首页 > 最新文献

GigaByte (Hong Kong, China)最新文献

英文 中文
Molecular Property Diagnostic Suite for COVID-19 (MPDSCOVID-19): an open-source disease-specific drug discovery portal. 用于 COVID-19 的分子特性诊断套件(MPDSCOVID-19):一个开源的疾病特异性药物发现门户网站。
Pub Date : 2024-03-14 eCollection Date: 2024-01-01 DOI: 10.46471/gigabyte.114
Lipsa Priyadarsinee, Esther Jamir, Selvaraman Nagamani, Hridoy Jyoti Mahanta, Nandan Kumar, Lijo John, Himakshi Sarma, Asheesh Kumar, Anamika Singh Gaur, Rosaleen Sahoo, S Vaikundamani, N Arul Murugan, U Deva Priyakumar, G P S Raghava, Prasad V Bharatam, Ramakrishnan Parthasarathi, V Subramanian, G Madhavi Sastry, G Narahari Sastry

Molecular Property Diagnostic Suite (MPDS) was conceived and developed as an open-source disease-specific web portal based on Galaxy. MPDSCOVID-19 was developed for COVID-19 as a one-stop solution for drug discovery research. Galaxy platforms enable the creation of customized workflows connecting various modules in the web server. The architecture of MPDSCOVID-19 effectively employs Galaxy v22.04 features, which are ported on CentOS 7.8 and Python 3.7. MPDSCOVID-19 provides significant updates and the addition of several new tools updated after six years. Tools developed by our group in Perl/Python and open-source tools are collated and integrated into MPDSCOVID-19 using XML scripts. Our MPDS suite aims to facilitate transparent and open innovation. This approach significantly helps bring inclusiveness in the community while promoting free access and participation in software development.

Availability & implementation: The MPDSCOVID-19 portal can be accessed at https://mpds.neist.res.in:8085/.

Molecular Property Diagnostic Suite (MPDS) 是基于 Galaxy 构想和开发的一个开源疾病特定门户网站。MPDSCOVID-19 是为 COVID-19 开发的药物发现研究一站式解决方案。通过 Galaxy 平台,可以创建连接网络服务器中各种模块的定制工作流程。MPDSCOVID-19 的架构有效利用了 Galaxy v22.04 的功能,并在 CentOS 7.8 和 Python 3.7 上进行了移植。MPDSCOVID-19 在六年后进行了重大更新,并增加了几个新工具。我们小组用 Perl/Python 开发的工具和开源工具经过整理,使用 XML 脚本集成到了 MPDSCOVID-19 中。我们的 MPDS 套件旨在促进透明、开放的创新。这种方法大大有助于提高社区的包容性,同时促进自由访问和参与软件开发:MPDSCOVID-19 门户网站的访问网址为 https://mpds.neist.res.in:8085/。
{"title":"Molecular Property Diagnostic Suite for COVID-19 (MPDS<sup>COVID-19</sup>): an open-source disease-specific drug discovery portal.","authors":"Lipsa Priyadarsinee, Esther Jamir, Selvaraman Nagamani, Hridoy Jyoti Mahanta, Nandan Kumar, Lijo John, Himakshi Sarma, Asheesh Kumar, Anamika Singh Gaur, Rosaleen Sahoo, S Vaikundamani, N Arul Murugan, U Deva Priyakumar, G P S Raghava, Prasad V Bharatam, Ramakrishnan Parthasarathi, V Subramanian, G Madhavi Sastry, G Narahari Sastry","doi":"10.46471/gigabyte.114","DOIUrl":"10.46471/gigabyte.114","url":null,"abstract":"<p><p>Molecular Property Diagnostic Suite (MPDS) was conceived and developed as an open-source disease-specific web portal based on Galaxy. MPDS<sup>COVID-19</sup> was developed for COVID-19 as a one-stop solution for drug discovery research. Galaxy platforms enable the creation of customized workflows connecting various modules in the web server. The architecture of MPDS<sup>COVID-19</sup> effectively employs Galaxy v22.04 features, which are ported on CentOS 7.8 and Python 3.7. MPDS<sup>COVID-19</sup> provides significant updates and the addition of several new tools updated after six years. Tools developed by our group in Perl/Python and open-source tools are collated and integrated into MPDS<sup>COVID-19</sup> using XML scripts. Our MPDS suite aims to facilitate transparent and open innovation. This approach significantly helps bring inclusiveness in the community while promoting free access and participation in software development.</p><p><strong>Availability & implementation: </strong>The MPDS<sup>COVID-19</sup> portal can be accessed at https://mpds.neist.res.in:8085/.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2024 ","pages":"gigabyte114"},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10958779/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140208383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Julearn: an easy-to-use library for leakage-free evaluation and inspection of ML models. Julearn:一个易于使用的库,用于对 ML 模型进行无泄漏评估和检查。
Pub Date : 2024-03-07 eCollection Date: 2024-01-01 DOI: 10.46471/gigabyte.113
Sami Hamdan, Shammi More, Leonard Sasse, Vera Komeyer, Kaustubh R Patil, Federico Raimondo

The fast-paced development of machine learning (ML) and its increasing adoption in research challenge researchers without extensive training in ML. In neuroscience, ML can help understand brain-behavior relationships, diagnose diseases and develop biomarkers using data from sources like magnetic resonance imaging and electroencephalography. Primarily, ML builds models to make accurate predictions on unseen data. Researchers evaluate models' performance and generalizability using techniques such as cross-validation (CV). However, choosing a CV scheme and evaluating an ML pipeline is challenging and, if done improperly, can lead to overestimated results and incorrect interpretations. Here, we created julearn, an open-source Python library allowing researchers to design and evaluate complex ML pipelines without encountering common pitfalls. We present the rationale behind julearn's design, its core features, and showcase three examples of previously-published research projects. Julearn simplifies the access to ML providing an easy-to-use environment. With its design, unique features, simple interface, and practical documentation, it poses as a useful Python-based library for research projects.

机器学习(ML)的发展日新月异,在研究领域的应用也日益广泛,这对没有接受过广泛 ML 培训的研究人员提出了挑战。在神经科学领域,ML 可以帮助理解大脑与行为之间的关系,利用磁共振成像和脑电图等数据源诊断疾病和开发生物标记物。ML 主要是建立模型,对未见数据进行准确预测。研究人员使用交叉验证(CV)等技术评估模型的性能和可推广性。然而,选择交叉验证方案和评估 ML 管道具有挑战性,如果操作不当,可能会导致结果被高估和解释错误。在这里,我们创建了 julearn,这是一个开源 Python 库,允许研究人员设计和评估复杂的 ML 管道,而不会遇到常见的陷阱。我们介绍了 julearn 的设计原理、核心功能,并展示了之前发表的三个研究项目实例。Julearn 提供了一个易于使用的环境,简化了对 ML 的访问。凭借其设计、独特的功能、简单的界面和实用的文档,它成为研究项目中一个有用的基于 Python 的库。
{"title":"Julearn: an easy-to-use library for leakage-free evaluation and inspection of ML models.","authors":"Sami Hamdan, Shammi More, Leonard Sasse, Vera Komeyer, Kaustubh R Patil, Federico Raimondo","doi":"10.46471/gigabyte.113","DOIUrl":"10.46471/gigabyte.113","url":null,"abstract":"<p><p>The fast-paced development of machine learning (ML) and its increasing adoption in research challenge researchers without extensive training in ML. In neuroscience, ML can help understand brain-behavior relationships, diagnose diseases and develop biomarkers using data from sources like magnetic resonance imaging and electroencephalography. Primarily, ML builds models to make accurate predictions on unseen data. Researchers evaluate models' performance and generalizability using techniques such as cross-validation (CV). However, choosing a CV scheme and evaluating an ML pipeline is challenging and, if done improperly, can lead to overestimated results and incorrect interpretations. Here, we created julearn, an open-source Python library allowing researchers to design and evaluate complex ML pipelines without encountering common pitfalls. We present the rationale behind julearn's design, its core features, and showcase three examples of previously-published research projects. Julearn simplifies the access to ML providing an easy-to-use environment. With its design, unique features, simple interface, and practical documentation, it poses as a useful Python-based library for research projects.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2024 ","pages":"gigabyte113"},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940896/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An improved chromosome-level genome assembly of perennial ryegrass (Lolium perenne L.). 改进的多年生黑麦草(Lolium perenne L.)染色体组水平基因组组装。
Pub Date : 2024-03-06 eCollection Date: 2024-01-01 DOI: 10.46471/gigabyte.112
Yutang Chen, Roland Kölliker, Martin Mascher, Dario Copetti, Axel Himmelbach, Nils Stein, Bruno Studer

This work is an update and extension of the previously published article "Ultralong Oxford Nanopore Reads Enable the Development of a Reference-Grade Perennial Ryegrass Genome Assembly" by Frei et al. The published genome assembly of the doubled haploid perennial ryegrass (Lolium perenne L.) genotype Kyuss (Kyuss v1.0) marked a milestone for forage grass research and breeding. However, order and orientation errors may exist in the pseudo-chromosomes of Kyuss, since barley (Hordeum vulgare L.), which diverged 30 million years ago from perennial ryegrass, was used as the reference to scaffold Kyuss. To correct for structural errors possibly present in the published Kyuss assembly, we de novo assembled the genome again and generated 50-fold coverage high-throughput chromosome conformation capture (Hi-C) data to assist pseudo-chromosome construction. The resulting new chromosome-level assembly Kyuss v2.0 showed improved quality with high contiguity (contig N50 = 120 Mb), high completeness (total BUSCO score = 99%), high base-level accuracy (QV = 50), and correct pseudo-chromosome structure (validated by Hi-C contact map). This new assembly will serve as a better reference genome for Lolium spp. and greatly benefit the forage and turf grass research community.

这项工作是对 Frei 等人以前发表的文章《超长牛津纳米孔读数促成了参考级多年生黑麦草基因组组装的开发》的更新和扩展。双倍单倍体多年生黑麦草(Lolium perenne L.)基因型 Kyuss(Kyuss v1.0)基因组组装的发表标志着牧草研究和育种的一个里程碑。然而,由于大麦(Hordeum vulgare L.)与多年生黑麦草在 3000 万年前就已分化,因此 Kyuss 的假染色体可能存在顺序和方向错误。为了纠正已发表的 Kyuss 组装中可能存在的结构错误,我们重新组装了基因组,并生成了 50 倍覆盖率的高通量染色体构象捕获(Hi-C)数据,以帮助构建假染色体。由此产生的新的染色体级组装Kyuss v2.0显示出更高的质量,具有高毗连性(毗连N50 = 120 Mb)、高完整性(BUSCO总分 = 99%)、高碱基水平准确性(QV = 50)和正确的假染色体结构(由Hi-C接触图验证)。这一新的基因组将成为更好的洛仑草属(Lolium spp.)参考基因组,对牧草和草坪草研究界大有裨益。
{"title":"An improved chromosome-level genome assembly of perennial ryegrass (<i>Lolium perenne</i> L.).","authors":"Yutang Chen, Roland Kölliker, Martin Mascher, Dario Copetti, Axel Himmelbach, Nils Stein, Bruno Studer","doi":"10.46471/gigabyte.112","DOIUrl":"10.46471/gigabyte.112","url":null,"abstract":"<p><p>This work is an update and extension of the previously published article \"Ultralong Oxford Nanopore Reads Enable the Development of a Reference-Grade Perennial Ryegrass Genome Assembly\" by Frei <i>et al.</i> The published genome assembly of the doubled haploid perennial ryegrass (<i>Lolium perenne</i> L.) genotype Kyuss (Kyuss v1.0) marked a milestone for forage grass research and breeding. However, order and orientation errors may exist in the pseudo-chromosomes of Kyuss, since barley (<i>Hordeum vulgare</i> L.), which diverged 30 million years ago from perennial ryegrass, was used as the reference to scaffold Kyuss. To correct for structural errors possibly present in the published Kyuss assembly, we <i>de novo</i> assembled the genome again and generated 50-fold coverage high-throughput chromosome conformation capture (Hi-C) data to assist pseudo-chromosome construction. The resulting new chromosome-level assembly Kyuss v2.0 showed improved quality with high contiguity (contig N50 = 120 Mb), high completeness (total BUSCO score = 99%), high base-level accuracy (QV = 50), and correct pseudo-chromosome structure (validated by Hi-C contact map). This new assembly will serve as a better reference genome for <i>Lolium</i> spp. and greatly benefit the forage and turf grass research community.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2024 ","pages":"gigabyte112"},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940895/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Citizen science data on urban forageable plants: a case study in Brazil. 关于城市可食用植物的公民科学数据:巴西案例研究。
Pub Date : 2024-02-21 eCollection Date: 2024-01-01 DOI: 10.46471/gigabyte.107
Filipi Miranda Soares, Luís Ferreira Pires, Maria Carolina Garcia, Lidio Coradin, Natalia Pirani Ghilardi-Lopes, Rubens Rangel Silva, Aline Martins de Carvalho, Anand Gavai, Yamine Bouzembrak, Benildes Coura Moreira Dos Santos Maculan, Sheina Koffler, Uiara Bandineli Montedo, Debora Pignatari Drucker, Raquel Santiago, Maria Clara Peres de Carvalho, Ana Carolina da Silva Lima, Hillary Dandara Elias Gabriel, Stephanie Gabriele Mendonça de França, Karoline Reis de Almeida, Bárbara Junqueira Dos Santos, Antonio Mauro Saraiva

This paper presents two key data sets derived from the Pomar Urbano project. The first data set is a comprehensive catalog of edible fruit-bearing plant species, native or introduced to Brazil. The second data set, sourced from the iNaturalist platform, tracks the distribution and monitoring of these plants within urban landscapes across Brazil. The study includes data from the capitals of all 27 federative units of Brazil, focusing on the ten cities that contributed the most observations as of August 2023. The research emphasizes the significance of citizen science in urban biodiversity monitoring and its potential to contribute to various fields, including food and nutrition, creative industry, study of plant phenology, and machine learning applications. We expect the data sets presented in this paper to serve as resources for further studies in urban foraging, food security, cultural ecosystem services, and environmental sustainability.

本文介绍了 Pomar Urbano 项目的两个关键数据集。第一个数据集是巴西本土或引进的可食用果实植物物种的综合目录。第二个数据集来自 iNaturalist 平台,跟踪这些植物在巴西城市景观中的分布和监测情况。这项研究包括巴西全部 27 个联邦单位首府的数据,重点是截至 2023 年 8 月提供观测数据最多的十个城市。这项研究强调了公民科学在城市生物多样性监测中的重要意义,以及其在食品与营养、创意产业、植物物候学研究和机器学习应用等多个领域的潜在贡献。我们希望本文介绍的数据集能成为进一步研究城市觅食、食品安全、文化生态系统服务和环境可持续性的资源。
{"title":"Citizen science data on urban forageable plants: a case study in Brazil.","authors":"Filipi Miranda Soares, Luís Ferreira Pires, Maria Carolina Garcia, Lidio Coradin, Natalia Pirani Ghilardi-Lopes, Rubens Rangel Silva, Aline Martins de Carvalho, Anand Gavai, Yamine Bouzembrak, Benildes Coura Moreira Dos Santos Maculan, Sheina Koffler, Uiara Bandineli Montedo, Debora Pignatari Drucker, Raquel Santiago, Maria Clara Peres de Carvalho, Ana Carolina da Silva Lima, Hillary Dandara Elias Gabriel, Stephanie Gabriele Mendonça de França, Karoline Reis de Almeida, Bárbara Junqueira Dos Santos, Antonio Mauro Saraiva","doi":"10.46471/gigabyte.107","DOIUrl":"10.46471/gigabyte.107","url":null,"abstract":"<p><p>This paper presents two key data sets derived from the <i>Pomar Urbano</i> project. The first data set is a comprehensive catalog of edible fruit-bearing plant species, native or introduced to Brazil. The second data set, sourced from the iNaturalist platform, tracks the distribution and monitoring of these plants within urban landscapes across Brazil. The study includes data from the capitals of all 27 federative units of Brazil, focusing on the ten cities that contributed the most observations as of August 2023. The research emphasizes the significance of citizen science in urban biodiversity monitoring and its potential to contribute to various fields, including food and nutrition, creative industry, study of plant phenology, and machine learning applications. We expect the data sets presented in this paper to serve as resources for further studies in urban foraging, food security, cultural ecosystem services, and environmental sustainability.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2024 ","pages":"gigabyte107"},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel variable neighborhood search approach for cell clustering for spatial transcriptomics. 用于空间转录组学细胞聚类的新型变量邻域搜索法
Pub Date : 2024-02-20 eCollection Date: 2024-01-01 DOI: 10.46471/gigabyte.109
Aleksandra Djordjevic, Junhua Li, Shuangsang Fang, Lei Cao, Marija Ivanovic

This paper introduces a new approach to cell clustering using the Variable Neighborhood Search (VNS) metaheuristic. The purpose of this method is to cluster cells based on both gene expression and spatial coordinates. Initially, we confronted this clustering challenge as an Integer Linear Programming minimization problem. Our approach introduced a novel model based on the VNS technique, demonstrating the efficacy in navigating the complexities of cell clustering. Notably, our method extends beyond conventional cell-type clustering to spatial domain clustering. This adaptability enables our algorithm to orchestrate clusters based on information gleaned from gene expression matrices and spatial coordinates. Our validation showed the superior performance of our method when compared to existing techniques. Our approach advances current clustering methodologies and can potentially be applied to several fields, from biomedical research to spatial data analysis.

本文介绍了一种利用可变邻域搜索(VNS)元启发式进行细胞聚类的新方法。这种方法的目的是根据基因表达和空间坐标对细胞进行聚类。起初,我们将这一聚类难题视为整数线性规划最小化问题。我们的方法在 VNS 技术的基础上引入了一个新模型,证明了它在驾驭复杂的细胞聚类方面的功效。值得注意的是,我们的方法已从传统的细胞类型聚类扩展到空间领域聚类。这种适应性使我们的算法能够根据从基因表达矩阵和空间坐标中收集到的信息协调聚类。我们的验证结果表明,与现有技术相比,我们的方法性能优越。我们的方法推进了当前的聚类方法,有可能应用于从生物医学研究到空间数据分析等多个领域。
{"title":"A novel variable neighborhood search approach for cell clustering for spatial transcriptomics.","authors":"Aleksandra Djordjevic, Junhua Li, Shuangsang Fang, Lei Cao, Marija Ivanovic","doi":"10.46471/gigabyte.109","DOIUrl":"10.46471/gigabyte.109","url":null,"abstract":"<p><p>This paper introduces a new approach to cell clustering using the Variable Neighborhood Search (VNS) metaheuristic. The purpose of this method is to cluster cells based on both gene expression and spatial coordinates. Initially, we confronted this clustering challenge as an Integer Linear Programming minimization problem. Our approach introduced a novel model based on the VNS technique, demonstrating the efficacy in navigating the complexities of cell clustering. Notably, our method extends beyond conventional cell-type clustering to spatial domain clustering. This adaptability enables our algorithm to orchestrate clusters based on information gleaned from gene expression matrices and spatial coordinates. Our validation showed the superior performance of our method when compared to existing techniques. Our approach advances current clustering methodologies and can potentially be applied to several fields, from biomedical research to spatial data analysis.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2024 ","pages":"gigabyte109"},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140029702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BatchEval Pipeline: batch effect evaluation workflow for multiple datasets joint analysis. BatchEval Pipeline:用于多个数据集联合分析的批量效应评估工作流程。
Pub Date : 2024-02-20 eCollection Date: 2024-01-01 DOI: 10.46471/gigabyte.108
Chao Zhang, Qiang Kang, Mei Li, Hongqing Xie, Shuangsang Fang, Xun Xu

As genomic sequencing technology continues to advance, it becomes increasingly important to perform joint analyses of multiple datasets of transcriptomics. However, batch effect presents challenges for dataset integration, such as sequencing data measured on different platforms, and datasets collected at different times. Here, we report the development of BatchEval Pipeline, a batch effect workflow used to evaluate batch effect on dataset integration. The BatchEval Pipeline generates a comprehensive report, which consists of a series of HTML pages for assessment findings, including a main page, a raw dataset evaluation page, and several built-in methods evaluation pages. The main page exhibits basic information of the integrated datasets, a comprehensive score of batch effect, and the most recommended method for removing batch effect from the current datasets. The remaining pages exhibit evaluation details for the raw dataset, and evaluation results from the built-in batch effect removal methods after removing batch effect. This comprehensive report enables researchers to accurately identify and remove batch effects, resulting in more reliable and meaningful biological insights from integrated datasets. In summary, the BatchEval Pipeline represents a significant advancement in batch effect evaluation, and is a valuable tool to improve the accuracy and reliability of the experimental results.

Availability & implementation: The source code of the BatchEval Pipeline is available at https://github.com/STOmics/BatchEval.

随着基因组测序技术的不断进步,对多个转录组学数据集进行联合分析变得越来越重要。然而,批次效应给数据集整合带来了挑战,例如在不同平台测量的测序数据和在不同时间采集的数据集。在此,我们报告了 BatchEval Pipeline 的开发情况,这是一个批次效应工作流,用于评估数据集整合的批次效应。BatchEval Pipeline 生成的综合报告由一系列用于评估结果的 HTML 页面组成,包括一个主页面、一个原始数据集评估页面和几个内置方法评估页面。主页面展示了集成数据集的基本信息、批量效应的综合评分,以及从当前数据集中去除批量效应的最推荐方法。其余页面展示了原始数据集的评估详情,以及内置批量效应去除方法在去除批量效应后的评估结果。这份全面的报告能帮助研究人员准确识别和去除批次效应,从而从集成数据集中获得更可靠、更有意义的生物学见解。总之,BatchEval 管道代表了批次效应评估的重大进步,是提高实验结果准确性和可靠性的重要工具:BatchEval Pipeline 的源代码可从 https://github.com/STOmics/BatchEval 获取。
{"title":"BatchEval Pipeline: batch effect evaluation workflow for multiple datasets joint analysis.","authors":"Chao Zhang, Qiang Kang, Mei Li, Hongqing Xie, Shuangsang Fang, Xun Xu","doi":"10.46471/gigabyte.108","DOIUrl":"10.46471/gigabyte.108","url":null,"abstract":"<p><p>As genomic sequencing technology continues to advance, it becomes increasingly important to perform joint analyses of multiple datasets of transcriptomics. However, batch effect presents challenges for dataset integration, such as sequencing data measured on different platforms, and datasets collected at different times. Here, we report the development of BatchEval Pipeline, a batch effect workflow used to evaluate batch effect on dataset integration. The BatchEval Pipeline generates a comprehensive report, which consists of a series of HTML pages for assessment findings, including a main page, a raw dataset evaluation page, and several built-in methods evaluation pages. The main page exhibits basic information of the integrated datasets, a comprehensive score of batch effect, and the most recommended method for removing batch effect from the current datasets. The remaining pages exhibit evaluation details for the raw dataset, and evaluation results from the built-in batch effect removal methods after removing batch effect. This comprehensive report enables researchers to accurately identify and remove batch effects, resulting in more reliable and meaningful biological insights from integrated datasets. In summary, the BatchEval Pipeline represents a significant advancement in batch effect evaluation, and is a valuable tool to improve the accuracy and reliability of the experimental results.</p><p><strong>Availability & implementation: </strong>The source code of the BatchEval Pipeline is available at https://github.com/STOmics/BatchEval.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2024 ","pages":"gigabyte108"},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generating single-cell gene expression profiles for high-resolution spatial transcriptomics based on cell boundary images. 基于细胞边界图像生成高分辨率空间转录组学的单细胞基因表达谱。
Pub Date : 2024-02-20 eCollection Date: 2024-01-01 DOI: 10.46471/gigabyte.110
Bohan Zhang, Mei Li, Qiang Kang, Zhonghan Deng, Hua Qin, Kui Su, Xiuwen Feng, Lichuan Chen, Huanlin Liu, Shuangsang Fang, Yong Zhang, Yuxiang Li, Susanne Brix, Xun Xu

In spatially resolved transcriptomics, Stereo-seq facilitates the analysis of large tissues at the single-cell level, offering subcellular resolution and centimeter-level field-of-view. Our previous work on StereoCell introduced a one-stop software using cell nuclei staining images and statistical methods to generate high-confidence single-cell spatial gene expression profiles for Stereo-seq data. With advancements allowing the acquisition of cell boundary information, such as cell membrane/wall staining images, we updated our software to a new version, STCellbin. Using cell nuclei staining images, STCellbin aligns cell membrane/wall staining images with spatial gene expression maps. Advanced cell segmentation ensures the detection of accurate cell boundaries, leading to more reliable single-cell spatial gene expression profiles. We verified that STCellbin can be applied to mouse liver (cell membranes) and Arabidopsis seed (cell walls) datasets, outperforming other methods. The improved capability of capturing single-cell gene expression profiles results in a deeper understanding of the contribution of single-cell phenotypes to tissue biology.

Availability & implementation: The source code of STCellbin is available at https://github.com/STOmics/STCellbin.

在空间分辨转录组学中,Stereo-seq 可提供亚细胞分辨率和厘米级视场,有助于在单细胞水平分析大型组织。我们之前在 StereoCell 方面的研究推出了一款一站式软件,利用细胞核染色图像和统计方法为 Stereoseq 数据生成高置信度的单细胞空间基因表达谱。随着获取细胞边界信息(如细胞膜/壁染色图像)技术的进步,我们将软件更新为新版本 STCellbin。STCellbin 利用细胞核染色图像,将细胞膜/壁染色图像与空间基因表达图谱对齐。先进的细胞分割技术可确保检测到准确的细胞边界,从而获得更可靠的单细胞空间基因表达图谱。我们验证了 STCellbin 可用于小鼠肝脏(细胞膜)和拟南芥种子(细胞壁)数据集,其性能优于其他方法。单细胞基因表达谱捕获能力的提高有助于深入了解单细胞表型对组织生物学的贡献:STCellbin的源代码可在https://github.com/STOmics/STCellbin。
{"title":"Generating single-cell gene expression profiles for high-resolution spatial transcriptomics based on cell boundary images.","authors":"Bohan Zhang, Mei Li, Qiang Kang, Zhonghan Deng, Hua Qin, Kui Su, Xiuwen Feng, Lichuan Chen, Huanlin Liu, Shuangsang Fang, Yong Zhang, Yuxiang Li, Susanne Brix, Xun Xu","doi":"10.46471/gigabyte.110","DOIUrl":"10.46471/gigabyte.110","url":null,"abstract":"<p><p>In spatially resolved transcriptomics, Stereo-seq facilitates the analysis of large tissues at the single-cell level, offering subcellular resolution and centimeter-level field-of-view. Our previous work on StereoCell introduced a one-stop software using cell nuclei staining images and statistical methods to generate high-confidence single-cell spatial gene expression profiles for Stereo-seq data. With advancements allowing the acquisition of cell boundary information, such as cell membrane/wall staining images, we updated our software to a new version, STCellbin. Using cell nuclei staining images, STCellbin aligns cell membrane/wall staining images with spatial gene expression maps. Advanced cell segmentation ensures the detection of accurate cell boundaries, leading to more reliable single-cell spatial gene expression profiles. We verified that STCellbin can be applied to mouse liver (cell membranes) and <i>Arabidopsis</i> seed (cell walls) datasets, outperforming other methods. The improved capability of capturing single-cell gene expression profiles results in a deeper understanding of the contribution of single-cell phenotypes to tissue biology.</p><p><strong>Availability & implementation: </strong>The source code of STCellbin is available at https://github.com/STOmics/STCellbin.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2024 ","pages":"gigabyte110"},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905256/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SAW: an efficient and accurate data analysis workflow for Stereo-seq spatial transcriptomics. SAW:立体测序空间转录组学高效准确的数据分析工作流程。
Pub Date : 2024-02-20 eCollection Date: 2024-01-01 DOI: 10.46471/gigabyte.111
Chun Gong, Shengkang Li, Leying Wang, Fuxiang Zhao, Shuangsang Fang, Dong Yuan, Zijian Zhao, Qiqi He, Mei Li, Weiqing Liu, Zhaoxun Li, Hongqing Xie, Sha Liao, Ao Chen, Yong Zhang, Yuxiang Li, Xun Xu

The basic analysis steps of spatial transcriptomics require obtaining gene expression information from both space and cells. The existing tools for these analyses incur performance issues when dealing with large datasets. These issues involve computationally intensive spatial localization, RNA genome alignment, and excessive memory usage in large chip scenarios. These problems affect the applicability and efficiency of the analysis. Here, a high-performance and accurate spatial transcriptomics data analysis workflow, called Stereo-seq Analysis Workflow (SAW), was developed for the Stereo-seq technology developed at BGI. SAW includes mRNA spatial position reconstruction, genome alignment, gene expression matrix generation, and clustering. The workflow outputs files in a universal format for subsequent personalized analysis. The execution time for the entire analysis is ∼148 min with 1 GB reads 1 × 1 cm chip test data, 1.8 times faster than with an unoptimized workflow.

空间转录组学的基本分析步骤需要从空间和细胞两方面获取基因表达信息。现有的这些分析工具在处理大型数据集时存在性能问题。这些问题涉及计算密集型空间定位、RNA 基因组比对、大型芯片情况下内存使用过多等。这些问题影响了分析的适用性和效率。在此,我们针对 BGI 开发的 Stereo-seq 技术,开发了一种高性能、高精度的空间转录组学数据分析工作流,称为 Stereo-seq 分析工作流(SAW)。SAW 包括 mRNA 空间位置重建、基因组比对、基因表达矩阵生成和聚类。工作流程以通用格式输出文件,供后续个性化分析使用。在 1 GB 读数 1 × 1 厘米芯片测试数据下,整个分析的执行时间为 148 分钟,比未优化的工作流程快 1.8 倍。
{"title":"SAW: an efficient and accurate data analysis workflow for Stereo-seq spatial transcriptomics.","authors":"Chun Gong, Shengkang Li, Leying Wang, Fuxiang Zhao, Shuangsang Fang, Dong Yuan, Zijian Zhao, Qiqi He, Mei Li, Weiqing Liu, Zhaoxun Li, Hongqing Xie, Sha Liao, Ao Chen, Yong Zhang, Yuxiang Li, Xun Xu","doi":"10.46471/gigabyte.111","DOIUrl":"10.46471/gigabyte.111","url":null,"abstract":"<p><p>The basic analysis steps of spatial transcriptomics require obtaining gene expression information from both space and cells. The existing tools for these analyses incur performance issues when dealing with large datasets. These issues involve computationally intensive spatial localization, RNA genome alignment, and excessive memory usage in large chip scenarios. These problems affect the applicability and efficiency of the analysis. Here, a high-performance and accurate spatial transcriptomics data analysis workflow, called Stereo-seq Analysis Workflow (SAW), was developed for the Stereo-seq technology developed at BGI. SAW includes mRNA spatial position reconstruction, genome alignment, gene expression matrix generation, and clustering. The workflow outputs files in a universal format for subsequent personalized analysis. The execution time for the entire analysis is ∼148 min with 1 GB reads 1 × 1 cm chip test data, 1.8 times faster than with an unoptimized workflow.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2024 ","pages":"gigabyte111"},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905255/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The genome assembly and annotation of the white-lipped tree pit viper Trimeresurus albolabris. 白唇树蝮的基因组组装和注释。
Pub Date : 2024-01-25 eCollection Date: 2024-01-01 DOI: 10.46471/gigabyte.106
Xiaotong Niu, Yakui Lv, Jin Chen, Yueheng Feng, Yilin Cui, Haorong Lu, Hui Liu

Trimeresurus albolabris, also known as the white-lipped pit viper or white-lipped tree viper, is a highly venomous snake distributed across Southeast Asia and the cause of many snakebite cases. In this study, we report the first whole genome assembly of T. albolabris obtained with next-generation sequencing from a specimen collected in Mengzi, Yunnan, China. After genome sequencing and assembly, the genome of this male T. albolabris individual was 1.51 Gb in length and included 38.42% repeat-element content. Using this genome, 21,695 genes were identified, and 99.17% of genes could be annotated using gene functional databases. Our genome assembly and annotation process was validated using a phylogenetic tree, which included six species and focused on single-copy genes of nuclear genomes. This research will contribute to future studies on Trimeresurus biology and the genetic basis of snake venom.

白唇蝮蛇(Trimeresurus albolabris)又称白唇蝮或白唇树蝰,是一种分布于东南亚的剧毒蛇类,也是许多蛇咬伤病例的病因。在这项研究中,我们报告了首次通过新一代测序从中国云南蒙自采集的标本中获得的白唇蝮蛇全基因组组装结果。经过基因组测序和组装,这只雄性白纹背天牛的基因组长度为 1.51 Gb,重复元素含量为 38.42%。利用该基因组共鉴定出 21,695 个基因,其中 99.17% 的基因可通过基因功能数据库进行注释。我们的基因组组装和注释过程通过系统发生树进行了验证,系统发生树包括六个物种,重点关注核基因组的单拷贝基因。这项研究将有助于今后对Trimeresurus生物学和蛇毒遗传基础的研究。
{"title":"The genome assembly and annotation of the white-lipped tree pit viper <i>Trimeresurus albolabris</i>.","authors":"Xiaotong Niu, Yakui Lv, Jin Chen, Yueheng Feng, Yilin Cui, Haorong Lu, Hui Liu","doi":"10.46471/gigabyte.106","DOIUrl":"10.46471/gigabyte.106","url":null,"abstract":"<p><p><i>Trimeresurus albolabris</i>, also known as the white-lipped pit viper or white-lipped tree viper, is a highly venomous snake distributed across Southeast Asia and the cause of many snakebite cases. In this study, we report the first whole genome assembly of <i>T. albolabris</i> obtained with next-generation sequencing from a specimen collected in Mengzi, Yunnan, China. After genome sequencing and assembly, the genome of this male <i>T. albolabris</i> individual was 1.51 Gb in length and included 38.42% repeat-element content. Using this genome, 21,695 genes were identified, and 99.17% of genes could be annotated using gene functional databases. Our genome assembly and annotation process was validated using a phylogenetic tree, which included six species and focused on single-copy genes of nuclear genomes. This research will contribute to future studies on <i>Trimeresurus</i> biology and the genetic basis of snake venom.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2024 ","pages":"gigabyte106"},"PeriodicalIF":0.0,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10836062/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139682037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near chromosome-level and highly repetitive genome assembly of the snake pipefish Entelurus aequoreus (Syngnathiformes: Syngnathidae). 蛇琵琶鱼 Entelurus aequoreus (Syngnathiformes: Syngnathidae) 的近染色体水平和高度重复基因组组装。
Pub Date : 2024-01-11 eCollection Date: 2024-01-01 DOI: 10.46471/gigabyte.105
Magnus Wolf, Bruno Lopes da Silva Ferrette, Raphael T F Coimbra, Menno de Jong, Marcel Nebenführ, David Prochotta, Yannis Schöneberg, Konstantin Zapf, Jessica Rosenbaum, Hannah A Mc Intyre, Julia Maier, Clara C S de Souza, Lucas M Gehlhaar, Melina J Werner, Henrik Oechler, Marie Wittekind, Moritz Sonnewald, Maria A Nilsson, Axel Janke, Sven Winter

The snake pipefish, Entelurus aequoreus (Linnaeus, 1758), is a northern Atlantic fish inhabiting open seagrass environments that recently expanded its distribution range. Here, we present a highly contiguous, near chromosome-scale genome of E. aequoreus. The final assembly spans 1.6 Gbp in 7,391 scaffolds, with a scaffold N50 of 62.3 Mbp and L50 of 12. The 28 largest scaffolds (>21 Mbp) span 89.7% of the assembly length. A BUSCO completeness score of 94.1% and a mapping rate above 98% suggest a high assembly completeness. Repetitive elements cover 74.93% of the genome, one of the highest proportions identified in vertebrates. Our demographic modeling identified a peak in population size during the last interglacial period, suggesting the species might benefit from warmer water conditions. Our updated snake pipefish assembly is essential for future analyses of the morphological and molecular changes unique to the Syngnathidae.

蛇琵琶鱼(Entelurus aequoreus,Linnaeus,1758 年)是一种栖息于开阔海草环境中的大西洋北部鱼类,最近其分布范围有所扩大。在这里,我们展示了一个高度连续、接近染色体尺度的 E. aequoreus 基因组。最终的组装跨越 1.6 Gbp,包含 7,391 个支架,支架 N50 为 62.3 Mbp,L50 为 12。最大的 28 个支架(>21 Mbp)占组装长度的 89.7%。BUSCO 完整性得分为 94.1%,映射率超过 98%,表明组装的完整性很高。重复元件覆盖了基因组的 74.93%,是脊椎动物中发现的最高比例之一。我们的人口统计建模确定了上一个冰期的种群数量高峰,这表明该物种可能受益于较温暖的水域条件。我们更新的蛇琵琶鱼基因组对于未来分析蛇琵琶鱼科特有的形态和分子变化至关重要。
{"title":"Near chromosome-level and highly repetitive genome assembly of the snake pipefish <i>Entelurus aequoreus</i> (Syngnathiformes: Syngnathidae).","authors":"Magnus Wolf, Bruno Lopes da Silva Ferrette, Raphael T F Coimbra, Menno de Jong, Marcel Nebenführ, David Prochotta, Yannis Schöneberg, Konstantin Zapf, Jessica Rosenbaum, Hannah A Mc Intyre, Julia Maier, Clara C S de Souza, Lucas M Gehlhaar, Melina J Werner, Henrik Oechler, Marie Wittekind, Moritz Sonnewald, Maria A Nilsson, Axel Janke, Sven Winter","doi":"10.46471/gigabyte.105","DOIUrl":"10.46471/gigabyte.105","url":null,"abstract":"<p><p>The snake pipefish, <i>Entelurus aequoreus</i> (Linnaeus, 1758), is a northern Atlantic fish inhabiting open seagrass environments that recently expanded its distribution range. Here, we present a highly contiguous, near chromosome-scale genome of <i>E. aequoreus</i>. The final assembly spans 1.6 Gbp in 7,391 scaffolds, with a scaffold N50 of 62.3 Mbp and L50 of 12. The 28 largest scaffolds (>21 Mbp) span 89.7% of the assembly length. A BUSCO completeness score of 94.1% and a mapping rate above 98% suggest a high assembly completeness. Repetitive elements cover 74.93% of the genome, one of the highest proportions identified in vertebrates. Our demographic modeling identified a peak in population size during the last interglacial period, suggesting the species might benefit from warmer water conditions. Our updated snake pipefish assembly is essential for future analyses of the morphological and molecular changes unique to the Syngnathidae.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2024 ","pages":"gigabyte105"},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795108/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139492894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
GigaByte (Hong Kong, China)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1