Pub Date : 2025-05-14eCollection Date: 2025-01-01DOI: 10.1017/gmb.2025.6
Arvind Diwan, Sanjay Harke, Archana N Panche
The use of antibiotics in fish and shrimp aquaculture all over the world was found to be only partially successful in preventing infectious diseases. However, their overuse has resulted in the contamination of closed aquatic ecosystems, reduced antibiotic resistance in organisms that fight infectious diseases, and compromised the effectiveness of various antibiotic medications in controlling diseases. Excessive use of antibiotics damages aquaculture species and impacts human health, also rendering the most potent antibiotics increasingly ineffective, with limited alternatives. Therefore, intensive research efforts have been made to replace antibiotics with other protocols and methods like vaccines, phage therapy, quorum quenching technology, probiotics, prebiotics, chicken egg yolk antibody (IgY), and plant therapy," etc. Though all these methods have great potential, many of them are still in the experimental stage, except for fish vaccines. All these alternative technologies need to be carefully standardized and evaluated before implementation. In recent times, after realizing the importance of the gut microbiome community in maintaining the health of animals, efforts have been made to use the microbiome strains for the prevention of pathogenic bacterial and viral infections. Now it has been experimentally proven that animals should possess a healthy microbiome community in their gut tract to strengthen the immune system and prevent the entry of harmful pathogens. Investigations are now being carried out on the derivation of various bioactive compounds from the gut microbiome strains and their structural profile and functionality using the molecular tools of metagenomics and bioinformatics. Such newly discovered compounds from microbiomes can be used as potential alternatives to replace antibiotic drugs in the aquaculture industry. These alternatives are likely to emerge as breakthroughs in animal health management and farming, with effects on cost efficiency, species health, productivity, and yield enhancement. Therefore, introducing new micro-innovative technologies into an overall health management plan will be highly beneficial.
{"title":"Exploration of novel bioactive compounds from the microbiome of fish and shellfish as an alternative to replace antibiotic drugs in aquaculture farming.","authors":"Arvind Diwan, Sanjay Harke, Archana N Panche","doi":"10.1017/gmb.2025.6","DOIUrl":"10.1017/gmb.2025.6","url":null,"abstract":"<p><p>The use of antibiotics in fish and shrimp aquaculture all over the world was found to be only partially successful in preventing infectious diseases. However, their overuse has resulted in the contamination of closed aquatic ecosystems, reduced antibiotic resistance in organisms that fight infectious diseases, and compromised the effectiveness of various antibiotic medications in controlling diseases. Excessive use of antibiotics damages aquaculture species and impacts human health, also rendering the most potent antibiotics increasingly ineffective, with limited alternatives. Therefore, intensive research efforts have been made to replace antibiotics with other protocols and methods like vaccines, phage therapy, quorum quenching technology, probiotics, prebiotics, chicken egg yolk antibody (IgY), and plant therapy,\" etc. Though all these methods have great potential, many of them are still in the experimental stage, except for fish vaccines. All these alternative technologies need to be carefully standardized and evaluated before implementation. In recent times, after realizing the importance of the gut microbiome community in maintaining the health of animals, efforts have been made to use the microbiome strains for the prevention of pathogenic bacterial and viral infections. Now it has been experimentally proven that animals should possess a healthy microbiome community in their gut tract to strengthen the immune system and prevent the entry of harmful pathogens. Investigations are now being carried out on the derivation of various bioactive compounds from the gut microbiome strains and their structural profile and functionality using the molecular tools of metagenomics and bioinformatics. Such newly discovered compounds from microbiomes can be used as potential alternatives to replace antibiotic drugs in the aquaculture industry. These alternatives are likely to emerge as breakthroughs in animal health management and farming, with effects on cost efficiency, species health, productivity, and yield enhancement. Therefore, introducing new micro-innovative technologies into an overall health management plan will be highly beneficial.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"6 ","pages":"e8"},"PeriodicalIF":0.0,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12179545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144478129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-02eCollection Date: 2025-01-01DOI: 10.1017/gmb.2025.5
Anna Pii Hjørne, Martin Steen Mortensen, Tine Rask Licht, Martin Frederik Laursen
Intestinal transit time has been recognized as an important factor in shaping the gut microbiota, although causality remains to be firmly demonstrated. The aim of this study was to evaluate the effect of different loperamide doses on the mouse intestinal transit time and to investigate the effects of increasing transit time on the gut microbial community. Loperamide significantly increased the transit time in a dose-dependent manner. Additionally, we observed a significant difference between the control group and the loperamide-treated groups in the abundance of the bacterial families Bacteroidaceae, Erysipelotrichaceae, Porphyromonadaceae, and Akkermansiaceae after 7 days of loperamide treatment, with the bacterial families responding to the increased transit time at different rates. Fermentation of faeces obtained from the same mice, with or without loperamide, demonstrated that the observed effects on gut microbiota in vivo were not a result of direct interactions between loperamide and the gut microbiota but rather a consequence of loperamide-induced increased intestinal transit time. In the cecum of the mice, we found higher levels of propionate in the high-dose group compared to the control and low-dose groups. Collectively, our findings establish that an altered transit time is causal to changes in the composition and activity of the microbiome.
{"title":"Loperamide increases mouse gut transit time in a dose-dependent manner with treatment duration-dependent effects on distinct gut microbial taxa.","authors":"Anna Pii Hjørne, Martin Steen Mortensen, Tine Rask Licht, Martin Frederik Laursen","doi":"10.1017/gmb.2025.5","DOIUrl":"https://doi.org/10.1017/gmb.2025.5","url":null,"abstract":"<p><p>Intestinal transit time has been recognized as an important factor in shaping the gut microbiota, although causality remains to be firmly demonstrated. The aim of this study was to evaluate the effect of different loperamide doses on the mouse intestinal transit time and to investigate the effects of increasing transit time on the gut microbial community. Loperamide significantly increased the transit time in a dose-dependent manner. Additionally, we observed a significant difference between the control group and the loperamide-treated groups in the abundance of the bacterial families <i>Bacteroidaceae, Erysipelotrichaceae, Porphyromonadaceae</i>, and <i>Akkermansiaceae</i> after 7 days of loperamide treatment, with the bacterial families responding to the increased transit time at different rates. Fermentation of faeces obtained from the same mice, with or without loperamide, demonstrated that the observed effects on gut microbiota <i>in vivo</i> were not a result of direct interactions between loperamide and the gut microbiota but rather a consequence of loperamide-induced increased intestinal transit time. In the cecum of the mice, we found higher levels of propionate in the high-dose group compared to the control and low-dose groups. Collectively, our findings establish that an altered transit time is causal to changes in the composition and activity of the microbiome.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"6 ","pages":"e7"},"PeriodicalIF":0.0,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12056420/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144058659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-14eCollection Date: 2025-01-01DOI: 10.1017/gmb.2025.4
Pavan K Mantravadi, Basavaraj S Kovi, Sabbasani Rajasekhara Reddy, Ganesh Pandian Namasivayam, Karunakaran Kalesh, Anutthaman Parthasarathy
The human gut microbiome represents an extended "second genome" harbouring about 1015 microbes containing >100 times the number of genes as the host. States of health and disease are largely mediated by host-microbial metabolic interplay, and the microbiome composition also underlies the differential responses to chemotherapeutic agents between people. Chemical information will be the key to tackle this complexity and discover specific gut microbiome metabolism for creating more personalised interventions. Additionally, rising antibiotic resistance and growing awareness of gut microbiome effects are creating a need for non-microbicidal therapeutic interventions. We classify chemical interventions for the gut microbiome into categories like molecular decoys, bacterial conjugation inhibitors, colonisation resistance-stimulating molecules, "prebiotics" to promote the growth of beneficial microbes, and inhibitors of specific gut microbial enzymes. Moreover, small molecule probes, including click chemistry probes, artificial substrates for assaying gut bacterial enzymes and receptor agonists/antagonists, which engage host receptors interacting with the microbiome, are some other promising developments in the expanding chemical toolkit for probing and modulating the gut microbiome. This review explicitly excludes "biologics" such as probiotics, bacteriophages, and CRISPR to concentrate on chemistry and chemical tools like chemoproteomics in the gut-microbiome context.
{"title":"Probing and manipulating the gut microbiome with chemistry and chemical tools.","authors":"Pavan K Mantravadi, Basavaraj S Kovi, Sabbasani Rajasekhara Reddy, Ganesh Pandian Namasivayam, Karunakaran Kalesh, Anutthaman Parthasarathy","doi":"10.1017/gmb.2025.4","DOIUrl":"https://doi.org/10.1017/gmb.2025.4","url":null,"abstract":"<p><p>The human gut microbiome represents an extended \"second genome\" harbouring about 10<sup>15</sup> microbes containing >100 times the number of genes as the host. States of health and disease are largely mediated by host-microbial metabolic interplay, and the microbiome composition also underlies the differential responses to chemotherapeutic agents between people. Chemical information will be the key to tackle this complexity and discover specific gut microbiome metabolism for creating more personalised interventions. Additionally, rising antibiotic resistance and growing awareness of gut microbiome effects are creating a need for non-microbicidal therapeutic interventions. We classify chemical interventions for the gut microbiome into categories like molecular decoys, bacterial conjugation inhibitors, colonisation resistance-stimulating molecules, \"prebiotics\" to promote the growth of beneficial microbes, and inhibitors of specific gut microbial enzymes. Moreover, small molecule probes, including click chemistry probes, artificial substrates for assaying gut bacterial enzymes and receptor agonists/antagonists, which engage host receptors interacting with the microbiome, are some other promising developments in the expanding chemical toolkit for probing and modulating the gut microbiome. This review explicitly excludes \"biologics\" such as probiotics, bacteriophages, and CRISPR to concentrate on chemistry and chemical tools like chemoproteomics in the gut-microbiome context.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"6 ","pages":"e6"},"PeriodicalIF":0.0,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12056425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144001491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-08eCollection Date: 2025-01-01DOI: 10.1017/gmb.2025.3
Luana Greco, Federica Rubbino, Clarissa Ferrari, Michela Cameletti, Fabio Grizzi, Fabrizio Bonelli, Alberto Malesci, Massimiliano Mazzone, Luigi Ricciardiello, Luigi Laghi
Colorectal cancer (CRC) represents a relevant public health problem, with high incidence and mortality in Western countries. CRC can occur as sporadic (65%-75%), common familial (25%), or as a consequence of an inherited predisposition (up to 10%). While unravelling its genetic basis has been a long trip leading to relevant clinical implementation over more than 30 years, other contributing factors remain to be clarified. Among these, micro-organisms have emerged as critical players in the development and progression of the disease, as well as for CRC treatment response. Fusobacterium nucleatum (Fn) has been associated with CRC development in both pre-clinical models and clinical settings. Fusobacteria are core members of the human oral microbiome, while being less prevalent in the healthy gut, prompting questions about their localization in CRC and its precursor lesions. This review aims to critically discuss the evidence connecting Fn with CRC pathogenesis, its molecular subtypes and clinical outcomes.
{"title":"Association of <i>Fusobacterium nucleatum</i> with colorectal cancer molecular subtypes and its outcome: a systematic review.","authors":"Luana Greco, Federica Rubbino, Clarissa Ferrari, Michela Cameletti, Fabio Grizzi, Fabrizio Bonelli, Alberto Malesci, Massimiliano Mazzone, Luigi Ricciardiello, Luigi Laghi","doi":"10.1017/gmb.2025.3","DOIUrl":"https://doi.org/10.1017/gmb.2025.3","url":null,"abstract":"<p><p>Colorectal cancer (CRC) represents a relevant public health problem, with high incidence and mortality in Western countries. CRC can occur as sporadic (65%-75%), common familial (25%), or as a consequence of an inherited predisposition (up to 10%). While unravelling its genetic basis has been a long trip leading to relevant clinical implementation over more than 30 years, other contributing factors remain to be clarified. Among these, micro-organisms have emerged as critical players in the development and progression of the disease, as well as for CRC treatment response. <i>Fusobacterium nucleatum</i> (<i>Fn</i>) has been associated with CRC development in both pre-clinical models and clinical settings. <i>Fusobacteria</i> are core members of the human oral microbiome, while being less prevalent in the healthy gut, prompting questions about their localization in CRC and its precursor lesions. This review aims to critically discuss the evidence connecting <i>Fn</i> with CRC pathogenesis, its molecular subtypes and clinical outcomes.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"6 ","pages":"e5"},"PeriodicalIF":0.0,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035788/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144029271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-20eCollection Date: 2025-01-01DOI: 10.1017/gmb.2025.2
Patricia Sanz Morales, Anisha Wijeyesekera, M Denise Robertson, Giles Major, Claire L Boulangé, Peter Philip James Jackson, Carlos Guillermo Poveda Turrado, Glenn R Gibson
This study explored the effects of different human milk oligosaccharides (HMOs), solely and in combination, on gut microbiota composition and metabolic activity (organic acid production), using anaerobic in vitro batch culture fermenters. The aim was to compare prebiotic effects of HMOs (2'FL, 3'FL, 3'SL, 6'SL, LNT, LNnT, and 1:1 ratio mixes of 2'FL/3'SL and 3'SL/LNT) in faecal samples from irritable bowel syndrome (IBS) donors and healthy controls, and to determine the best-performing HMO in IBS. Fluorescent in situ hybridisation coupled with flow cytometry was utilised to study microbiota changes in major colonic genera, and organic acid production was assessed by gas chromatography. IBS donors had different starting microbial profiles compared to healthy controls and lower levels of organic acids. In response to HMOs, there were alterations in both the control and IBS faecal microbiomes. In IBS donor fermenters, Bifidobacterium, Faecalibacterium, total bacterial numbers, and organic acid production significantly increased post-HMO intervention. When comparing the effect of HMO interventions on the microbiota and organic acid production, a mix of 3'SL/LNT HMOs may be the most promising intervention for IBS patients.
{"title":"An <i>in vitro</i> batch culture study to assess the fermentation of human milk oligosaccharides by faecal microbiota from healthy and irritable bowel syndrome stool donors.","authors":"Patricia Sanz Morales, Anisha Wijeyesekera, M Denise Robertson, Giles Major, Claire L Boulangé, Peter Philip James Jackson, Carlos Guillermo Poveda Turrado, Glenn R Gibson","doi":"10.1017/gmb.2025.2","DOIUrl":"https://doi.org/10.1017/gmb.2025.2","url":null,"abstract":"<p><p>This study explored the effects of different human milk oligosaccharides (HMOs), solely and in combination, on gut microbiota composition and metabolic activity (organic acid production), using anaerobic <i>in vitro</i> batch culture fermenters. The aim was to compare prebiotic effects of HMOs (2'FL, 3'FL, 3'SL, 6'SL, LNT, LNnT, and 1:1 ratio mixes of 2'FL/3'SL and 3'SL/LNT) in faecal samples from irritable bowel syndrome (IBS) donors and healthy controls, and to determine the best-performing HMO in IBS. Fluorescent <i>in situ</i> hybridisation coupled with flow cytometry was utilised to study microbiota changes in major colonic genera, and organic acid production was assessed by gas chromatography. IBS donors had different starting microbial profiles compared to healthy controls and lower levels of organic acids. In response to HMOs, there were alterations in both the control and IBS faecal microbiomes. In IBS donor fermenters, <i>Bifidobacterium</i>, <i>Faecalibacterium</i>, total bacterial numbers, and organic acid production significantly increased post-HMO intervention. When comparing the effect of HMO interventions on the microbiota and organic acid production, a mix of 3'SL/LNT HMOs may be the most promising intervention for IBS patients.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"6 ","pages":"e4"},"PeriodicalIF":0.0,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12034501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144059043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-14eCollection Date: 2025-01-01DOI: 10.1017/gmb.2025.1
Fredy Alexander Guevara Agudelo, Nadine Leblanc, Isabelle Bourdeau-Julien, Gabrielle St-Arnaud, Fadil Dahhani, Nicolas Flamand, Alain Veilleux, Vincenzo Di Marzo, Frédéric Raymond
The endocannabinoidome (eCBome) and the gut microbiota have been implicated in diet-induced obesity and impaired metabolism. While the eCBome and the gut microbiome are known to respond to diet macronutrient composition, interaction with micronutrient intake has been relatively unexplored. Iron (Fe) is an essential micronutrient for the function of enzymes involved in energy and lipid metabolism. Here, we evaluated how 28 days of Fe depletion and enrichment, in interaction with Low Fat-Low Sucrose (LFLS) or High Fat-High Sucrose (HFHS) diets, affect the host via the eCBome, and modulate intestinal gut microbial communities. Circulating levels of N-oleoyl-ethanolamine (OEA) showed an elevation associated with Fe-enriched LFLS diet, while the Fe-depleted HFHS diet showed an elevation of N-arachidonoyl-ethanolamine (anandamide, AEA) and a decrease of circulating linoleic acid. In parallel, the response of intestinal inflammatory mediators to Fe in the diet showed decreased levels of prostaglandins PGE1, PGE3, and 1a,1b-dihomo PGF2α in the caecum. Individual differences in microbial taxa were less pronounced in the ileum than in the caecum, where Eubacterium coprostanoligenes group showed an increase in relative abundance associated with Fe-depleted LFLS diets. In conclusion, our study shows that Fe intake modulates the response to the macronutrient composition of the diet in mice.
{"title":"Dietary iron interacts with diet composition to modulate the endocannabinoidome and the gut microbiome in mice.","authors":"Fredy Alexander Guevara Agudelo, Nadine Leblanc, Isabelle Bourdeau-Julien, Gabrielle St-Arnaud, Fadil Dahhani, Nicolas Flamand, Alain Veilleux, Vincenzo Di Marzo, Frédéric Raymond","doi":"10.1017/gmb.2025.1","DOIUrl":"10.1017/gmb.2025.1","url":null,"abstract":"<p><p>The endocannabinoidome (eCBome) and the gut microbiota have been implicated in diet-induced obesity and impaired metabolism. While the eCBome and the gut microbiome are known to respond to diet macronutrient composition, interaction with micronutrient intake has been relatively unexplored. Iron (Fe) is an essential micronutrient for the function of enzymes involved in energy and lipid metabolism. Here, we evaluated how 28 days of Fe depletion and enrichment, in interaction with Low Fat-Low Sucrose (LFLS) or High Fat-High Sucrose (HFHS) diets, affect the host via the eCBome, and modulate intestinal gut microbial communities. Circulating levels of <i>N</i>-oleoyl-ethanolamine (OEA) showed an elevation associated with Fe-enriched LFLS diet, while the Fe-depleted HFHS diet showed an elevation of <i>N</i>-arachidonoyl-ethanolamine (anandamide, AEA) and a decrease of circulating linoleic acid. In parallel, the response of intestinal inflammatory mediators to Fe in the diet showed decreased levels of prostaglandins PGE<sub>1</sub>, PGE<sub>3</sub>, and 1a,1b-dihomo PGF<sub>2</sub>α in the caecum. Individual differences in microbial taxa were less pronounced in the ileum than in the caecum, where <i>Eubacterium coprostanoligenes</i> group showed an increase in relative abundance associated with Fe-depleted LFLS diets. In conclusion, our study shows that Fe intake modulates the response to the macronutrient composition of the diet in mice.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"6 ","pages":"e12"},"PeriodicalIF":0.0,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12277099/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144683705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17eCollection Date: 2025-01-01DOI: 10.1017/gmb.2024.12
Manahil M Bineid, Litai Liu, Eduard F Ventura, Sakshi Bansal, Katherine Curi-Quinto, Juana Del Valle-Mendoza, Gemma E Walton, Karani Santhanakrishnan Vimaleswaran
Oral supplementation with probiotics, prebiotics, and synbiotics is a novel potential complementary therapy for addressing overweight and obesity through gut microbiota modulation. This systematic review provides a comprehensive summary of the existing evidence to guide future research. Literature searches were conducted in four databases to identify human trials published until May 2024 that examined the impact of probiotic, prebiotic, or synbiotic interventions on faecal microbiota composition changes in overweight and obese participants from Latin American and Caribbean populations (LACPs). Of the 13,090 identified records, five randomised controlled trials (RCTs) from Brazil, Mexico, and Chile met the inclusion criteria for this review. The included RCTs evaluated different forms of therapies over short-term interventions (6 or 8 weeks), with sample sizes ranging from 21 to 39 participants across the studies. Variations in the reported outcomes were observed due to differences in supplement formulation, dosage, population characteristics, and methodological heterogeneity. The findings indicate that the available data are inadequate to establish definitive conclusions regarding the impact of biotic treatments on gut microbiota profiles in LACP. Further research with larger sample sizes and precise microbiota analysis is required to elucidate the implications of dietary interventions on gut microbiota in obesity and related disorders.
{"title":"The effect of probiotics, prebiotics and synbiotics on gut microbial community profile in overweight and obese Latin American and Caribbean populations: a systematic review of human trials.","authors":"Manahil M Bineid, Litai Liu, Eduard F Ventura, Sakshi Bansal, Katherine Curi-Quinto, Juana Del Valle-Mendoza, Gemma E Walton, Karani Santhanakrishnan Vimaleswaran","doi":"10.1017/gmb.2024.12","DOIUrl":"10.1017/gmb.2024.12","url":null,"abstract":"<p><p>Oral supplementation with probiotics, prebiotics, and synbiotics is a novel potential complementary therapy for addressing overweight and obesity through gut microbiota modulation. This systematic review provides a comprehensive summary of the existing evidence to guide future research. Literature searches were conducted in four databases to identify human trials published until May 2024 that examined the impact of probiotic, prebiotic, or synbiotic interventions on faecal microbiota composition changes in overweight and obese participants from Latin American and Caribbean populations (LACPs). Of the 13,090 identified records, five randomised controlled trials (RCTs) from Brazil, Mexico, and Chile met the inclusion criteria for this review. The included RCTs evaluated different forms of therapies over short-term interventions (6 or 8 weeks), with sample sizes ranging from 21 to 39 participants across the studies. Variations in the reported outcomes were observed due to differences in supplement formulation, dosage, population characteristics, and methodological heterogeneity. The findings indicate that the available data are inadequate to establish definitive conclusions regarding the impact of biotic treatments on gut microbiota profiles in LACP. Further research with larger sample sizes and precise microbiota analysis is required to elucidate the implications of dietary interventions on gut microbiota in obesity and related disorders.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"6 ","pages":"e2"},"PeriodicalIF":0.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810601/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The coronavirus disease 2019 (COVID-19) pandemic has caused health issues worldwide. Studies have suggested that modulation of the gut microbiota could attenuate the severity of COVID-19 symptoms. In light of this, we explored the effects of the prebiotic dietary fibre partially hydrolyzed guar gum (PHGG) on SARS-CoV-2 infection in a Syrian hamster model, hypothesizing that modulation of the gut microbiome and intestinal metabolites through PHGG administration would improve COVID-19 disease outcomes. Eight hamsters each were assigned to the PHGG administration and control groups. The PHGG group was given a diet supplemented with 5% PHGG for two weeks. Consequently, PHGG improved the host survival rate to 100% compared to 25% of the control group (P = 0.003) and attenuated morbid weight loss. Another non-infected set of hamsters was used for the analysis of the gut microbiome composition with 16S rRNA amplicon sequencing, serum, and faecal metabolites with GC-MS and LC-MS. PHGG altered the gut microbiome composition and increased the relative abundances of Ileibacterium, Bifidobacterium, and Prevotella. Furthermore, it elevated the concentrations of faecal valeric acid, propionic acid, ursodeoxycholic acid, and serum deoxycholic acid. Taken together, our data suggest that the prebiotic PHGG modulates gut metabolites and has the potential to reduce COVID-19 morbidity.
{"title":"Partially hydrolyzed guar gum attenuates symptoms and modulates the gut microbiota in a model of SARS-CoV-2 infection.","authors":"Jiayue Yang, Isaiah Song, Misa Saito, Tenagy Hartanto, Takeshi Ichinohe, Shinji Fukuda","doi":"10.1017/gmb.2024.7","DOIUrl":"10.1017/gmb.2024.7","url":null,"abstract":"<p><p>The coronavirus disease 2019 (COVID-19) pandemic has caused health issues worldwide. Studies have suggested that modulation of the gut microbiota could attenuate the severity of COVID-19 symptoms. In light of this, we explored the effects of the prebiotic dietary fibre partially hydrolyzed guar gum (PHGG) on SARS-CoV-2 infection in a Syrian hamster model, hypothesizing that modulation of the gut microbiome and intestinal metabolites through PHGG administration would improve COVID-19 disease outcomes. Eight hamsters each were assigned to the PHGG administration and control groups. The PHGG group was given a diet supplemented with 5% PHGG for two weeks. Consequently, PHGG improved the host survival rate to 100% compared to 25% of the control group (P = 0.003) and attenuated morbid weight loss. Another non-infected set of hamsters was used for the analysis of the gut microbiome composition with 16S rRNA amplicon sequencing, serum, and faecal metabolites with GC-MS and LC-MS. PHGG altered the gut microbiome composition and increased the relative abundances of <i>Ileibacterium</i>, <i>Bifidobacterium</i>, and <i>Prevotella.</i> Furthermore, it elevated the concentrations of faecal valeric acid, propionic acid, ursodeoxycholic acid, and serum deoxycholic acid. Taken together, our data suggest that the prebiotic PHGG modulates gut metabolites and has the potential to reduce COVID-19 morbidity.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"6 ","pages":"e1"},"PeriodicalIF":0.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09eCollection Date: 2025-01-01DOI: 10.1017/gmb.2024.15
Usha Longwani, Ashok K Sharma, Aditya S Malwe, Shubham K Jaiswal, Vineet K Sharma
There has been a growing recognition of the significant role played by the human gut microbiota in altering the bioavailability as well as the pharmacokinetic and pharmacodynamic aspects of orally ingested xenobiotic and biotic molecules. The determination of species-specific contributions to the metabolism of biotic and xenobiotic molecules has the potential to aid in the development of new therapeutic and nutraceutical molecules that can modulate human gut microbiota. Here we present "GutBugDB," an open-access digital repository that provides information on potential gut microbiome-mediated biotransformation of biotic and xenobiotic molecules using the predictions from the GutBug tool. This database is constructed using metabolic proteins from 690 gut bacterial genomes and 363,872 protein enzymes assigned with their EC numbers (with representative Expasy ID and domains present). It provides information on gut microbiome enzyme-mediated metabolic biotransformation for 1439 FDA-approved drugs and nutraceuticals. GutBugDB is publicly available at https://metabiosys.iiserb.ac.in/gutbugdb/.
{"title":"GutBugDB: a web resource to predict the human gut microbiome-mediated biotransformation of biotic and xenobiotic molecules.","authors":"Usha Longwani, Ashok K Sharma, Aditya S Malwe, Shubham K Jaiswal, Vineet K Sharma","doi":"10.1017/gmb.2024.15","DOIUrl":"10.1017/gmb.2024.15","url":null,"abstract":"<p><p>There has been a growing recognition of the significant role played by the human gut microbiota in altering the bioavailability as well as the pharmacokinetic and pharmacodynamic aspects of orally ingested xenobiotic and biotic molecules. The determination of species-specific contributions to the metabolism of biotic and xenobiotic molecules has the potential to aid in the development of new therapeutic and nutraceutical molecules that can modulate human gut microbiota. Here we present \"GutBugDB,\" an open-access digital repository that provides information on potential gut microbiome-mediated biotransformation of biotic and xenobiotic molecules using the predictions from the GutBug tool. This database is constructed using metabolic proteins from 690 gut bacterial genomes and 363,872 protein enzymes assigned with their EC numbers (with representative Expasy ID and domains present). It provides information on gut microbiome enzyme-mediated metabolic biotransformation for 1439 FDA-approved drugs and nutraceuticals. GutBugDB is publicly available at https://metabiosys.iiserb.ac.in/gutbugdb/.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"6 ","pages":"e3"},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810598/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-05eCollection Date: 2024-01-01DOI: 10.1017/gmb.2024.14
Ni Shi, Sushma Nepal, Rachel Hoobler, Cristina Menni, Mary C Playdon, Daniel Spakowicz, Philippa M Wells, Claire J Steves, Steven K Clinton, Fred K Tabung
Metabolic dietary patterns, including the Empirical Dietary Index for Hyperinsulinaemia (EDIH) and Empirical Dietary Inflammatory Pattern (EDIP), are known to impact multiple chronic diseases, but the role of the colonic microbiome in mediating such relationships is poorly understood. Among 1,610 adults with faecal 16S rRNA data in the TwinsUK cohort, we identified the microbiome profiles for EDIH and EDIP (from food frequency questionnaires) cross-sectionally using elastic net regression. We assessed the association of the dietary pattern-related microbiome profile scores with circulating biomarkers in multivariable-adjusted linear regression. In addition, we used PICRUSt2 to predict biological pathways associated with the enriched microbiome profiles, and further screened pathways for associations with the dietary scores in linear regression analyses. Microbiome profile scores developed with 32 (EDIH) and 15 (EDIP) genera were associated with higher insulin and homeostatic model assessment of insulin resistance. Six genera were associated with both dietary scores: Ruminococcaceae_UCG-008, Lachnospiraceae_UCG-008, Defluviitaleaceae_UCG-011 Anaeroplasma, inversely and Negativibacillus, Streptococcus, positively. Further, pathways in fatty acid biosynthesis, sugar acid degradation, and mevalonate metabolism were associated with insulinaemic and inflammatory diets. Dietary patterns that exert metabolic effects on insulin and inflammation may influence chronic disease risk by modulating gut microbial composition and function.
众所周知,代谢饮食模式,包括高胰岛素血症的经验饮食指数(EDIH)和经验饮食炎症模式(EDIP),会影响多种慢性疾病,但结肠微生物组在介导这种关系中的作用尚不清楚。在TwinsUK队列中有1610名粪便16S rRNA数据的成年人中,我们使用弹性网络回归(elastic net regression)对EDIH和EDIP(来自食物频率问卷)的微生物组进行了横断面鉴定。我们在多变量调整线性回归中评估了与饮食模式相关的微生物组谱评分与循环生物标志物的关系。此外,我们使用PICRUSt2预测与富集微生物组相关的生物学途径,并在线性回归分析中进一步筛选与饮食评分相关的途径。使用32 (EDIH)和15 (EDIP)属开发的微生物组谱评分与较高的胰岛素和胰岛素抵抗的稳态模型评估相关。6个属与两种膳食评分均相关:Ruminococcaceae_UCG-008、Lachnospiraceae_UCG-008、defluviitaleace_ucg -011无氧原体呈负相关,阴性杆菌、链球菌呈正相关。此外,脂肪酸生物合成、糖酸降解和甲羟戊酸代谢的途径与胰岛素和炎症性饮食有关。对胰岛素和炎症产生代谢影响的饮食模式可能通过调节肠道微生物组成和功能来影响慢性疾病的风险。
{"title":"Pro-inflammatory and hyperinsulinaemic dietary patterns are associated with specific gut microbiome profiles: a TwinsUK cohort study.","authors":"Ni Shi, Sushma Nepal, Rachel Hoobler, Cristina Menni, Mary C Playdon, Daniel Spakowicz, Philippa M Wells, Claire J Steves, Steven K Clinton, Fred K Tabung","doi":"10.1017/gmb.2024.14","DOIUrl":"10.1017/gmb.2024.14","url":null,"abstract":"<p><p>Metabolic dietary patterns, including the Empirical Dietary Index for Hyperinsulinaemia (EDIH) and Empirical Dietary Inflammatory Pattern (EDIP), are known to impact multiple chronic diseases, but the role of the colonic microbiome in mediating such relationships is poorly understood. Among 1,610 adults with faecal 16S rRNA data in the TwinsUK cohort, we identified the microbiome profiles for EDIH and EDIP (from food frequency questionnaires) cross-sectionally using elastic net regression. We assessed the association of the dietary pattern-related microbiome profile scores with circulating biomarkers in multivariable-adjusted linear regression. In addition, we used PICRUSt2 to predict biological pathways associated with the enriched microbiome profiles, and further screened pathways for associations with the dietary scores in linear regression analyses. Microbiome profile scores developed with 32 (EDIH) and 15 (EDIP) genera were associated with higher insulin and homeostatic model assessment of insulin resistance. Six genera were associated with both dietary scores: <i>Ruminococcaceae_UCG-008, Lachnospiraceae_UCG-008, Defluviitaleaceae_UCG-011 Anaeroplasma</i>, inversely and <i>Negativibacillus, Streptococcus</i>, positively. Further, pathways in fatty acid biosynthesis, sugar acid degradation, and mevalonate metabolism were associated with insulinaemic and inflammatory diets. Dietary patterns that exert metabolic effects on insulin and inflammation may influence chronic disease risk by modulating gut microbial composition and function.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"5 ","pages":"e12"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}