Magnaporthiopsis maydis is a maize pathogen that causes severe damage to commercial corn fields in the late growth stages. Late wilt disease (LWD) has spread since its discovery in the 1960s in Egypt and is now reported in about 10 countries. The pathogen has a hidden endophytic lifecycle in resistant corn plants and secondary hosts such as green foxtail, watermelon lupin and cotton. At the same time, it could be an opportunist and hinder the host development under the right conditions. This study uncovered M. maydis interactions with newly identified maize endophytes. To this end, six fungi were isolated from the seeds of three sweet corn cultivars having varying susceptibility to LWD. These isolates were identified using colony morphology and microscopic characterization, universal internal transcribed spacer (ITS) molecular targeting and phylogenetic analysis. Most of them belonged to pathogenic species. Compared to three previously identified bioprotective microorganisms, the new species were tested for their ability to secrete metabolites that repress M. maydis in vitro and to antagonize it in a solid media confront test and a seedlings pathogenicity assay. The opportunistic fungal species Aspergillus flavus (ME1), Aspergillus terreus (PE3) and the reference biocontrol bacteria Bacillus subtilis (R2) achieved the highest M. maydis inhibition degree in the plates tests (74-100% inhibition). The seedlings' pathogenicity assay that predicts the seeds' microflora resistance to M. maydis highlighted the bio-shielding potential of most species (23% or more epicotyl elongation over the infected control). Fusarium sp. (ME2) was the leading species in this measure (43% enhancement), and B. subtilis gave the best protection in terms of seeds' germination (50%) and sprouts' biomass (34%). The results of this study could enhance our understanding of the pathobiome's role in the context of LWD and represent a first step in using the seeds' natural protective microflora to develop novel management strategies.
Magnaporthiopsis maydis 是一种玉米病原体,会在玉米生长后期对商品玉米田造成严重破坏。自 20 世纪 60 年代在埃及发现以来,晚疫病(LWD)已经蔓延开来,现在大约有 10 个国家都有报道。病原体在抗性玉米植株和次要寄主(如绿狐尾、西瓜羽扇豆和棉花)中具有隐蔽的内生生命周期。同时,它也可能是机会主义者,在适当的条件下阻碍寄主的发展。本研究揭示了 M. maydis 与新发现的玉米内生菌之间的相互作用。为此,我们从对 LWD 敏感性不同的三个甜玉米栽培品种的种子中分离出了六种真菌。利用菌落形态和显微特征、通用内部转录间隔(ITS)分子定位和系统发育分析对这些分离物进行了鉴定。其中大部分属于致病物种。与之前发现的三种生物保护性微生物相比,新菌种在体外分泌代谢物抑制 M. maydis 的能力以及在固体培养基对抗试验和幼苗致病性试验中拮抗 M. maydis 的能力得到了检验。在平板试验中,机会真菌黄曲霉(ME1)、赤曲霉(PE3)和参考生防菌枯草芽孢杆菌(R2)对麦地那龙线虫的抑制率最高(74%-100%)。秧苗致病性检测可预测种子微生物菌群对麦地那龙线虫的抗性,该检测强调了大多数物种的生物屏蔽潜力(外胚轴伸长率比受感染的对照高 23% 或更多)。镰刀菌(ME2)在这一指标中居首位(提高 43%),而枯草芽孢杆菌则在种子发芽率(50%)和萌芽生物量(34%)方面提供了最佳保护。这项研究的结果可以加深我们对病原生物群在LWD中的作用的理解,并为利用种子的天然保护性微生物群来制定新型管理策略迈出了第一步。
{"title":"Antagonistic interactions between maize seeds microbiome species and the late wilt disease agent, <i>Magnaporthiopsis maydis</i>.","authors":"Ofir Degani, Aseel Ayoub, Elhanan Dimant, Asaf Gordani","doi":"10.3389/ffunb.2024.1436759","DOIUrl":"10.3389/ffunb.2024.1436759","url":null,"abstract":"<p><p><i>Magnaporthiopsis maydis</i> is a maize pathogen that causes severe damage to commercial corn fields in the late growth stages. Late wilt disease (LWD) has spread since its discovery in the 1960s in Egypt and is now reported in about 10 countries. The pathogen has a hidden endophytic lifecycle in resistant corn plants and secondary hosts such as green foxtail, watermelon lupin and cotton. At the same time, it could be an opportunist and hinder the host development under the right conditions. This study uncovered <i>M. maydis</i> interactions with newly identified maize endophytes. To this end, six fungi were isolated from the seeds of three sweet corn cultivars having varying susceptibility to LWD. These isolates were identified using colony morphology and microscopic characterization, universal internal transcribed spacer (ITS) molecular targeting and phylogenetic analysis. Most of them belonged to pathogenic species. Compared to three previously identified bioprotective microorganisms, the new species were tested for their ability to secrete metabolites that repress <i>M. maydis in vitro</i> and to antagonize it in a solid media confront test and a seedlings pathogenicity assay. The opportunistic fungal species <i>Aspergillus flavus</i> (ME1), <i>Aspergillus terreus</i> (PE3) and the reference biocontrol bacteria <i>Bacillus subtilis</i> (R2) achieved the highest <i>M. maydis</i> inhibition degree in the plates tests (74-100% inhibition). The seedlings' pathogenicity assay that predicts the seeds' microflora resistance to <i>M. maydis</i> highlighted the bio-shielding potential of most species (23% or more epicotyl elongation over the infected control)<i>. Fusarium</i> sp. (ME2) was the leading species in this measure (43% enhancement), and <i>B. subtilis</i> gave the best protection in terms of seeds' germination (50%) and sprouts' biomass (34%). The results of this study could enhance our understanding of the pathobiome's role in the context of LWD and represent a first step in using the seeds' natural protective microflora to develop novel management strategies.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"5 ","pages":"1436759"},"PeriodicalIF":2.1,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337106/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01eCollection Date: 2024-01-01DOI: 10.3389/ffunb.2024.1443343
Christopher M Wallis, Mark S Sisterson
Novel tactics for controlling insect pests in perennial fruit and nut crops are needed because target pests often display decreased susceptibility to chemical controls due to overreliance on a handful of active ingredients and regulatory issues. As an alternative to chemical controls, entomopathogenic fungi could be utilized as biological control agents to manage insect pest populations. However, development of field ready products is hampered by a lack of basic knowledge. Development of field ready products requires collecting, screening, and characterizing a greater variety of potential entomopathogenic fungal species and strains. Creation of a standardized research framework to study entomopathogenic fungi will aid in identifying the potential mechanisms of biological control activity that fungi could possess, including antibiotic metabolite production; strains and species best suited to survive in different climates and agroecosystems; and optimized combinations of entomopathogenic fungi and novel formulations. This mini review therefore discusses strategies to collect and characterize new entomopathogenic strains, test different potential mechanisms of biocontrol activity, examine ability of different species and strains to tolerate different climates, and lastly how to utilize this information to develop strains into products for growers.
{"title":"Opportunities for optimizing fungal biological control agents for long-term and effective management of insect pests of orchards and vineyards: a review.","authors":"Christopher M Wallis, Mark S Sisterson","doi":"10.3389/ffunb.2024.1443343","DOIUrl":"10.3389/ffunb.2024.1443343","url":null,"abstract":"<p><p>Novel tactics for controlling insect pests in perennial fruit and nut crops are needed because target pests often display decreased susceptibility to chemical controls due to overreliance on a handful of active ingredients and regulatory issues. As an alternative to chemical controls, entomopathogenic fungi could be utilized as biological control agents to manage insect pest populations. However, development of field ready products is hampered by a lack of basic knowledge. Development of field ready products requires collecting, screening, and characterizing a greater variety of potential entomopathogenic fungal species and strains. Creation of a standardized research framework to study entomopathogenic fungi will aid in identifying the potential mechanisms of biological control activity that fungi could possess, including antibiotic metabolite production; strains and species best suited to survive in different climates and agroecosystems; and optimized combinations of entomopathogenic fungi and novel formulations. This mini review therefore discusses strategies to collect and characterize new entomopathogenic strains, test different potential mechanisms of biocontrol activity, examine ability of different species and strains to tolerate different climates, and lastly how to utilize this information to develop strains into products for growers.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"5 ","pages":"1443343"},"PeriodicalIF":2.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324555/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial: Insights into fungal biology with emphasis on pathogenesis in humans.","authors":"Angel Gonzalez, Marilene Henning Vainstein, Patrícia Albuquerque, Ildinete Silva-Pereira","doi":"10.3389/ffunb.2024.1438060","DOIUrl":"10.3389/ffunb.2024.1438060","url":null,"abstract":"","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"5 ","pages":"1438060"},"PeriodicalIF":2.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Candida albicans is the predominant cause of systemic candidiasis, although other non albicans Candida species are progressively becoming more widespread nowadays. Candida auris has emerged as a deadly multidrug-resistant fungal pathogen, posing a significant threat to global public health. In the absence of effective antifungal therapies, the development of a vaccine against C. auris infections is imperative. Enolase, a key glycolytic enzyme, has emerged as a promising vaccine candidate due to its immunogenic properties and essential role in fungal virulence. Herein, full-length Enolase gene sequences from C. albicans and C. auris were cloned into suitable expression vector and transformed into Escherichia coli expression hosts. Recombinant Enolase proteins were successfully expressed and purified using affinity chromatography under native conditions, followed by SDS-PAGE characterization and Western blot analysis. CD spectroscopy verified the existence of expressed proteins in soluble native conformation. Preliminary in silico studies verified the immunogenicity of recombinant Enolase proteins isolated from both C. albicans and C. auris. Furthermore, bioinformatics analysis revealed conserved B-cell and T-cell epitopes across C. albicans and C. auris Enolase proteins, suggesting potential cross-reactivity and broad-spectrum vaccine efficacy. Our findings are anticipated to play a role in advancing therapeutic as well as diagnostic strategies against systemic candidiasis.
{"title":"Molecular cloning, expression, and purification, along with <i>in silico</i> epitope analysis of recombinant enolase proteins (a potential vaccine candidate) from <i>Candida albicans</i> and <i>Candida auris</i>.","authors":"Manisha Shukla, Rohit Singh, Pankaj Chandley, Soma Rohatgi","doi":"10.3389/ffunb.2024.1399546","DOIUrl":"10.3389/ffunb.2024.1399546","url":null,"abstract":"<p><p><i>Candida albicans</i> is the predominant cause of systemic candidiasis, although other non albicans Candida species are progressively becoming more widespread nowadays. <i>Candida auris</i> has emerged as a deadly multidrug-resistant fungal pathogen, posing a significant threat to global public health. In the absence of effective antifungal therapies, the development of a vaccine against <i>C. auris</i> infections is imperative. Enolase, a key glycolytic enzyme, has emerged as a promising vaccine candidate due to its immunogenic properties and essential role in fungal virulence. Herein, full-length Enolase gene sequences from <i>C. albicans</i> and <i>C. auris</i> were cloned into suitable expression vector and transformed into <i>Escherichia coli</i> expression hosts. Recombinant Enolase proteins were successfully expressed and purified using affinity chromatography under native conditions, followed by SDS-PAGE characterization and Western blot analysis. CD spectroscopy verified the existence of expressed proteins in soluble native conformation. Preliminary in silico studies verified the immunogenicity of recombinant Enolase proteins isolated from both <i>C. albicans</i> and <i>C. auris</i>. Furthermore, bioinformatics analysis revealed conserved B-cell and T-cell epitopes across <i>C. albicans</i> and <i>C. auris</i> Enolase proteins, suggesting potential cross-reactivity and broad-spectrum vaccine efficacy. Our findings are anticipated to play a role in advancing therapeutic as well as diagnostic strategies against systemic candidiasis.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"5 ","pages":"1399546"},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176544/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141332584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-28eCollection Date: 2024-01-01DOI: 10.3389/ffunb.2024.1401427
Jacob Hackman, Alex Woodley, David Carter, Brian Strahm, Collin Averill, Rytas Vilgalys, Kevin Garcia, Rachel Cook
Ectomycorrhizal fungi and non-ectomycorrhizal fungi are responsive to changes in environmental and nutrient availabilities. Although many species of ectomycorrhizas are known to enhance the uptake of phosphorus and other nutrients for Pinus taeda, it is not understood how to optimize these communities to have tangible effects on plantation silviculture and P use efficiency. The first step of this process is the identification of native fungi present in the system that are associated with P. taeda and influence P uptake efficiency. We used sand-filled mesh bags baited with finely ground apatite to sample ectomycorrhizal and non-ectomycorrhizal fungi associated with the rhizosphere of P-responsive P. taeda under several field conditions. Mesh bags were assessed for biomass accumulation over three years using a single three-month burial period pre-harvest and three six-month burial periods post-planting. Amplicon sequencing assessed ectomycorrhizal and non-ectomycorrhizal communities between phosphorus treatments, sites, mesh bags, and the rhizosphere of actively growing P. taeda in the field. We found biomass accumulation within the mesh bags was inversely related to increasing phosphorus fertilization (carryover) rates from pre-harvest to post-planting. Up to 25% increases in total biomass within the bags were observed for bags baited with P. Taxonomic richness was highest in Alfisol soils treated with phosphorus from the previous rotation and lowest in the Spodosol regardless of phosphorus treatment.
{"title":"Fungal biomass and ectomycorrhizal community assessment of phosphorus responsive <i>Pinus taeda</i> plantations.","authors":"Jacob Hackman, Alex Woodley, David Carter, Brian Strahm, Collin Averill, Rytas Vilgalys, Kevin Garcia, Rachel Cook","doi":"10.3389/ffunb.2024.1401427","DOIUrl":"10.3389/ffunb.2024.1401427","url":null,"abstract":"<p><p>Ectomycorrhizal fungi and non-ectomycorrhizal fungi are responsive to changes in environmental and nutrient availabilities. Although many species of ectomycorrhizas are known to enhance the uptake of phosphorus and other nutrients for <i>Pinus taeda</i>, it is not understood how to optimize these communities to have tangible effects on plantation silviculture and P use efficiency. The first step of this process is the identification of native fungi present in the system that are associated with <i>P. taeda</i> and influence P uptake efficiency. We used sand-filled mesh bags baited with finely ground apatite to sample ectomycorrhizal and non-ectomycorrhizal fungi associated with the rhizosphere of P-responsive <i>P. taeda</i> under several field conditions. Mesh bags were assessed for biomass accumulation over three years using a single three-month burial period pre-harvest and three six-month burial periods post-planting. Amplicon sequencing assessed ectomycorrhizal and non-ectomycorrhizal communities between phosphorus treatments, sites, mesh bags, and the rhizosphere of actively growing <i>P. taeda</i> in the field. We found biomass accumulation within the mesh bags was inversely related to increasing phosphorus fertilization (carryover) rates from pre-harvest to post-planting. Up to 25% increases in total biomass within the bags were observed for bags baited with P. Taxonomic richness was highest in Alfisol soils treated with phosphorus from the previous rotation and lowest in the Spodosol regardless of phosphorus treatment.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"5 ","pages":"1401427"},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23eCollection Date: 2024-01-01DOI: 10.3389/ffunb.2024.1332755
Anna Wockenfuss, Kevin Chan, Jessica G Cooper, Timothy Chaya, Megan A Mauriello, Sarah M Yannarell, Julia A Maresca, Nicole M Donofrio
Biological control uses naturally occurring antagonists such as bacteria or fungi for environmentally friendly control of plant pathogens. Bacillus spp. have been used for biocontrol of numerous plant and insect pests and are well-known to synthesize a variety of bioactive secondary metabolites. We hypothesized that bacteria isolated from agricultural soil would be effective antagonists of soilborne fungal pathogens. Here, we show that the Delaware soil isolate Bacillus velezensis strain S4 has in vitro activity against soilborne and foliar plant pathogenic fungi, including two with a large host range, and one oomycete. Further, this strain shows putative protease and cellulase activity, consistent with our prior finding that the genome of this organism is highly enriched in antifungal and antimicrobial biosynthetic gene clusters. We demonstrate that this bacterium causes changes to the fungal and oomycete hyphae at the inhibition zone, with some of the hyphae forming bubble-like structures and irregular branching. We tested strain S4 against Magnaporthe oryzae spores, which typically form germ tubes and penetration structures called appressoria, on the surface of the leaf. Our results suggest that after 12 hours of incubation with the bacterium, fungal spores form germ tubes, but instead of producing appressoria, they appear to form rounded, bubble-like structures. Future work will investigate whether a single antifungal molecule induces all these effects, or if they are the result of a combination of bacterially produced antimicrobials.
{"title":"A <i>Bacillus velezensis</i> strain shows antimicrobial activity against soilborne and foliar fungi and oomycetes.","authors":"Anna Wockenfuss, Kevin Chan, Jessica G Cooper, Timothy Chaya, Megan A Mauriello, Sarah M Yannarell, Julia A Maresca, Nicole M Donofrio","doi":"10.3389/ffunb.2024.1332755","DOIUrl":"10.3389/ffunb.2024.1332755","url":null,"abstract":"<p><p>Biological control uses naturally occurring antagonists such as bacteria or fungi for environmentally friendly control of plant pathogens. <i>Bacillus</i> spp. have been used for biocontrol of numerous plant and insect pests and are well-known to synthesize a variety of bioactive secondary metabolites. We hypothesized that bacteria isolated from agricultural soil would be effective antagonists of soilborne fungal pathogens. Here, we show that the Delaware soil isolate <i>Bacillus velezensis</i> strain S4 has <i>in vitro</i> activity against soilborne and foliar plant pathogenic fungi, including two with a large host range, and one oomycete. Further, this strain shows putative protease and cellulase activity, consistent with our prior finding that the genome of this organism is highly enriched in antifungal and antimicrobial biosynthetic gene clusters. We demonstrate that this bacterium causes changes to the fungal and oomycete hyphae at the inhibition zone, with some of the hyphae forming bubble-like structures and irregular branching. We tested strain S4 against <i>Magnaporthe oryzae</i> spores, which typically form germ tubes and penetration structures called appressoria, on the surface of the leaf. Our results suggest that after 12 hours of incubation with the bacterium, fungal spores form germ tubes, but instead of producing appressoria, they appear to form rounded, bubble-like structures. Future work will investigate whether a single antifungal molecule induces all these effects, or if they are the result of a combination of bacterially produced antimicrobials.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"5 ","pages":"1332755"},"PeriodicalIF":2.1,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140095261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23eCollection Date: 2024-01-01DOI: 10.3389/ffunb.2024.1339911
Krish Shah, Mukund Deshpande, P Shah
Historically, fungi were mainly identified as plant and insect pathogens since they grow at 28°C. At the same time, bacteria are known to be the most common human pathogens as they are compatible with the host body temperature of 37°C. Because of immunocompromised hosts, cancer therapy, and malnutrition, fungi are rapidly gaining attention as human pathogens. Over 150 million people have severe fungal infections, which lead to approximately more than one million deaths per year. Moreover, diseases like cancer involving long-term therapy and prophylactic use of antifungal drugs in high-risk patients have increased the emergence of drug-resistant fungi, including highly virulent strains such as Candida auris. This clinical spectrum of fungal diseases ranges from superficial mucocutaneous lesions to more severe and life-threatening infections. This review article summarizes the effect of hospital environments, especially during the COVID-19 pandemic, on fungal infections and emerging pathogens. The review also provides insights into the various antifungal drugs and their existing challenges, thereby driving the need to search for novel antifungal agents.
{"title":"Healthcare-associated fungal infections and emerging pathogens during the COVID-19 pandemic.","authors":"Krish Shah, Mukund Deshpande, P Shah","doi":"10.3389/ffunb.2024.1339911","DOIUrl":"10.3389/ffunb.2024.1339911","url":null,"abstract":"<p><p>Historically, fungi were mainly identified as plant and insect pathogens since they grow at 28°C. At the same time, bacteria are known to be the most common human pathogens as they are compatible with the host body temperature of 37°C. Because of immunocompromised hosts, cancer therapy, and malnutrition, fungi are rapidly gaining attention as human pathogens. Over 150 million people have severe fungal infections, which lead to approximately more than one million deaths per year. Moreover, diseases like cancer involving long-term therapy and prophylactic use of antifungal drugs in high-risk patients have increased the emergence of drug-resistant fungi, including highly virulent strains such as <i>Candida auris</i>. This clinical spectrum of fungal diseases ranges from superficial mucocutaneous lesions to more severe and life-threatening infections. This review article summarizes the effect of hospital environments, especially during the COVID-19 pandemic, on fungal infections and emerging pathogens. The review also provides insights into the various antifungal drugs and their existing challenges, thereby driving the need to search for novel antifungal agents.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"5 ","pages":"1339911"},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920311/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140095285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-30eCollection Date: 2024-01-01DOI: 10.3389/ffunb.2024.1239470
Pérola O Magalhães, João Vicente Braga de Souza, Danilo Batista Pinho
{"title":"Editorial: Endophytic fungi producers of biomolecules of interest to human health.","authors":"Pérola O Magalhães, João Vicente Braga de Souza, Danilo Batista Pinho","doi":"10.3389/ffunb.2024.1239470","DOIUrl":"10.3389/ffunb.2024.1239470","url":null,"abstract":"","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"5 ","pages":"1239470"},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21DOI: 10.3389/ffunb.2023.1276287
E. Mesquita, Shasha Hu, Tais B. Lima, P. Gôlo, M. Bidochka
Brazil has a long history of using biological control and has the largest program in sugarcane agriculture to which a biocontrol program has been applied. This achievement is at least partly due to the utilization of the entomopathogenic fungus Metarhizium. This well-known fungal genus exhibits pathogenicity against a broad range of arthropod hosts and has been used globally as a biocontrol agent. This fungus is also a root symbiont, and in this capacity, it is a plant growth promoter. However, this feature (i.e., as a plant symbiont) has yet to be fully explored and implemented in Brazil, although the number of reports demonstrating Metarhizium’s utility as a plant bioinoculant is increasing. The Brazilian bioproduct industry targets agricultural pests, and is limited to two Metarhizium species represented by four fungal isolates as active ingredients. Entomopathogenic fungi have also been successful in controlling arthropods of public health concern, as shown in their control of mosquitoes, which are vectors of diseases. The isolation of new indigenous Metarhizium isolates from a variety of substrates such as soil, insects, and plants shows the wide genetic diversity within this fungal genus. In this review, we emphasize the significance of Metarhizium spp. for the biological control of insects in Brazil. We also suggest that the experience and success of biological control with fungi in Brazil is an important resource for developing integrated pest management and sustainable strategies for pest control worldwide. Moreover, the future implementation prospects of species of Metarhizium being used as bioinoculants and possible new advances in the utility of this fungus are discussed.
{"title":"Utilization of Metarhizium as an insect biocontrol agent and a plant bioinoculant with special reference to Brazil","authors":"E. Mesquita, Shasha Hu, Tais B. Lima, P. Gôlo, M. Bidochka","doi":"10.3389/ffunb.2023.1276287","DOIUrl":"https://doi.org/10.3389/ffunb.2023.1276287","url":null,"abstract":"Brazil has a long history of using biological control and has the largest program in sugarcane agriculture to which a biocontrol program has been applied. This achievement is at least partly due to the utilization of the entomopathogenic fungus Metarhizium. This well-known fungal genus exhibits pathogenicity against a broad range of arthropod hosts and has been used globally as a biocontrol agent. This fungus is also a root symbiont, and in this capacity, it is a plant growth promoter. However, this feature (i.e., as a plant symbiont) has yet to be fully explored and implemented in Brazil, although the number of reports demonstrating Metarhizium’s utility as a plant bioinoculant is increasing. The Brazilian bioproduct industry targets agricultural pests, and is limited to two Metarhizium species represented by four fungal isolates as active ingredients. Entomopathogenic fungi have also been successful in controlling arthropods of public health concern, as shown in their control of mosquitoes, which are vectors of diseases. The isolation of new indigenous Metarhizium isolates from a variety of substrates such as soil, insects, and plants shows the wide genetic diversity within this fungal genus. In this review, we emphasize the significance of Metarhizium spp. for the biological control of insects in Brazil. We also suggest that the experience and success of biological control with fungi in Brazil is an important resource for developing integrated pest management and sustainable strategies for pest control worldwide. Moreover, the future implementation prospects of species of Metarhizium being used as bioinoculants and possible new advances in the utility of this fungus are discussed.","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138948421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-13DOI: 10.3389/ffunb.2023.1285531
G. Cailleau, Buck T. Hanson, Melissa Cravero, Sami Zhioua, Patrick Hilpish, Celia Ruiz, Aaron J. Robinson, Julia M. Kelliher, Demosthenes P Morales, La Verne Gallegos-Graves, Gregory Bonito, P. S. Chain, S. Bindschedler, Pilar Junier
Members of the fungal genus Morchella are widely known for their important ecological roles and significant economic value. In this study, we used amplicon and genome sequencing to characterize bacterial communities associated with sexual fruiting bodies from wild specimens, as well as vegetative mycelium and sclerotia obtained from Morchella isolates grown in vitro. These investigations included diverse representatives from both Elata and Esculenta Morchella clades. Unique bacterial community compositions were observed across the various structures examined, both within and across individual Morchella isolates or specimens. However, specific bacterial taxa were frequently detected in association with certain structures, providing support for an associated core bacterial community. Bacteria from the genus Pseudomonas and Ralstonia constituted the core bacterial associates of Morchella mycelia and sclerotia, while other genera (e.g., Pedobacter spp., Deviosa spp., and Bradyrhizobium spp.) constituted the core bacterial community of fruiting bodies. Furthermore, the importance of Pseudomonas as a key member of the bacteriome was supported by the isolation of several Pseudomonas strains from mycelia during in vitro cultivation. Four of the six mycelial-derived Pseudomonas isolates shared 16S rDNA sequence identity with amplicon sequences recovered directly from the examined fungal structures. Distinct interaction phenotypes (antagonistic or neutral) were observed in confrontation assays between these bacteria and various Morchella isolates. Genome sequences obtained from these Pseudomonas isolates revealed intriguing differences in gene content and annotated functions, specifically with respect to toxin-antitoxin systems, cell adhesion, chitinases, and insecticidal toxins. These genetic differences correlated with the interaction phenotypes. This study provides evidence that Pseudomonas spp. are frequently associated with Morchella and these associations may greatly impact fungal physiology.
{"title":"Associated bacterial communities, confrontation studies, and comparative genomics reveal important interactions between Morchella with Pseudomonas spp.","authors":"G. Cailleau, Buck T. Hanson, Melissa Cravero, Sami Zhioua, Patrick Hilpish, Celia Ruiz, Aaron J. Robinson, Julia M. Kelliher, Demosthenes P Morales, La Verne Gallegos-Graves, Gregory Bonito, P. S. Chain, S. Bindschedler, Pilar Junier","doi":"10.3389/ffunb.2023.1285531","DOIUrl":"https://doi.org/10.3389/ffunb.2023.1285531","url":null,"abstract":"Members of the fungal genus Morchella are widely known for their important ecological roles and significant economic value. In this study, we used amplicon and genome sequencing to characterize bacterial communities associated with sexual fruiting bodies from wild specimens, as well as vegetative mycelium and sclerotia obtained from Morchella isolates grown in vitro. These investigations included diverse representatives from both Elata and Esculenta Morchella clades. Unique bacterial community compositions were observed across the various structures examined, both within and across individual Morchella isolates or specimens. However, specific bacterial taxa were frequently detected in association with certain structures, providing support for an associated core bacterial community. Bacteria from the genus Pseudomonas and Ralstonia constituted the core bacterial associates of Morchella mycelia and sclerotia, while other genera (e.g., Pedobacter spp., Deviosa spp., and Bradyrhizobium spp.) constituted the core bacterial community of fruiting bodies. Furthermore, the importance of Pseudomonas as a key member of the bacteriome was supported by the isolation of several Pseudomonas strains from mycelia during in vitro cultivation. Four of the six mycelial-derived Pseudomonas isolates shared 16S rDNA sequence identity with amplicon sequences recovered directly from the examined fungal structures. Distinct interaction phenotypes (antagonistic or neutral) were observed in confrontation assays between these bacteria and various Morchella isolates. Genome sequences obtained from these Pseudomonas isolates revealed intriguing differences in gene content and annotated functions, specifically with respect to toxin-antitoxin systems, cell adhesion, chitinases, and insecticidal toxins. These genetic differences correlated with the interaction phenotypes. This study provides evidence that Pseudomonas spp. are frequently associated with Morchella and these associations may greatly impact fungal physiology.","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"1 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139004691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}