as it is important, especially with dynamic lights or when light is a relevant story element. In this paper, we propose a new method to create caustic animations, which are controllable through constraints drawn by the user. Our method blends caustics into a specified target image by treating photons as particles that move in a divergence-free fluid, an irrotational vector field or a linear combination of the two. Once described as a flow, additional user constraints are easily added, e.g., to direct the flow, create boundaries or add synthetic turbulence, which offers new ways to redirect and control light. The corresponding vector field is computed by fitting a stream function and a scalar potential per time step, for which constraints are described in a quadratic energy that we minimize as a linear least squares problem. Finally, photons are placed at their new positions back into the scene and are rendered with progressive photon mapping. CCS Concepts • Computing methodologies → Animation; Ray tracing;
{"title":"Controllable Caustic Animation Using Vector Fields","authors":"Irene Baeza Rojo, M. Gross, Tobias Günther","doi":"10.2312/egs.20201005","DOIUrl":"https://doi.org/10.2312/egs.20201005","url":null,"abstract":"In movie production, lighting is commonly used to redirect attention or to set the mood in a scene. The detailed editing of complex lighting phenomena, however, is as tedious as it is important, especially with dynamic lights or when light is a relevant story element. In this paper, we propose a new method to create caustic animations, which are controllable through constraints drawn by the user. Our method blends caustics into a specified target image by treating photons as particles that move in a divergence-free fluid, an irrotational vector field or a linear combination of the two. Once described as a flow, additional user constraints are easily added, e.g., to direct the flow, create boundaries or add synthetic turbulence, which offers new ways to redirect and control light. The corresponding vector field is computed by fitting a stream function and a scalar potential per time step, for which constraints are described in a quadratic energy that we minimize as a linear least squares problem. Finally, photons are placed at their new positions back into the scene and are rendered with progressive photon mapping. CCS Concepts • Computing methodologies → Animation; Ray tracing;","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"48 1","pages":"9-12"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85452869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luiz José Schirmer Silva, Djalma Lúcio Soares da Silva, L. Velho, H. Lopes
We present a low cost and accessible end-to-end framework for 3D modeling and texture capture of Humans using deep neural networks and a single RGB camera. We generate a texture atlas considering a set of multi-view images. We also capture data to generate 3D shape models and finally combine it with the generated textures to obtain a full 3D reconstruction of the human body that can be used in a game engine.
{"title":"An End-to-end Framework for 3D Capture and Human Digitization with a Single RGB Camera","authors":"Luiz José Schirmer Silva, Djalma Lúcio Soares da Silva, L. Velho, H. Lopes","doi":"10.2312/egp.20201034","DOIUrl":"https://doi.org/10.2312/egp.20201034","url":null,"abstract":"We present a low cost and accessible end-to-end framework for 3D modeling and texture capture of Humans using deep neural networks and a single RGB camera. We generate a texture atlas considering a set of multi-view images. We also capture data to generate 3D shape models and finally combine it with the generated textures to obtain a full 3D reconstruction of the human body that can be used in a game engine.","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"25 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87283354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Critical Thinking Sheet (CTS) for Design Thinking in Programming Courses","authors":"Jonathan C. Roberts, Panagiotis D. Ritsos","doi":"10.2312/eged.20201029","DOIUrl":"https://doi.org/10.2312/eged.20201029","url":null,"abstract":"","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"43 1","pages":"17-23"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74165623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One type of light source that remains largely unexplored in the field of light transport rendering is the light generated by superluminal particles, a phenomenon more commonly known as Cherenkov radiation [Č37]. By re-purposing the Frank-Tamm equation [FT91] for rendering, the energy output of these particles can be estimated and consequently mapped to photons, making it possible to visualize the brilliant blue light characteristic of the effect. In this paper we extend a stochastic progressive photon mapper and simulate the emission of superluminal particles from a source object close to a medium with a high index of refraction. In practice, the source is treated as a new kind of light source, allowing us to efficiently reuse existing photon mapping methods. CCS Concepts • Computing methodologies → Ray tracing;
{"title":"Photon Mapping Superluminal Particles","authors":"Gustaf Waldemarson, M. Doggett","doi":"10.2312/egs.20201004","DOIUrl":"https://doi.org/10.2312/egs.20201004","url":null,"abstract":"One type of light source that remains largely unexplored in the field of light transport rendering is the light generated by superluminal particles, a phenomenon more commonly known as Cherenkov radiation [Č37]. By re-purposing the Frank-Tamm equation [FT91] for rendering, the energy output of these particles can be estimated and consequently mapped to photons, making it possible to visualize the brilliant blue light characteristic of the effect. In this paper we extend a stochastic progressive photon mapper and simulate the emission of superluminal particles from a source object close to a medium with a high index of refraction. In practice, the source is treated as a new kind of light source, allowing us to efficiently reuse existing photon mapping methods. CCS Concepts • Computing methodologies → Ray tracing;","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"27 1","pages":"5-8"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76460762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}