首页 > 最新文献

Frontiers in network physiology最新文献

英文 中文
Dynamic networks of cortico-muscular interactions in sleep and neurodegenerative disorders. 睡眠和神经退行性疾病中皮质-肌肉相互作用的动态网络。
Pub Date : 2023-09-05 eCollection Date: 2023-01-01 DOI: 10.3389/fnetp.2023.1168677
Rossella Rizzo, Jilin W J L Wang, Anna DePold Hohler, James W Holsapple, Okeanis E Vaou, Plamen Ch Ivanov

The brain plays central role in regulating physiological systems, including the skeleto-muscular and locomotor system. Studies of cortico-muscular coordination have primarily focused on associations between movement tasks and dynamics of specific brain waves. However, the brain-muscle functional networks of synchronous coordination among brain waves and muscle activity rhythms that underlie locomotor control remain unknown. Here we address the following fundamental questions: what are the structure and dynamics of cortico-muscular networks; whether specific brain waves are main network mediators in locomotor control; how the hierarchical network organization relates to distinct physiological states under autonomic regulation such as wake, sleep, sleep stages; and how network dynamics are altered with neurodegenerative disorders. We study the interactions between all physiologically relevant brain waves across cortical locations with distinct rhythms in leg and chin muscle activity in healthy and Parkinson's disease (PD) subjects. Utilizing Network Physiology framework and time delay stability approach, we find that 1) each physiological state is characterized by a unique network of cortico-muscular interactions with specific hierarchical organization and profile of links strength; 2) particular brain waves play role as main mediators in cortico-muscular interactions during each state; 3) PD leads to muscle-specific breakdown of cortico-muscular networks, altering the sleep-stage stratification pattern in network connectivity and links strength. In healthy subjects cortico-muscular networks exhibit a pronounced stratification with stronger links during wake and light sleep, and weaker links during REM and deep sleep. In contrast, network interactions reorganize in PD with decline in connectivity and links strength during wake and non-REM sleep, and increase during REM, leading to markedly different stratification with gradual decline in network links strength from wake to REM, light and deep sleep. Further, we find that wake and sleep stages are characterized by specific links strength profiles, which are altered with PD, indicating disruption in the synchronous activity and network communication among brain waves and muscle rhythms. Our findings demonstrate the presence of previously unrecognized functional networks and basic principles of brain control of locomotion, with potential clinical implications for novel network-based biomarkers for early detection of Parkinson's and neurodegenerative disorders, movement, and sleep disorders.

大脑在调节生理系统中起着核心作用,包括骨骼肌和运动系统。皮质-肌肉协调的研究主要集中在运动任务和特定脑电波动力学之间的关联上。然而,作为运动控制基础的脑电波和肌肉活动节奏之间同步协调的脑肌肉功能网络仍然未知。在这里,我们解决了以下基本问题:皮质肌网络的结构和动力学是什么;特定的脑电波是否是运动控制中的主要网络介质;分层网络组织如何与自主调节下的不同生理状态相关,如觉醒、睡眠、睡眠阶段;以及神经退行性疾病如何改变网络动力学。我们研究了健康和帕金森病(PD)受试者腿部和下巴肌肉活动具有不同节奏的皮层位置的所有生理相关脑电波之间的相互作用。利用网络生理学框架和时延稳定性方法,我们发现:1)每种生理状态都由一个独特的皮层-肌肉相互作用网络表征,该网络具有特定的层次组织和链路强度分布;2) 在每种状态下,特定的脑电波在皮质-肌肉相互作用中起着主要介质的作用;3) PD导致皮质-肌肉网络的肌肉特异性破坏,改变网络连接和连接强度的睡眠阶段分层模式。在健康受试者中,皮质-肌肉网络表现出明显的分层,在清醒和轻度睡眠期间具有更强的联系,在快速眼动和深度睡眠期间具有较弱的联系。相反,PD中的网络相互作用在觉醒和非REM睡眠期间重组,连接和连接强度下降,在REM期间增加,导致明显不同的分层,从觉醒到REM、轻度和深度睡眠,网络连接强度逐渐下降。此外,我们发现,觉醒和睡眠阶段的特征是特定的联系强度特征,这些特征随着PD而改变,表明脑电波和肌肉节律之间的同步活动和网络通信中断。我们的发现证明了以前未被识别的功能网络和大脑运动控制的基本原理的存在,对早期检测帕金森氏症和神经退行性疾病、运动和睡眠障碍的新型网络生物标志物具有潜在的临床意义。
{"title":"Dynamic networks of cortico-muscular interactions in sleep and neurodegenerative disorders.","authors":"Rossella Rizzo, Jilin W J L Wang, Anna DePold Hohler, James W Holsapple, Okeanis E Vaou, Plamen Ch Ivanov","doi":"10.3389/fnetp.2023.1168677","DOIUrl":"10.3389/fnetp.2023.1168677","url":null,"abstract":"<p><p>The brain plays central role in regulating physiological systems, including the skeleto-muscular and locomotor system. Studies of cortico-muscular coordination have primarily focused on associations between movement tasks and dynamics of specific brain waves. However, the brain-muscle functional networks of synchronous coordination among brain waves and muscle activity rhythms that underlie locomotor control remain unknown. Here we address the following fundamental questions: what are the structure and dynamics of cortico-muscular networks; whether specific brain waves are main network mediators in locomotor control; how the hierarchical network organization relates to distinct physiological states under autonomic regulation such as wake, sleep, sleep stages; and how network dynamics are altered with neurodegenerative disorders. We study the interactions between all physiologically relevant brain waves across cortical locations with distinct rhythms in leg and chin muscle activity in healthy and Parkinson's disease (PD) subjects. Utilizing Network Physiology framework and time delay stability approach, we find that 1) each physiological state is characterized by a unique network of cortico-muscular interactions with specific hierarchical organization and profile of links strength; 2) particular brain waves play role as main mediators in cortico-muscular interactions during each state; 3) PD leads to muscle-specific breakdown of cortico-muscular networks, altering the sleep-stage stratification pattern in network connectivity and links strength. In healthy subjects cortico-muscular networks exhibit a pronounced stratification with stronger links during wake and light sleep, and weaker links during REM and deep sleep. In contrast, network interactions reorganize in PD with decline in connectivity and links strength during wake and non-REM sleep, and increase during REM, leading to markedly different stratification with gradual decline in network links strength from wake to REM, light and deep sleep. Further, we find that wake and sleep stages are characterized by specific links strength profiles, which are altered with PD, indicating disruption in the synchronous activity and network communication among brain waves and muscle rhythms. Our findings demonstrate the presence of previously unrecognized functional networks and basic principles of brain control of locomotion, with potential clinical implications for novel network-based biomarkers for early detection of Parkinson's and neurodegenerative disorders, movement, and sleep disorders.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"3 ","pages":"1168677"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41146962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying cancer cell plasticity with gene regulatory networks and single-cell dynamics. 用基因调控网络和单细胞动力学量化癌症细胞的可塑性。
Pub Date : 2023-09-04 eCollection Date: 2023-01-01 DOI: 10.3389/fnetp.2023.1225736
Sarah M Groves, Vito Quaranta

Phenotypic plasticity of cancer cells can lead to complex cell state dynamics during tumor progression and acquired resistance. Highly plastic stem-like states may be inherently drug-resistant. Moreover, cell state dynamics in response to therapy allow a tumor to evade treatment. In both scenarios, quantifying plasticity is essential for identifying high-plasticity states or elucidating transition paths between states. Currently, methods to quantify plasticity tend to focus on 1) quantification of quasi-potential based on the underlying gene regulatory network dynamics of the system; or 2) inference of cell potency based on trajectory inference or lineage tracing in single-cell dynamics. Here, we explore both of these approaches and associated computational tools. We then discuss implications of each approach to plasticity metrics, and relevance to cancer treatment strategies.

癌症细胞的表型可塑性可导致肿瘤进展和获得性耐药性过程中复杂的细胞状态动力学。高度可塑的茎状状态可能具有内在的耐药性。此外,对治疗反应的细胞状态动力学允许肿瘤逃避治疗。在这两种情况下,量化塑性对于识别高塑性状态或阐明状态之间的过渡路径至关重要。目前,量化可塑性的方法往往侧重于1)基于系统潜在基因调控网络动力学的准潜力量化;或2)基于单细胞动力学中的轨迹推断或谱系追踪的细胞效力推断。在这里,我们探索这两种方法和相关的计算工具。然后,我们讨论了每种方法对可塑性指标的影响,以及与癌症治疗策略的相关性。
{"title":"Quantifying cancer cell plasticity with gene regulatory networks and single-cell dynamics.","authors":"Sarah M Groves, Vito Quaranta","doi":"10.3389/fnetp.2023.1225736","DOIUrl":"10.3389/fnetp.2023.1225736","url":null,"abstract":"<p><p>Phenotypic plasticity of cancer cells can lead to complex cell state dynamics during tumor progression and acquired resistance. Highly plastic stem-like states may be inherently drug-resistant. Moreover, cell state dynamics in response to therapy allow a tumor to evade treatment. In both scenarios, quantifying plasticity is essential for identifying high-plasticity states or elucidating transition paths between states. Currently, methods to quantify plasticity tend to focus on 1) quantification of quasi-potential based on the underlying gene regulatory network dynamics of the system; or 2) inference of cell potency based on trajectory inference or lineage tracing in single-cell dynamics. Here, we explore both of these approaches and associated computational tools. We then discuss implications of each approach to plasticity metrics, and relevance to cancer treatment strategies.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"3 ","pages":"1225736"},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41159570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
General anesthesia alters CNS and astrocyte expression of activity-dependent and activity-independent genes. 全身麻醉会改变中枢神经系统和星形胶质细胞依赖活动基因和不依赖活动基因的表达。
Pub Date : 2023-08-21 eCollection Date: 2023-01-01 DOI: 10.3389/fnetp.2023.1216366
Zoeb Jiwaji, Nóra M Márkus, Jamie McQueen, Katie Emelianova, Xin He, Owen Dando, Siddharthan Chandran, Giles E Hardingham

General anesthesia represents a common clinical intervention and yet can result in long-term adverse CNS effects particularly in the elderly or dementia patients. Suppression of cortical activity is a key feature of the anesthetic-induced unconscious state, with activity being a well-described regulator of pathways important for brain health. However, the extent to which the effects of anesthesia go beyond simple suppression of neuronal activity is incompletely understood. We found that general anesthesia lowered cortical expression of genes induced by physiological activity in vivo, and recapitulated additional patterns of gene regulation induced by total blockade of firing activity in vitro, including repression of neuroprotective genes and induction of pro-apoptotic genes. However, the influence of anesthesia extended beyond that which could be accounted for by activity modulation, including the induction of non activity-regulated genes associated with inflammation and cell death. We next focused on astrocytes, important integrators of both neuronal activity and inflammatory signaling. General anesthesia triggered gene expression changes consistent with astrocytes being in a low-activity environment, but additionally caused induction of a reactive profile, with transcriptional changes enriched in those triggered by stroke, neuroinflammation, and Aß/tau pathology. Thus, while the effects of general anesthesia on cortical gene expression are consistent with the strong repression of brain activity, further deleterious effects are apparent including a reactive astrocyte profile.

全身麻醉是一种常见的临床干预措施,但可能会对中枢神经系统造成长期不良影响,尤其是对老年人或痴呆症患者。抑制大脑皮层活动是麻醉诱导的无意识状态的一个主要特征,而大脑皮层活动是对大脑健康非常重要的通路的调节器。然而,人们对麻醉的影响究竟有多大,而不仅仅是简单的抑制神经元活动尚不完全清楚。我们发现,全身麻醉会降低体内生理活动诱导的大脑皮层基因表达,并重现体外完全阻断发射活动诱导的其他基因调控模式,包括抑制神经保护基因和诱导促凋亡基因。然而,麻醉的影响超出了活动调节所能解释的范围,包括诱导与炎症和细胞死亡相关的非活动调节基因。我们接下来的研究重点是星形胶质细胞,它是神经元活动和炎症信号传导的重要整合者。全身麻醉引发的基因表达变化与星形胶质细胞所处的低活性环境一致,但此外还诱导了一种反应性特征,其转录变化富含中风、神经炎症和 Aß/tau 病理学所引发的转录变化。因此,虽然全身麻醉对大脑皮层基因表达的影响与大脑活动的强烈抑制一致,但进一步的有害影响也是显而易见的,包括星形胶质细胞的反应性特征。
{"title":"General anesthesia alters CNS and astrocyte expression of activity-dependent and activity-independent genes.","authors":"Zoeb Jiwaji, Nóra M Márkus, Jamie McQueen, Katie Emelianova, Xin He, Owen Dando, Siddharthan Chandran, Giles E Hardingham","doi":"10.3389/fnetp.2023.1216366","DOIUrl":"10.3389/fnetp.2023.1216366","url":null,"abstract":"<p><p>General anesthesia represents a common clinical intervention and yet can result in long-term adverse CNS effects particularly in the elderly or dementia patients. Suppression of cortical activity is a key feature of the anesthetic-induced unconscious state, with activity being a well-described regulator of pathways important for brain health. However, the extent to which the effects of anesthesia go beyond simple suppression of neuronal activity is incompletely understood. We found that general anesthesia lowered cortical expression of genes induced by physiological activity <i>in vivo</i>, and recapitulated additional patterns of gene regulation induced by total blockade of firing activity <i>in vitro</i>, including repression of neuroprotective genes and induction of pro-apoptotic genes. However, the influence of anesthesia extended beyond that which could be accounted for by activity modulation, including the induction of non activity-regulated genes associated with inflammation and cell death. We next focused on astrocytes, important integrators of both neuronal activity and inflammatory signaling. General anesthesia triggered gene expression changes consistent with astrocytes being in a low-activity environment, but additionally caused induction of a reactive profile, with transcriptional changes enriched in those triggered by stroke, neuroinflammation, and Aß/tau pathology. Thus, while the effects of general anesthesia on cortical gene expression are consistent with the strong repression of brain activity, further deleterious effects are apparent including a reactive astrocyte profile.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"3 ","pages":"1216366"},"PeriodicalIF":0.0,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10225311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of ventilatory pattern variability and Cardioventilatory Coupling during systemic inflammation in rats. 大鼠全身炎症期间通气模式变异性和心通气耦合的动态变化。
Pub Date : 2023-07-31 eCollection Date: 2023-01-01 DOI: 10.3389/fnetp.2023.1038531
Cara K Campanaro, David E Nethery, Fei Guo, Farhad Kaffashi, Kenneth A Loparo, Frank J Jacono, Thomas E Dick, Yee-Hsee Hsieh

Introduction: Biometrics of common physiologic signals can reflect health status. We have developed analytics to measure the predictability of ventilatory pattern variability (VPV, Nonlinear Complexity Index (NLCI) that quantifies the predictability of a continuous waveform associated with inhalation and exhalation) and the cardioventilatory coupling (CVC, the tendency of the last heartbeat in expiration to occur at preferred latency before the next inspiration). We hypothesized that measures of VPV and CVC are sensitive to the development of endotoxemia, which evoke neuroinflammation. Methods: We implanted Sprague Dawley male rats with BP transducers to monitor arterial blood pressure (BP) and recorded ventilatory waveforms and BP simultaneously using whole-body plethysmography in conjunction with BP transducer receivers. After baseline (BSLN) recordings, we injected lipopolysaccharide (LPS, n = 8) or phosphate buffered saline (PBS, n =3) intraperitoneally on 3 consecutive days. We recorded for 4-6 h after the injection, chose 3 epochs from each hour and analyzed VPV and CVC as well as heart rate variability (HRV). Results: First, the responses to sepsis varied across rats, but within rats the repeated measures of NLCI, CVC, as well as respiratory frequency (fR), HR, BP and HRV had a low coefficient of variation, (<0.2) at each time point. Second, HR, fR, and NLCI increased from BSLN on Days 1-3; whereas CVC decreased on Days 2 and 3. In contrast, changes in BP and the relative low-(LF) and high-frequency (HF) of HRV were not significant. The coefficient of variation decreased from BSLN to Day 3, except for CVC. Interestingly, NLCI increased before fR in LPS-treated rats. Finally, we histologically confirmed lung injury, systemic inflammation via ELISA and the presence of the proinflammatory cytokine, IL-1β, with immunohistochemistry in the ponto-medullary respiratory nuclei. Discussion: Our findings support that NLCI reflects changes in the rat's health induced by systemic injection of LPS and reflected in increases in HR and fR. CVC decreased over the course to the experiment. We conclude that NLCI reflected the increase in predictability of the ventilatory waveform and (together with our previous work) may reflect action of inflammatory cytokines on the network generating respiration.

介绍:常见生理信号的生物计量学可反映健康状况。我们开发了分析方法来测量通气模式变异性(VPV,非线性复杂性指数(NLCI),可量化与吸气和呼气相关的连续波形的可预测性)和心肺通气耦合(CVC,呼气时最后一次心跳在下一次吸气前的首选潜伏期发生的趋势)的可预测性。我们假设,VPV 和 CVC 的测量值对内毒素血症的发展很敏感,而内毒素血症会诱发神经炎症。研究方法我们给 Sprague Dawley 雄性大鼠植入了血压传感器以监测动脉血压,并使用全身血压计和血压传感器接收器同时记录通气波形和血压。基线(BSLN)记录后,我们连续3天腹腔注射脂多糖(LPS,n = 8)或磷酸盐缓冲盐水(PBS,n = 3)。我们在注射后的4-6小时内进行记录,每小时选取3个epochs,分析VPV和CVC以及心率变异性(HRV)。结果:首先,不同大鼠对败血症的反应不同,但在大鼠体内,NLCI、CVC以及呼吸频率(fR)、心率、血压和心率变异的重复测量变异系数较低(讨论:我们的研究结果表明,NLCI 反映了全身注射 LPS 引起的大鼠健康状况的变化,并反映在 HR 和 fR 的增加上。在实验过程中,CVC 有所下降。我们的结论是,NLCI 反映了通气波形可预测性的增加,(与我们之前的工作相结合)可能反映了炎症细胞因子对呼吸网络的作用。
{"title":"Dynamics of ventilatory pattern variability and Cardioventilatory Coupling during systemic inflammation in rats.","authors":"Cara K Campanaro, David E Nethery, Fei Guo, Farhad Kaffashi, Kenneth A Loparo, Frank J Jacono, Thomas E Dick, Yee-Hsee Hsieh","doi":"10.3389/fnetp.2023.1038531","DOIUrl":"10.3389/fnetp.2023.1038531","url":null,"abstract":"<p><p><b>Introduction:</b> Biometrics of common physiologic signals can reflect health status. We have developed analytics to measure the predictability of ventilatory pattern variability (VPV, Nonlinear Complexity Index (NLCI) that quantifies the predictability of a continuous waveform associated with inhalation and exhalation) and the cardioventilatory coupling (CVC, the tendency of the last heartbeat in expiration to occur at preferred latency before the next inspiration). We hypothesized that measures of VPV and CVC are sensitive to the development of endotoxemia, which evoke neuroinflammation. <b>Methods:</b> We implanted Sprague Dawley male rats with BP transducers to monitor arterial blood pressure (BP) and recorded ventilatory waveforms and BP simultaneously using whole-body plethysmography in conjunction with BP transducer receivers. After baseline (BSLN) recordings, we injected lipopolysaccharide (LPS, <i>n</i> = 8) or phosphate buffered saline (PBS, <i>n</i> =3) intraperitoneally on 3 consecutive days. We recorded for 4-6 h after the injection, chose 3 epochs from each hour and analyzed VPV and CVC as well as heart rate variability (HRV). <b>Results:</b> First, the responses to sepsis varied across rats, but within rats the repeated measures of NLCI, CVC, as well as respiratory frequency (fR), HR, BP and HRV had a low coefficient of variation, (<0.2) at each time point. Second, HR, fR, and NLCI increased from BSLN on Days 1-3; whereas CVC decreased on Days 2 and 3. In contrast, changes in BP and the relative low-(LF) and high-frequency (HF) of HRV were not significant. The coefficient of variation decreased from BSLN to Day 3, except for CVC. Interestingly, NLCI increased before fR in LPS-treated rats. Finally, we histologically confirmed lung injury, systemic inflammation via ELISA and the presence of the proinflammatory cytokine, IL-1β, with immunohistochemistry in the ponto-medullary respiratory nuclei. <b>Discussion:</b> Our findings support that NLCI reflects changes in the rat's health induced by systemic injection of LPS and reflected in increases in HR and fR. CVC decreased over the course to the experiment. We conclude that NLCI reflected the increase in predictability of the ventilatory waveform and (together with our previous work) may reflect action of inflammatory cytokines on the network generating respiration.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"3 ","pages":"1038531"},"PeriodicalIF":0.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423997/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10012663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Information theoretic measures of causal influences during transient neural events. 瞬时神经事件中因果影响的信息论测量。
Pub Date : 2023-05-31 eCollection Date: 2023-01-01 DOI: 10.3389/fnetp.2023.1085347
Kaidi Shao, Nikos K Logothetis, Michel Besserve

Introduction: Transient phenomena play a key role in coordinating brain activity at multiple scales, however their underlying mechanisms remain largely unknown. A key challenge for neural data science is thus to characterize the network interactions at play during these events. Methods: Using the formalism of Structural Causal Models and their graphical representation, we investigate the theoretical and empirical properties of Information Theory based causal strength measures in the context of recurring spontaneous transient events. Results: After showing the limitations of Transfer Entropy and Dynamic Causal Strength in this setting, we introduce a novel measure, relative Dynamic Causal Strength, and provide theoretical and empirical support for its benefits. Discussion: These methods are applied to simulated and experimentally recorded neural time series and provide results in agreement with our current understanding of the underlying brain circuits.

简介瞬态现象在多尺度协调大脑活动方面发挥着关键作用,但其潜在机制在很大程度上仍不为人所知。因此,神经数据科学面临的一个关键挑战是如何描述这些事件中的网络交互作用。研究方法利用结构因果模型的形式主义及其图形表示法,我们研究了基于信息论的因果强度测量在反复发生的自发瞬时事件中的理论和经验特性。结果:在展示了转移熵和动态因果强度在这种情况下的局限性后,我们引入了一种新的测量方法--相对动态因果强度,并为其优点提供了理论和经验支持。讨论:这些方法适用于模拟和实验记录的神经时间序列,得出的结果与我们目前对潜在大脑回路的理解一致。
{"title":"Information theoretic measures of causal influences during transient neural events.","authors":"Kaidi Shao, Nikos K Logothetis, Michel Besserve","doi":"10.3389/fnetp.2023.1085347","DOIUrl":"10.3389/fnetp.2023.1085347","url":null,"abstract":"<p><p><b>Introduction:</b> Transient phenomena play a key role in coordinating brain activity at multiple scales, however their underlying mechanisms remain largely unknown. A key challenge for neural data science is thus to characterize the network interactions at play during these events. <b>Methods:</b> Using the formalism of Structural Causal Models and their graphical representation, we investigate the theoretical and empirical properties of Information Theory based causal strength measures in the context of recurring spontaneous transient events. <b>Results:</b> After showing the limitations of Transfer Entropy and Dynamic Causal Strength in this setting, we introduce a novel measure, relative Dynamic Causal Strength, and provide theoretical and empirical support for its benefits. <b>Discussion:</b> These methods are applied to simulated and experimentally recorded neural time series and provide results in agreement with our current understanding of the underlying brain circuits.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"3 ","pages":"1085347"},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266490/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10011009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resilience in sports through the lens of dynamic network structures. 通过动态网络结构透视体育运动中的复原力。
Pub Date : 2023-05-19 eCollection Date: 2023-01-01 DOI: 10.3389/fnetp.2023.1190355
Yannick Hill, Ruud J R Den Hartigh
{"title":"Resilience in sports through the lens of dynamic network structures.","authors":"Yannick Hill, Ruud J R Den Hartigh","doi":"10.3389/fnetp.2023.1190355","DOIUrl":"10.3389/fnetp.2023.1190355","url":null,"abstract":"","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"3 ","pages":"1190355"},"PeriodicalIF":0.0,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10235604/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9956602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometric and network organization of visceral organ epithelium. 内脏器官上皮的几何和网络组织。
Pub Date : 2023-05-10 eCollection Date: 2023-01-01 DOI: 10.3389/fnetp.2023.1144186
Betty S Liu, Joseph Sutlive, Willi L Wagner, Hassan A Khalil, Zi Chen, Maximilian Ackermann, Steven J Mentzer

Mammalian epithelia form a continuous sheet of cells that line the surface of visceral organs. To analyze the epithelial organization of the heart, lung, liver and bowel, epithelial cells were labeled in situ, isolated as a single layer and imaged as large epithelial digitally combine montages. The stitched epithelial images were analyzed for geometric and network organization. Geometric analysis demonstrated a similar polygon distribution in all organs with the greatest variability in the heart epithelia. Notably, the normal liver and inflated lung demonstrated the largest average cell surface area (p < 0.01). In lung epithelia, characteristic wavy or interdigitated cell boundaries were observed. The prevalence of interdigitations increased with lung inflation. To complement the geometric analyses, the epithelia were converted into a network of cell-to-cell contacts. Using the open-source software EpiGraph, subgraph (graphlet) frequencies were used to characterize epithelial organization and compare to mathematical (Epi-Hexagon), random (Epi-Random) and natural (Epi-Voronoi5) patterns. As expected, the patterns of the lung epithelia were independent of lung volume. In contrast, liver epithelia demonstrated a pattern distinct from lung, heart and bowel epithelia (p < 0.05). We conclude that geometric and network analyses can be useful tools in characterizing fundamental differences in mammalian tissue topology and epithelial organization.

哺乳动物的上皮细胞在内脏器官表面形成连续的薄片。为了分析心、肺、肝和肠的上皮组织,对上皮细胞进行了原位标记、单层分离和大型上皮数字组合蒙太奇成像。对拼接的上皮图像进行几何和网络组织分析。几何分析表明,所有器官都有类似的多边形分布,而心脏上皮的变异性最大。值得注意的是,正常肝脏和充气肺的平均细胞表面积最大(p < 0.01)。在肺上皮中,观察到了特征性的波浪状或交错的细胞边界。随着肺充气,交错的发生率增加。为了补充几何分析,我们将上皮转化为细胞间接触网络。使用开源软件 EpiGraph,子图(graphlet)频率被用来描述上皮组织的特征,并与数学模式(Epi-Hexagon)、随机模式(Epi-Random)和自然模式(Epi-Voronoi5)进行比较。不出所料,肺上皮的模式与肺容量无关。相比之下,肝上皮细胞的模式与肺、心脏和肠上皮细胞的模式截然不同(p < 0.05)。我们的结论是,几何和网络分析是描述哺乳动物组织拓扑和上皮组织基本差异的有用工具。
{"title":"Geometric and network organization of visceral organ epithelium.","authors":"Betty S Liu, Joseph Sutlive, Willi L Wagner, Hassan A Khalil, Zi Chen, Maximilian Ackermann, Steven J Mentzer","doi":"10.3389/fnetp.2023.1144186","DOIUrl":"10.3389/fnetp.2023.1144186","url":null,"abstract":"<p><p>Mammalian epithelia form a continuous sheet of cells that line the surface of visceral organs. To analyze the epithelial organization of the heart, lung, liver and bowel, epithelial cells were labeled <i>in situ</i>, isolated as a single layer and imaged as large epithelial digitally combine montages. The stitched epithelial images were analyzed for geometric and network organization. Geometric analysis demonstrated a similar polygon distribution in all organs with the greatest variability in the heart epithelia. Notably, the normal liver and inflated lung demonstrated the largest average cell surface area (<i>p</i> < 0.01). In lung epithelia, characteristic wavy or interdigitated cell boundaries were observed. The prevalence of interdigitations increased with lung inflation. To complement the geometric analyses, the epithelia were converted into a network of cell-to-cell contacts. Using the open-source software EpiGraph, subgraph (graphlet) frequencies were used to characterize epithelial organization and compare to mathematical (Epi-Hexagon), random (Epi-Random) and natural (Epi-Voronoi5) patterns. As expected, the patterns of the lung epithelia were independent of lung volume. In contrast, liver epithelia demonstrated a pattern distinct from lung, heart and bowel epithelia (<i>p</i> < 0.05). We conclude that geometric and network analyses can be useful tools in characterizing fundamental differences in mammalian tissue topology and epithelial organization.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"3 ","pages":"1144186"},"PeriodicalIF":0.0,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208427/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9579773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic model assuming mutually inhibitory biomarkers of frailty suggests bistability with contrasting mobility phenotypes. 假设相互抑制的虚弱生物标志物的动态模型表明,双稳态具有截然不同的流动性表型。
Pub Date : 2023-05-04 eCollection Date: 2023-01-01 DOI: 10.3389/fnetp.2023.1079070
Nathan Schaumburger, Joel Pally, Ion I Moraru, Jatupol Kositsawat, George A Kuchel, Michael L Blinov

Bistability is a fundamental biological phenomenon associated with "switch-like" behavior reflecting the capacity of a system to exist in either of two stable states. It plays a role in gene regulation, cell fate switch, signal transduction and cell oscillation, with relevance for cognition, hearing, vision, sleep, gait and voiding. Here we consider a potential role for bistability in the existence of specific frailty states or phenotypes as part of disablement pathways. We use mathematical modeling with two frailty biomarkers (insulin growth factor-1, IGF-1 and interleukin-6, IL-6), which mutually inhibit each other. In our model, we demonstrate that small variations around critical IGF-1 or IL-6 blood levels lead to strikingly different mobility outcomes. We employ deterministic modeling of mobility outcomes, calculating the average trends in population health. Our model predicts the bistability of clinical outcomes: the deterministically-computed likelihood of an individual remaining mobile, becoming less mobile, or dying over time either increases to almost 100% or decreases to almost zero. Contrary to statistical models that attempt to estimate the likelihood of final outcomes based on probabilities and correlations, our model predicts functional outcomes over time based on specific hypothesized molecular mechanisms. Instead of estimating probabilities based on stochastic distributions and arbitrary priors, we deterministically simulate model outcomes over a wide range of physiological parameter values within experimentally derived boundaries. Our study is "a proof of principle" as it is based on a major assumption about mutual inhibition of pathways that is oversimplified. However, by making such an assumption, interesting effects can be described qualitatively. As our understanding of molecular mechanisms involved in aging deepens, we believe that such modeling will not only lead to more accurate predictions, but also help move the field from using mostly studies of associations to mechanistically guided approaches.

双稳态是一种基本的生物现象,与 "开关样 "行为有关,反映了系统在两种稳定状态中任选其一的能力。它在基因调控、细胞命运转换、信号转导和细胞振荡中发挥作用,并与认知、听觉、视觉、睡眠、步态和排尿有关。在此,我们考虑了双稳态性在特定衰弱状态或表型的存在中的潜在作用,作为失能途径的一部分。我们使用数学模型对两种相互抑制的虚弱生物标志物(胰岛素生长因子-1(IGF-1)和白细胞介素-6(IL-6))进行分析。在我们的模型中,我们证明了临界 IGF-1 或 IL-6 血液水平的微小变化会导致截然不同的活动能力结果。我们对流动性结果进行了确定性建模,计算了人口健康的平均趋势。我们的模型预测了临床结果的双稳态性:通过确定性计算得出的个体随着时间的推移保持行动能力、行动能力降低或死亡的可能性要么增加到几乎 100%,要么降低到几乎为零。与试图根据概率和相关性来估计最终结果可能性的统计模型相反,我们的模型是根据特定的假设分子机制来预测随着时间推移的功能性结果。我们不是根据随机分布和任意先验来估算概率,而是在实验得出的边界内,在广泛的生理参数值范围内对模型结果进行确定性模拟。我们的研究是 "原理证明",因为它基于一个过于简化的关于通路相互抑制的主要假设。然而,通过这样的假设,可以定性地描述有趣的效应。随着我们对衰老分子机制认识的加深,我们相信这种建模不仅会带来更准确的预测,而且有助于将该领域从主要使用关联研究转向以机理为指导的方法。
{"title":"Dynamic model assuming mutually inhibitory biomarkers of frailty suggests bistability with contrasting mobility phenotypes.","authors":"Nathan Schaumburger, Joel Pally, Ion I Moraru, Jatupol Kositsawat, George A Kuchel, Michael L Blinov","doi":"10.3389/fnetp.2023.1079070","DOIUrl":"10.3389/fnetp.2023.1079070","url":null,"abstract":"<p><p>Bistability is a fundamental biological phenomenon associated with \"switch-like\" behavior reflecting the capacity of a system to exist in either of two stable states. It plays a role in gene regulation, cell fate switch, signal transduction and cell oscillation, with relevance for cognition, hearing, vision, sleep, gait and voiding. Here we consider a potential role for bistability in the existence of specific frailty states or phenotypes as part of disablement pathways. We use mathematical modeling with two frailty biomarkers (insulin growth factor-1, IGF-1 and interleukin-6, IL-6), which mutually inhibit each other. In our model, we demonstrate that small variations around critical IGF-1 or IL-6 blood levels lead to strikingly different mobility outcomes. We employ deterministic modeling of mobility outcomes, calculating the average trends in population health. Our model predicts the bistability of clinical outcomes: the deterministically-computed likelihood of an individual remaining mobile, becoming less mobile, or dying over time either increases to almost 100% or decreases to almost zero. Contrary to statistical models that attempt to estimate the likelihood of final outcomes based on probabilities and correlations, our model predicts functional outcomes over time based on specific hypothesized molecular mechanisms. Instead of estimating probabilities based on stochastic distributions and arbitrary priors, we deterministically simulate model outcomes over a wide range of physiological parameter values within experimentally derived boundaries. Our study is \"a proof of principle\" as it is based on a major assumption about mutual inhibition of pathways that is oversimplified. However, by making such an assumption, interesting effects can be described qualitatively. As our understanding of molecular mechanisms involved in aging deepens, we believe that such modeling will not only lead to more accurate predictions, but also help move the field from using mostly studies of associations to mechanistically guided approaches.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"3 ","pages":"1079070"},"PeriodicalIF":0.0,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192762/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9859412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two decades of astrocytes in neurovascular coupling. 神经血管耦合中的星形胶质细胞二十年。
Pub Date : 2023-04-03 eCollection Date: 2023-01-01 DOI: 10.3389/fnetp.2023.1162757
Annamaria Lia, Alessandro Di Spiezio, Michele Speggiorin, Micaela Zonta

The brain is a highly energy demanding organ, which accounts in humans for the 20% of total energy consumption at resting state although comprising only 2% of the body mass. The necessary delivery of nutrients to brain parenchyma is ensured by the cerebral circulatory system, through the exchange of glucose and oxygen (O2) at the capillary level. Notably, a tight spatial and temporal correlation exists between local increases in neuronal activity and the subsequent changes in regional cerebral blood flow. The recognized concept of neurovascular coupling (NVC), also named functional hyperemia, expresses this close relationship and stands at the basis of the modern functional brain imaging techniques. Different cellular and molecular mechanisms have been proposed to mediate this tight coupling. In this context, astrocytes are ideally positioned to act as relay elements that sense neuronal activity through their perisynaptic processes and release vasodilator agents at their endfeet in contact with brain parenchymal vessels. Two decades after the astrocyte involvement in neurovascular coupling has been proposed, we here review the experimental evidence that contributed to unraveling the molecular and cellular mechanisms underlying cerebral blood flow regulation. While traveling through the different controversies that moved the research in this field, we keep a peculiar focus on those exploring the role of astrocytes in neurovascular coupling and conclude with two sections related to methodological aspects in neurovascular research and to some pathological conditions resulting in altered neurovascular coupling.

大脑是一个对能量要求很高的器官,虽然只占人体质量的 2%,但却占人体静息状态下总能量消耗的 20%。脑循环系统通过毛细血管水平的葡萄糖和氧气(O2)交换,确保向脑实质输送必要的营养物质。值得注意的是,局部神经元活动的增加与随后区域脑血流量的变化之间存在着紧密的时空相关性。公认的神经血管耦合(NVC)概念(也称为功能性充血)表达了这种密切关系,是现代脑功能成像技术的基础。人们提出了不同的细胞和分子机制来介导这种紧密耦合。在这种情况下,星形胶质细胞被理想地定位为中继元件,通过其突触周围过程感知神经元活动,并在其与脑实质血管接触的末梢释放血管扩张剂。在星形胶质细胞参与神经-血管耦合被提出二十年后,我们在此回顾了有助于揭示脑血流调节的分子和细胞机制的实验证据。在回顾推动该领域研究的各种争议的同时,我们特别关注那些探索星形胶质细胞在神经血管耦合中的作用的研究,并以与神经血管研究方法相关的两个部分以及导致神经血管耦合改变的一些病理条件作为结束语。
{"title":"Two decades of astrocytes in neurovascular coupling.","authors":"Annamaria Lia, Alessandro Di Spiezio, Michele Speggiorin, Micaela Zonta","doi":"10.3389/fnetp.2023.1162757","DOIUrl":"10.3389/fnetp.2023.1162757","url":null,"abstract":"<p><p>The brain is a highly energy demanding organ, which accounts in humans for the 20% of total energy consumption at resting state although comprising only 2% of the body mass. The necessary delivery of nutrients to brain parenchyma is ensured by the cerebral circulatory system, through the exchange of glucose and oxygen (O<sub>2</sub>) at the capillary level. Notably, a tight spatial and temporal correlation exists between local increases in neuronal activity and the subsequent changes in regional cerebral blood flow. The recognized concept of neurovascular coupling (NVC), also named functional hyperemia, expresses this close relationship and stands at the basis of the modern functional brain imaging techniques. Different cellular and molecular mechanisms have been proposed to mediate this tight coupling. In this context, astrocytes are ideally positioned to act as relay elements that sense neuronal activity through their perisynaptic processes and release vasodilator agents at their endfeet in contact with brain parenchymal vessels. Two decades after the astrocyte involvement in neurovascular coupling has been proposed, we here review the experimental evidence that contributed to unraveling the molecular and cellular mechanisms underlying cerebral blood flow regulation. While traveling through the different controversies that moved the research in this field, we keep a peculiar focus on those exploring the role of astrocytes in neurovascular coupling and conclude with two sections related to methodological aspects in neurovascular research and to some pathological conditions resulting in altered neurovascular coupling.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"3 ","pages":"1162757"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106690/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9378200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial distribution of heterogeneity as a modulator of collective dynamics in pancreatic beta-cell networks and beyond. 异质性的空间分布作为胰腺β细胞网络及其他集体动力学的调制器。
Pub Date : 2023-03-24 DOI: 10.3389/fnetp.2023.1170930
Daniel Galvis, David J Hodson, Kyle C A Wedgwood

We study the impact of spatial distribution of heterogeneity on collective dynamics in gap-junction coupled beta-cell networks comprised on cells from two populations that differ in their intrinsic excitability. Initially, these populations are uniformly and randomly distributed throughout the networks. We develop and apply an iterative algorithm for perturbing the arrangement of the network such that cells from the same population are increasingly likely to be adjacent to one another. We find that the global input strength, or network drive, necessary to transition the network from a state of quiescence to a state of synchronised and oscillatory activity decreases as network sortedness increases. Moreover, for weak coupling, we find that regimes of partial synchronisation and wave propagation arise, which depend both on network drive and network sortedness. We then demonstrate the utility of this algorithm for studying the distribution of heterogeneity in general networks, for which we use Watts-Strogatz networks as a case study. This work highlights the importance of heterogeneity in node dynamics in establishing collective rhythms in complex, excitable networks and has implications for a wide range of real-world systems that exhibit such heterogeneity.

我们研究了异质性的空间分布对由两个不同内在兴奋性的细胞组成的间隙结偶联β细胞网络的集体动力学的影响。最初,这些种群均匀随机地分布在整个网络中。我们开发并应用了一种迭代算法来干扰网络的排列,使得来自同一种群的细胞越来越有可能彼此相邻。我们发现,随着网络排序的增加,将网络从静止状态过渡到同步和振荡活动状态所必需的全局输入强度或网络驱动会减少。此外,对于弱耦合,我们发现部分同步和波传播机制出现,这取决于网络驱动和网络排序。然后,我们用Watts-Strogatz网络作为案例研究,展示了该算法在研究一般网络中异质性分布方面的效用。这项工作强调了在复杂的、可兴奋的网络中建立集体节律的节点动力学异质性的重要性,并对表现出这种异质性的广泛的现实世界系统具有启示意义。
{"title":"Spatial distribution of heterogeneity as a modulator of collective dynamics in pancreatic beta-cell networks and beyond.","authors":"Daniel Galvis,&nbsp;David J Hodson,&nbsp;Kyle C A Wedgwood","doi":"10.3389/fnetp.2023.1170930","DOIUrl":"https://doi.org/10.3389/fnetp.2023.1170930","url":null,"abstract":"<p><p>We study the impact of spatial distribution of heterogeneity on collective dynamics in gap-junction coupled beta-cell networks comprised on cells from two populations that differ in their intrinsic excitability. Initially, these populations are uniformly and randomly distributed throughout the networks. We develop and apply an iterative algorithm for perturbing the arrangement of the network such that cells from the same population are increasingly likely to be adjacent to one another. We find that the global input strength, or <i>network drive</i>, necessary to transition the network from a state of quiescence to a state of synchronised and oscillatory activity decreases as <i>network sortedness</i> increases. Moreover, for weak coupling, we find that regimes of partial synchronisation and wave propagation arise, which depend both on network drive and network sortedness. We then demonstrate the utility of this algorithm for studying the distribution of heterogeneity in general networks, for which we use Watts-Strogatz networks as a case study. This work highlights the importance of heterogeneity in node dynamics in establishing collective rhythms in complex, excitable networks and has implications for a wide range of real-world systems that exhibit such heterogeneity.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"3 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614376/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9636308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Frontiers in network physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1