Pub Date : 2022-11-08eCollection Date: 2022-01-01DOI: 10.3389/ffunb.2022.978845
Mark Arentshorst, Jos Reijngoud, Daan J C van Tol, Ian D Reid, Yvonne Arendsen, Herman J Pel, Noël N M E van Peij, Jaap Visser, Peter J Punt, Adrian Tsang, Arthur F J Ram
The feruloyl esterase B gene (faeB) is specifically induced by hydroxycinnamic acids (e.g. ferulic acid, caffeic acid and coumaric acid) but the transcriptional regulation network involved in faeB induction and ferulic acid metabolism has only been partially addressed. To identify transcription factors involved in ferulic acid metabolism we constructed and screened a transcription factor knockout library of 239 Aspergillus niger strains for mutants unable to utilize ferulic acid as a carbon source. The ΔfarA transcription factor mutant, already known to be involved in fatty acid metabolism, could not utilize ferulic acid and other hydroxycinnamic acids. In addition to screening the transcription factor mutant collection, a forward genetic screen was performed to isolate mutants unable to express faeB. For this screen a PfaeB-amdS and PfaeB-lux613 dual reporter strain was engineered. The rationale of the screen is that in this reporter strain ferulic acid induces amdS (acetamidase) expression via the faeB promoter resulting in lethality on fluoro-acetamide. Conidia of this reporter strain were UV-mutagenized and plated on fluoro-acetamide medium in the presence of ferulic acid. Mutants unable to induce faeB are expected to be fluoro-acetamide resistant and can be positively selected for. Using this screen, six fluoro-acetamide resistant mutants were obtained and phenotypically characterized. Three mutants had a phenotype identical to the farA mutant and sequencing the farA gene in these mutants indeed showed mutations in FarA which resulted in inability to growth on ferulic acid as well as on short and long chain fatty acids. The growth phenotype of the other three mutants was similar to the farA mutants in terms of the inability to grow on ferulic acid, but these mutants grew normally on short and long chain fatty acids. The genomes of these three mutants were sequenced and allelic mutations in one particular gene (NRRL3_09145) were found. The protein encoded by NRRL3_09145 shows similarity to the FarA and FarB transcription factors. However, whereas FarA and FarB contain both the Zn(II)2Cys6 domain and a fungal-specific transcription factor domain, the protein encoded by NRRL3_09145 (FarD) lacks the canonical Zn(II)2Cys6 domain and possesses only the fungal specific transcription factor domain.
{"title":"Utilization of ferulic acid in <i>Aspergillus niger</i> requires the transcription factor FarA and a newly identified Far-like protein (FarD) that lacks the canonical Zn(II)<sub>2</sub>Cys<sub>6</sub> domain.","authors":"Mark Arentshorst, Jos Reijngoud, Daan J C van Tol, Ian D Reid, Yvonne Arendsen, Herman J Pel, Noël N M E van Peij, Jaap Visser, Peter J Punt, Adrian Tsang, Arthur F J Ram","doi":"10.3389/ffunb.2022.978845","DOIUrl":"10.3389/ffunb.2022.978845","url":null,"abstract":"<p><p>The feruloyl esterase B gene (<i>faeB</i>) is specifically induced by hydroxycinnamic acids (e.g. ferulic acid, caffeic acid and coumaric acid) but the transcriptional regulation network involved in <i>faeB</i> induction and ferulic acid metabolism has only been partially addressed. To identify transcription factors involved in ferulic acid metabolism we constructed and screened a transcription factor knockout library of 239 <i>Aspergillus niger</i> strains for mutants unable to utilize ferulic acid as a carbon source. The <i>ΔfarA</i> transcription factor mutant, already known to be involved in fatty acid metabolism, could not utilize ferulic acid and other hydroxycinnamic acids. In addition to screening the transcription factor mutant collection, a forward genetic screen was performed to isolate mutants unable to express <i>faeB.</i> For this screen a <i>PfaeB-amdS</i> and <i>PfaeB-lux<sub>613</sub></i> dual reporter strain was engineered. The rationale of the screen is that in this reporter strain ferulic acid induces <i>amdS</i> (acetamidase) expression <i>via</i> the <i>faeB</i> promoter resulting in lethality on fluoro-acetamide. Conidia of this reporter strain were UV-mutagenized and plated on fluoro-acetamide medium in the presence of ferulic acid. Mutants unable to induce <i>faeB</i> are expected to be fluoro-acetamide resistant and can be positively selected for. Using this screen, six fluoro-acetamide resistant mutants were obtained and phenotypically characterized. Three mutants had a phenotype identical to the <i>farA</i> mutant and sequencing the <i>farA</i> gene in these mutants indeed showed mutations in FarA which resulted in inability to growth on ferulic acid as well as on short and long chain fatty acids. The growth phenotype of the other three mutants was similar to the <i>farA</i> mutants in terms of the inability to grow on ferulic acid, but these mutants grew normally on short and long chain fatty acids. The genomes of these three mutants were sequenced and allelic mutations in one particular gene (NRRL3_09145) were found. The protein encoded by NRRL3_09145 shows similarity to the FarA and FarB transcription factors. However, whereas FarA and FarB contain both the Zn(II)<sub>2</sub>Cys<sub>6</sub> domain and a fungal-specific transcription factor domain, the protein encoded by NRRL3_09145 (FarD) lacks the canonical Zn(II)<sub>2</sub>Cys<sub>6</sub> domain and possesses only the fungal specific transcription factor domain.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"3 ","pages":"978845"},"PeriodicalIF":2.1,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512302/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41169025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-26eCollection Date: 2022-01-01DOI: 10.3389/ffunb.2022.1029195
Matthew D Lebar, Brian M Mack, Carol H Carter-Wientjes, Qijian Wei, Christopher P Mattison, Jeffrey W Cary
Aspergillus fungi produce mycotoxins that are detrimental to human and animal health. Two sections of aspergilli are of particular importance to cereal food crops such as corn and barley. Aspergillus section Flavi species like A. flavus and A. parasiticus produce aflatoxins, while section Circumdati species like A. ochraceus and A. sclerotiorum produce ochratoxin A. Mitigating these toxins in food and feed is a critical and ongoing worldwide effort. We have previously investigated biosynthetic gene clusters in Aspergillus flavus that are linked to fungal virulence in corn. We found that one such cluster, asa, is responsible for the production of aspergillic acid, an iron-binding, hydroxamic acid-containing pyrazinone metabolite. Furthermore, we found that the asa gene cluster is present in many other aflatoxin- and ochratoxin-producing aspergilli. The core gene in the asa cluster encodes the small nonribosomal peptide synthetase-like (NRPS-like) protein AsaC. We have swapped the asaC ortholog from A. sclerotiorum into A. flavus, replacing its native copy, and have also cloned both asaC orthologs into Saccharomyces cerevisiae. We show that AsaC orthologs in section Flavi and section Circumdati, while only containing adenylation-thiolation-reductase (ATR) domains, can selectively biosynthesize distinct pyrazinone natural products: deoxyaspergillic acid and flavacol, respectively. Because pyrazinone natural products and the gene clusters responsible for their production are implicated in a variety of important microbe-host interactions, uncovering the function and selectivity of the enzymes involved could lead to strategies that ultimately benefit human health.
{"title":"Small NRPS-like enzymes in <i>Aspergillus</i> sections <i>Flavi</i> and <i>Circumdati</i> selectively form substituted pyrazinone metabolites.","authors":"Matthew D Lebar, Brian M Mack, Carol H Carter-Wientjes, Qijian Wei, Christopher P Mattison, Jeffrey W Cary","doi":"10.3389/ffunb.2022.1029195","DOIUrl":"https://doi.org/10.3389/ffunb.2022.1029195","url":null,"abstract":"<p><p><i>Aspergillus</i> fungi produce mycotoxins that are detrimental to human and animal health. Two sections of aspergilli are of particular importance to cereal food crops such as corn and barley. <i>Aspergillus</i> section <i>Flavi</i> species like <i>A. flavus</i> and <i>A. parasiticus</i> produce aflatoxins, while section <i>Circumdati</i> species like <i>A. ochraceus</i> and <i>A. sclerotiorum</i> produce ochratoxin A. Mitigating these toxins in food and feed is a critical and ongoing worldwide effort. We have previously investigated biosynthetic gene clusters in <i>Aspergillus flavus</i> that are linked to fungal virulence in corn. We found that one such cluster, <i>asa</i>, is responsible for the production of aspergillic acid, an iron-binding, hydroxamic acid-containing pyrazinone metabolite. Furthermore, we found that the <i>asa</i> gene cluster is present in many other aflatoxin- and ochratoxin-producing aspergilli. The core gene in the <i>asa</i> cluster encodes the small nonribosomal peptide synthetase-like (NRPS-like) protein AsaC. We have swapped the <i>asaC</i> ortholog from <i>A. sclerotiorum</i> into <i>A. flavus</i>, replacing its native copy, and have also cloned both <i>asaC</i> orthologs into <i>Saccharomyces cerevisiae</i>. We show that AsaC orthologs in section <i>Flavi</i> and section <i>Circumdati</i>, while only containing adenylation-thiolation-reductase (ATR) domains, can selectively biosynthesize distinct pyrazinone natural products: deoxyaspergillic acid and flavacol, respectively. Because pyrazinone natural products and the gene clusters responsible for their production are implicated in a variety of important microbe-host interactions, uncovering the function and selectivity of the enzymes involved could lead to strategies that ultimately benefit human health.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"3 ","pages":"1029195"},"PeriodicalIF":0.0,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41159171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-26eCollection Date: 2022-01-01DOI: 10.3389/ffunb.2022.948477
Margarita Juárez-Montiel, Daniel Clark-Flores, Pedro Tesillo-Moreno, Esaú de la Vega-Camarillo, Dulce Andrade-Pavón, Juan Alfredo Hernández-García, César Hernández-Rodríguez, Lourdes Villa-Tanaca
Autophagy (macroautophagy) is a survival and virulence mechanism of different eukaryotic pathogens. Autophagosomes sequester cytosolic material and organelles, then fuse with or enter into the vacuole or lysosome (the lytic compartment of most fungal/plant cells and many animal cells, respectively). Subsequent degradation of cargoes delivered to the vacuole via autophagy and endocytosis maintains cellular homeostasis and survival in conditions of stress, cellular differentiation, and development. PrA and PrB are vacuolar aspartyl and serine endoproteases, respectively, that participate in the autophagy of fungi and contribute to the pathogenicity of phytopathogens. Whereas the levels of vacuolar proteases are regulated by the expression of the genes encoding them (e.g., PEP4 for PrA and PRB1 for PrB), their activity is governed by endogenous inhibitors. The aim of the current contribution is to review the main characteristics, regulation, and role of vacuolar soluble endoproteases and Atg proteins in the process of autophagy and the pathogenesis of three fungal phytopathogens: Ustilago maydis, Magnaporthe oryzae, and Alternaria alternata. Aspartyl and serine proteases are known to participate in autophagy in these fungi by degrading autophagic bodies. However, the gene responsible for encoding the vacuolar serine protease of U. maydis has yet to be identified. Based on in silico analysis, this U. maydis gene is proposed to be orthologous to the Saccharomyces cerevisiae genes PRB1 and PBI2, known to encode the principal protease involved in the degradation of autophagic bodies and its inhibitor, respectively. In fungi that interact with plants, whether phytopathogenic or mycorrhizal, autophagy is a conserved cellular degradation process regulated through the TOR, PKA, and SNF1 pathways by ATG proteins and vacuolar proteases. Autophagy plays a preponderant role in the recycling of cell components as well as in the fungus-plant interaction.
{"title":"Vacuolar proteases and autophagy in phytopathogenic fungi: A review.","authors":"Margarita Juárez-Montiel, Daniel Clark-Flores, Pedro Tesillo-Moreno, Esaú de la Vega-Camarillo, Dulce Andrade-Pavón, Juan Alfredo Hernández-García, César Hernández-Rodríguez, Lourdes Villa-Tanaca","doi":"10.3389/ffunb.2022.948477","DOIUrl":"https://doi.org/10.3389/ffunb.2022.948477","url":null,"abstract":"<p><p>Autophagy (macroautophagy) is a survival and virulence mechanism of different eukaryotic pathogens. Autophagosomes sequester cytosolic material and organelles, then fuse with or enter into the vacuole or lysosome (the lytic compartment of most fungal/plant cells and many animal cells, respectively). Subsequent degradation of cargoes delivered to the vacuole <i>via</i> autophagy and endocytosis maintains cellular homeostasis and survival in conditions of stress, cellular differentiation, and development. PrA and PrB are vacuolar aspartyl and serine endoproteases, respectively, that participate in the autophagy of fungi and contribute to the pathogenicity of phytopathogens. Whereas the levels of vacuolar proteases are regulated by the expression of the genes encoding them (e.g., <i>PEP4</i> for PrA and <i>PRB1</i> for PrB), their activity is governed by endogenous inhibitors. The aim of the current contribution is to review the main characteristics, regulation, and role of vacuolar soluble endoproteases and Atg proteins in the process of autophagy and the pathogenesis of three fungal phytopathogens: <i>Ustilago maydis</i>, <i>Magnaporthe oryzae</i>, and <i>Alternaria alternata</i>. Aspartyl and serine proteases are known to participate in autophagy in these fungi by degrading autophagic bodies. However, the gene responsible for encoding the vacuolar serine protease of <i>U. maydis</i> has yet to be identified. Based on <i>in silico</i> analysis, this <i>U. maydis</i> gene is proposed to be orthologous to the <i>Saccharomyces cerevisiae</i> genes <i>PRB1</i> and <i>PBI2</i>, known to encode the principal protease involved in the degradation of autophagic bodies and its inhibitor, respectively. In fungi that interact with plants, whether phytopathogenic or mycorrhizal, autophagy is a conserved cellular degradation process regulated through the TOR, PKA, and SNF1 pathways by ATG proteins and vacuolar proteases. Autophagy plays a preponderant role in the recycling of cell components as well as in the fungus-plant interaction.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"3 ","pages":"948477"},"PeriodicalIF":0.0,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512327/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41175947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-25eCollection Date: 2022-01-01DOI: 10.3389/ffunb.2022.1020623
Gabriel A Vignolle, Robert L Mach, Astrid R Mach-Aigner, Christian Zimmermann
Coevolution is an important biological process that shapes interacting proteins - may it be physically interacting proteins or consecutive enzymes in a metabolic pathway, such as the biosynthetic pathways for secondary metabolites. Previously, we developed FunOrder, a semi-automated method for the detection of co-evolved genes, and demonstrated that FunOrder can be used to identify essential genes in biosynthetic gene clusters from different ascomycetes. A major drawback of this original method was the need for a manual assessment, which may create a user bias and prevents a high-throughput application. Here we present a fully automated version of this method termed FunOrder 2.0. In the improved version, we use several mathematical indices to determine the optimal number of clusters in the FunOrder output, and a subsequent k-means clustering based on the first three principal components of a principal component analysis of the FunOrder output to automatically detect co-evolved genes. Further, we replaced the BLAST tool with the DIAMOND tool as a prerequisite for using larger proteome databases. Potentially, FunOrder 2.0 may be used for the assessment of complete genomes, which has not been attempted yet. However, the introduced changes slightly decreased the sensitivity of this method, which is outweighed by enhanced overall speed and specificity.
{"title":"FunOrder 2.0 - a method for the fully automated curation of co-evolved genes in fungal biosynthetic gene clusters.","authors":"Gabriel A Vignolle, Robert L Mach, Astrid R Mach-Aigner, Christian Zimmermann","doi":"10.3389/ffunb.2022.1020623","DOIUrl":"https://doi.org/10.3389/ffunb.2022.1020623","url":null,"abstract":"<p><p>Coevolution is an important biological process that shapes interacting proteins - may it be physically interacting proteins or consecutive enzymes in a metabolic pathway, such as the biosynthetic pathways for secondary metabolites. Previously, we developed FunOrder, a semi-automated method for the detection of co-evolved genes, and demonstrated that FunOrder can be used to identify essential genes in biosynthetic gene clusters from different ascomycetes. A major drawback of this original method was the need for a manual assessment, which may create a user bias and prevents a high-throughput application. Here we present a fully automated version of this method termed FunOrder 2.0. In the improved version, we use several mathematical indices to determine the optimal number of clusters in the FunOrder output, and a subsequent k-means clustering based on the first three principal components of a principal component analysis of the FunOrder output to automatically detect co-evolved genes. Further, we replaced the BLAST tool with the DIAMOND tool as a prerequisite for using larger proteome databases. Potentially, FunOrder 2.0 may be used for the assessment of complete genomes, which has not been attempted yet. However, the introduced changes slightly decreased the sensitivity of this method, which is outweighed by enhanced overall speed and specificity.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"3 ","pages":"1020623"},"PeriodicalIF":0.0,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512238/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41142037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-24eCollection Date: 2022-01-01DOI: 10.3389/ffunb.2022.1010782
Pilar Escribano, Jesús Guinea
Candida parapsilosis is a leading cause of invasive candidiasis in southern Europe, Latin America and Asia. C. parapsilosis has been mostly considered susceptible to triazoles, but fluconazole resistance is on the rise in some countries. The main mechanism related to fluconazole resistance is the presence of ERG11p substitutions, dominated by the Y132F amino acid substitution. Isolates harbouring this substitution mimic C. auris given that they may cause hospital outbreaks, become endemic, and emerge simultaneously in distant areas around the world. At the moment, Spain is experiencing a brusque emergence of fluconazole resistance in C. parapsilosis; isolates harbouring the Y132F substitution were detected for the first time in 2019. A recent study on Candida spp isolates from blood cultures collected in 16 hospitals located in the Madrid metropolitan area (2019 to 2021) reported that fluconazole resistance in C. parapsilosis reached as high as 13.6%. Resistance rates rose significantly during those three years: 3.8% in 2019, 5.7% in 2020, and 29.1% in 2021; resistant isolates harboured either the dominant Y132F substitution (a single clone found in four hospitals) or G458S (another clone found in a fifth hospital). The COVID-19 pandemic may have increased the number of candidaemia cases. The reason for such an increase might be a consequence of uncontrolled intra-hospital patient-to-patient transmission in some hospitals, as an increase not only in C. parapsilosis candidaemia episodes but also in the spread of clonal fluconazole-resistant isolates might have occurred in other hospitals during the pandemic period. Patients affected with fluconazole-resistant C. parapsilosis harbouring the Y132F substitution presented a mortality rate ranging from 9% to 78%, were mainly admitted to intensive care wards but did not have differential risk factors compared to those infected by susceptible isolates. With scarce exceptions, few patients (≤20%) infected with fluconazole-resistant isolates had previously received fluconazole, thus supporting the fact that, although fluconazole might have been a key factor to promote resistance, the main driver promoting the spread of fluconazole-resistant isolates was patient-to-patient transmission.
{"title":"Fluconazole-resistant <i>Candida parapsilosis</i>: A new emerging threat in the fungi arena.","authors":"Pilar Escribano, Jesús Guinea","doi":"10.3389/ffunb.2022.1010782","DOIUrl":"10.3389/ffunb.2022.1010782","url":null,"abstract":"<p><p><i>Candida parapsilosis</i> is a leading cause of invasive candidiasis in southern Europe, Latin America and Asia. <i>C. parapsilosis</i> has been mostly considered susceptible to triazoles, but fluconazole resistance is on the rise in some countries. The main mechanism related to fluconazole resistance is the presence of ERG11p substitutions, dominated by the Y132F amino acid substitution. Isolates harbouring this substitution mimic <i>C. auris</i> given that they may cause hospital outbreaks, become endemic, and emerge simultaneously in distant areas around the world. At the moment, Spain is experiencing a brusque emergence of fluconazole resistance in <i>C. parapsilosis</i>; isolates harbouring the Y132F substitution were detected for the first time in 2019. A recent study on <i>Candida</i> spp isolates from blood cultures collected in 16 hospitals located in the Madrid metropolitan area (2019 to 2021) reported that fluconazole resistance in <i>C. parapsilosis</i> reached as high as 13.6%. Resistance rates rose significantly during those three years: 3.8% in 2019, 5.7% in 2020, and 29.1% in 2021; resistant isolates harboured either the dominant Y132F substitution (a single clone found in four hospitals) or G458S (another clone found in a fifth hospital). The COVID-19 pandemic may have increased the number of candidaemia cases. The reason for such an increase might be a consequence of uncontrolled intra-hospital patient-to-patient transmission in some hospitals, as an increase not only in <i>C. parapsilosis</i> candidaemia episodes but also in the spread of clonal fluconazole-resistant isolates might have occurred in other hospitals during the pandemic period. Patients affected with fluconazole-resistant <i>C. parapsilosis</i> harbouring the Y132F substitution presented a mortality rate ranging from 9% to 78%, were mainly admitted to intensive care wards but did not have differential risk factors compared to those infected by susceptible isolates. With scarce exceptions, few patients (≤20%) infected with fluconazole-resistant isolates had previously received fluconazole, thus supporting the fact that, although fluconazole might have been a key factor to promote resistance, the main driver promoting the spread of fluconazole-resistant isolates was patient-to-patient transmission.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"3 ","pages":"1010782"},"PeriodicalIF":0.0,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512360/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41166982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-24eCollection Date: 2022-01-01DOI: 10.3389/ffunb.2022.980341
Raquel Lopez-Nuñez, Marta Suarez-Fernandez, Federico Lopez-Moya, Luis Vicente Lopez-Llorca
Plants are exposed to large number of threats caused by herbivores and pathogens which cause important losses on crops. Plant pathogens such as nematodes can cause severe damage and losses in food security crops worldwide. Chemical pesticides were extendedly used for nematode management. However, due to their adverse effects on human health and the environment, they are now facing strong limitations by regulatory organisations such as EFSA (European Food Safety Authority). Therefore, there is an urgent need for alternative and efficient control measures, such as biological control agents or bio-based plant protection compounds. In this scenario, chitosan, a non-toxic polymer obtained from seafood waste mainly, is becoming increasingly important. Chitosan is the N-deacetylated form of chitin. Chitosan is effective in the control of plant pests and diseases. It also induces plants defence mechanisms. Chitosan is also compatible with some biocontrol microorganisms mainly entomopathogenic and nematophagous fungi. Some of them are antagonists of nematode pests of plants and animals. The nematophagous biocontrol fungus Pochonia chlamydosporia has been widely studied for sustainable management of nematodes affecting economically important crops and for its capability to grow with chitosan as only nutrient source. This fungus infects nematode eggs using hyphal tips and appressoria. Pochonia chlamydosporia also colonizes plant roots endophytically, stimulating plant defences by induction of salicylic and jasmonic acid biosynthesis and favours plant growth and development. Therefore, the combined use of chitosan and nematophagous fungi could be a novel strategy for the biological control of nematodes and other root pathogens of food security crops.
{"title":"Chitosan and nematophagous fungi for sustainable management of nematode pests.","authors":"Raquel Lopez-Nuñez, Marta Suarez-Fernandez, Federico Lopez-Moya, Luis Vicente Lopez-Llorca","doi":"10.3389/ffunb.2022.980341","DOIUrl":"https://doi.org/10.3389/ffunb.2022.980341","url":null,"abstract":"Plants are exposed to large number of threats caused by herbivores and pathogens which cause important losses on crops. Plant pathogens such as nematodes can cause severe damage and losses in food security crops worldwide. Chemical pesticides were extendedly used for nematode management. However, due to their adverse effects on human health and the environment, they are now facing strong limitations by regulatory organisations such as EFSA (European Food Safety Authority). Therefore, there is an urgent need for alternative and efficient control measures, such as biological control agents or bio-based plant protection compounds. In this scenario, chitosan, a non-toxic polymer obtained from seafood waste mainly, is becoming increasingly important. Chitosan is the N-deacetylated form of chitin. Chitosan is effective in the control of plant pests and diseases. It also induces plants defence mechanisms. Chitosan is also compatible with some biocontrol microorganisms mainly entomopathogenic and nematophagous fungi. Some of them are antagonists of nematode pests of plants and animals. The nematophagous biocontrol fungus Pochonia chlamydosporia has been widely studied for sustainable management of nematodes affecting economically important crops and for its capability to grow with chitosan as only nutrient source. This fungus infects nematode eggs using hyphal tips and appressoria. Pochonia chlamydosporia also colonizes plant roots endophytically, stimulating plant defences by induction of salicylic and jasmonic acid biosynthesis and favours plant growth and development. Therefore, the combined use of chitosan and nematophagous fungi could be a novel strategy for the biological control of nematodes and other root pathogens of food security crops.","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"3 ","pages":"980341"},"PeriodicalIF":0.0,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512356/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41164598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-24eCollection Date: 2022-01-01DOI: 10.3389/ffunb.2022.893700
José Francisco Cabrera-Rangel, Judit Valeria Mendoza-Servín, Gonzalo Córdova-López, Raúl Alcalde-Vázquez, Raymundo Saúl García-Estrada, Robert Winkler, Laila P Partida-Martínez
Mucoralean fungi from the genus Rhizopus are common inhabitants of terrestrial ecosystems, being some pathogens of animals and plants. In this study, we analyzed the symbiotic and toxinogenic potential of Rhizopus species derived from agricultural soils dedicated to the production of papaya (Carica papaya L.) in Mexico. Four representative strains of soil-derived Rhizopus spp. were analyzed employing molecular, microscopic, and metabolic methods. The ITS phylogenies identified the fungi as Rhizopus microsporus HP499, Rhizopus delemar HP475 and HP479, and Rhizopus homothallicus HP487. We discovered that R. microsporus HP499 and R. delemar HP475 harbor similar endofungal bacterial symbionts that belong to the genus Mycetohabitans (Burkholderia sensu lato) and that none of the four fungi were associated with Narnavirus RmNV-20S and RmNV-23S. Intriguingly, the interaction between R. delemar - Mycetohabitans showed different phenotypes from known R. microsporus - Mycetohabitans symbioses. Elimination of bacteria in R. delemar HP475 did not cause a detrimental effect on fungal growth or asexual reproduction. Moreover, metabolic and molecular analyses confirmed that, unlike symbiotic R. microsporus HP499, R. delemar HP475 does not produce rhizoxin, one of the best-characterized toxins produced by Mycetohabitans spp. The rhizoxin (rhi) biosynthetic gene cluster seems absent in this symbiotic bacterium. Our study highlights that the symbioses between Rhizopus and Mycetohabitans are more diverse than anticipated. Our findings contribute to expanding our understanding of the role bacterial symbionts have in the pathogenicity, biology and evolution of Mucorales.
根霉属的毛霉属真菌是陆地生态系统中常见的居民,也是动植物的一些病原体。在这项研究中,我们分析了来自墨西哥木瓜生产用农业土壤的根霉物种的共生和产毒潜力。采用分子、显微镜和代谢方法对4株具有代表性的土壤根霉菌株进行了分析。ITS系统发育鉴定真菌为微孢子根霉HP499、delemar根霉HP475和HP479以及同源根霉HP487。我们发现微孢子R.microporus HP499和R.delemar HP475含有类似的属于Mycetohabitans属(Burkholderia sensu lato)的内真菌细菌共生体,并且这四种真菌都与Narnavirus RmNV-20S和RmNV-23S无关。有趣的是,R.delemar和Mycetohabitans之间的相互作用显示出与已知的R.microporus-Mycetohabitans共生体不同的表型。在R.delemar HP475中消除细菌不会对真菌生长或无性繁殖造成有害影响。此外,代谢和分子分析证实,与共生微孢子虫HP499不同,R.delemar HP475不产生根际毒素,这是Mycetohabitans spp.产生的最具特征的毒素之一。根际毒素(rhi)生物合成基因簇似乎在这种共生细菌中不存在。我们的研究强调,根霉和Mycetohabitans之间的共生体比预期的更加多样。我们的发现有助于扩大我们对细菌共生体在毛霉属致病性、生物学和进化中的作用的理解。
{"title":"Symbiotic and toxinogenic <i>Rhizopus</i> spp. isolated from soils of different papaya producing regions in Mexico.","authors":"José Francisco Cabrera-Rangel, Judit Valeria Mendoza-Servín, Gonzalo Córdova-López, Raúl Alcalde-Vázquez, Raymundo Saúl García-Estrada, Robert Winkler, Laila P Partida-Martínez","doi":"10.3389/ffunb.2022.893700","DOIUrl":"10.3389/ffunb.2022.893700","url":null,"abstract":"<p><p>Mucoralean fungi from the genus <i>Rhizopus</i> are common inhabitants of terrestrial ecosystems, being some pathogens of animals and plants. In this study, we analyzed the symbiotic and toxinogenic potential of <i>Rhizopus</i> species derived from agricultural soils dedicated to the production of papaya (<i>Carica papaya</i> L.) in Mexico. Four representative strains of soil-derived <i>Rhizopus</i> spp. were analyzed employing molecular, microscopic, and metabolic methods. The ITS phylogenies identified the fungi as <i>Rhizopus microsporus</i> HP499, <i>Rhizopus delemar</i> HP475 and HP479, and <i>Rhizopus homothallicus</i> HP487. We discovered that <i>R. microsporus</i> HP499 and <i>R. delemar</i> HP475 harbor similar endofungal bacterial symbionts that belong to the genus <i>Mycetohabitans</i> (<i>Burkholderia</i> sensu lato) and that none of the four fungi were associated with <i>Narnavirus</i> RmNV-20S and RmNV-23S. Intriguingly, the interaction between <i>R. delemar</i> - <i>Mycetohabitans</i> showed different phenotypes from known <i>R. microsporus</i> - <i>Mycetohabitans</i> symbioses. Elimination of bacteria in <i>R. delemar</i> HP475 did not cause a detrimental effect on fungal growth or asexual reproduction. Moreover, metabolic and molecular analyses confirmed that, unlike symbiotic <i>R. microsporus</i> HP499, <i>R. delemar</i> HP475 does not produce rhizoxin, one of the best-characterized toxins produced by <i>Mycetohabitans</i> spp. The rhizoxin (<i>rhi</i>) biosynthetic gene cluster seems absent in this symbiotic bacterium. Our study highlights that the symbioses between <i>Rhizopus</i> and <i>Mycetohabitans</i> are more diverse than anticipated. Our findings contribute to expanding our understanding of the role bacterial symbionts have in the pathogenicity, biology and evolution of Mucorales.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"3 ","pages":"893700"},"PeriodicalIF":0.0,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41172140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-20eCollection Date: 2022-01-01DOI: 10.3389/ffunb.2022.1022761
David R Dyer, Molli Newman, Kathy S Lawrence
This study assess the population diversity and temporal variability of caused by Fusarium oxysporum f. sp. vasinfectum (FOV) races/genotypes infecting cotton cultivars with either FOV or Meloidogyne incognita resistance. All plants sampled demonstrated typical symptoms of FOV including wilting, chlorosis and necrosis of the leaves, and discoloration of the vascular tissue in the stem. A diverse population of FOV was characterized. Eight races/genotypes of FOV were collected throughout the three site years. FOV race 1 was the most predominant in all tests (AUDPC=101.1); statistically higher numbers of isolates from LA-108 (AUDPC=59.9), race 8 (AUDPC=47.5), and race 2 (AUDPC=38.6) were also found compared to other races and genotypes collected. FOV race 1, race 2, race 8, and 108 were the most virulent races identified. The genotypes MDS-12, LA-110, and LA-127/140 were found in all tests but at a low incidence, and LA-112 was only found in trace amounts. MDS-12, LA-110, LA-112, and LA-127/140 produced less disease pressure. FOV race 4 which is highly virulent and present in California and Texas was not found in Alabama. A positive correlation was observed between the accumulation of growing degree days and FOV race 1, race 2, race 8, LA-108, and LA-110. Later symptom expression influenced by seasonal heat partially mitigates damage allowing cotton to produce bolls though they may be reduced in number and lint quality. Plant resistance to the FOV as expressed in these cultivars appears to provide better protection than M. incognita resistance. PhytoGen 72, which is resistant to FOV races/genotypes had low levels of FOV infection even though it sustained a high level of M. incognita root population density. The M. incognita resistant cultivars Deltapine 1558NR B2RF and PhytoGen 480 W3FE supported a lower nematode population density, however, FOV disease incidence was not reduced. FOV races/genotypes did not vary significantly between the nematode resistant and nematode susceptible cultivars.
{"title":"Diversity and temporal distribution of <i>Fusarium oxysporum</i> f. sp. <i>vasinfectum</i> races and genotypes as influenced by <i>Gossypium</i> cultivar.","authors":"David R Dyer, Molli Newman, Kathy S Lawrence","doi":"10.3389/ffunb.2022.1022761","DOIUrl":"https://doi.org/10.3389/ffunb.2022.1022761","url":null,"abstract":"<p><p>This study assess the population diversity and temporal variability of caused by <i>Fusarium oxysporum</i> f. sp. <i>vasinfectum</i> (FOV) races/genotypes infecting cotton cultivars with either FOV or <i>Meloidogyne incognita</i> resistance. All plants sampled demonstrated typical symptoms of FOV including wilting, chlorosis and necrosis of the leaves, and discoloration of the vascular tissue in the stem. A diverse population of FOV was characterized. Eight races/genotypes of FOV were collected throughout the three site years. FOV race 1 was the most predominant in all tests (AUDPC=101.1); statistically higher numbers of isolates from LA-108 (AUDPC=59.9), race 8 (AUDPC=47.5), and race 2 (AUDPC=38.6) were also found compared to other races and genotypes collected. FOV race 1, race 2, race 8, and 108 were the most virulent races identified. The genotypes MDS-12, LA-110, and LA-127/140 were found in all tests but at a low incidence, and LA-112 was only found in trace amounts. MDS-12, LA-110, LA-112, and LA-127/140 produced less disease pressure. FOV race 4 which is highly virulent and present in California and Texas was not found in Alabama. A positive correlation was observed between the accumulation of growing degree days and FOV race 1, race 2, race 8, LA-108, and LA-110. Later symptom expression influenced by seasonal heat partially mitigates damage allowing cotton to produce bolls though they may be reduced in number and lint quality. Plant resistance to the FOV as expressed in these cultivars appears to provide better protection than <i>M. incognita</i> resistance. PhytoGen 72, which is resistant to FOV races/genotypes had low levels of FOV infection even though it sustained a high level of <i>M. incognita</i> root population density. The <i>M. incognita</i> resistant cultivars Deltapine 1558NR B2RF and PhytoGen 480 W3FE supported a lower nematode population density, however, FOV disease incidence was not reduced. FOV races/genotypes did not vary significantly between the nematode resistant and nematode susceptible cultivars.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"3 ","pages":"1022761"},"PeriodicalIF":0.0,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512365/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41174179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-19eCollection Date: 2022-01-01DOI: 10.3389/ffunb.2022.1029114
Kishor D Ingole, Nithya Nagarajan, Simon Uhse, Caterina Giannini, Armin Djamei
Ustilago maydis is a biotrophic phytopathogenic fungus that causes corn smut disease. As a well-established model system, U. maydis is genetically fully accessible with large omics datasets available and subject to various biological questions ranging from DNA-repair, RNA-transport, and protein secretion to disease biology. For many genetic approaches, tight control of transgene regulation is important. Here we established an optimised version of the Tetracycline-ON (TetON) system for U. maydis. We demonstrate the Tetracycline concentration-dependent expression of fluorescent protein transgenes and the system's suitability for the induced expression of the toxic protein BCL2 Associated X-1 (Bax1). The Golden Gate compatible vector system contains a native minimal promoter from the mating factor a-1 encoding gene, mfa with ten copies of the tet-regulated operator (tetO) and a codon optimised Tet-repressor (tetR*) which is translationally fused to the native transcriptional corepressor Mql1 (UMAG_05501). The metabolism-independent transcriptional regulator system is functional both, in liquid culture as well as on solid media in the presence of the inducer and can become a useful tool for toxin-antitoxin studies, identification of antifungal proteins, and to study functions of toxic gene products in Ustilago maydis.
{"title":"Tetracycline-controlled (TetON) gene expression system for the smut fungus <i>Ustilago maydis</i>.","authors":"Kishor D Ingole, Nithya Nagarajan, Simon Uhse, Caterina Giannini, Armin Djamei","doi":"10.3389/ffunb.2022.1029114","DOIUrl":"https://doi.org/10.3389/ffunb.2022.1029114","url":null,"abstract":"<p><p><i>Ustilago maydis</i> is a biotrophic phytopathogenic fungus that causes corn smut disease. As a well-established model system, <i>U. maydis</i> is genetically fully accessible with large omics datasets available and subject to various biological questions ranging from DNA-repair, RNA-transport, and protein secretion to disease biology. For many genetic approaches, tight control of transgene regulation is important. Here we established an optimised version of the Tetracycline-ON (TetON) system for <i>U. maydis</i>. We demonstrate the Tetracycline concentration-dependent expression of fluorescent protein transgenes and the system's suitability for the induced expression of the toxic protein <i>BCL2 Associated X-1 (Bax1)</i>. The Golden Gate compatible vector system contains a native minimal promoter from the <i>mating factor a-1</i> encoding gene, <i>mfa</i> with ten copies of the tet-regulated operator (tetO) and a codon optimised Tet-repressor (tetR*) which is translationally fused to the native transcriptional corepressor Mql1 (UMAG_05501). The metabolism-independent transcriptional regulator system is functional both, in liquid culture as well as on solid media in the presence of the inducer and can become a useful tool for toxin-antitoxin studies, identification of antifungal proteins, and to study functions of toxic gene products in <i>Ustilago maydis</i>.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"3 ","pages":"1029114"},"PeriodicalIF":0.0,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512375/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41167318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}