Pub Date : 2024-09-06DOI: 10.1109/TAI.2024.3455311
Dengyong Zhang;Ruiyi He;Xin Liao;Feng Li;Jiaxin Chen;Gaobo Yang
Deepfake detection has gained increasing research attention in media forensics, and a variety of works have been produced. However, subtle artifacts might be eliminated by compression, and the convolutional neural networks (CNNs)-based detectors are invalidated for fake face images with compression. In this work, we propose a two-stream network for deepfake detection. We observed that high-frequency noise features and spatial features are inherently complementary to each other. Thus, both spatial features and high-frequency noise features are exploited for face forgery detection. Specifically, we design a double-frequency transformer module (DFTM) to guide the learning of spatial features from local artifact regions. To effectively fuse spatial features and high-frequency noise features, a dual-domain attention fusion module (DDAFM) is designed. We also introduce a local relationship constraint loss, which requires only image-level labels, for model training. We evaluate the proposed approach on five large-scale benchmark datasets, and extensive experimental results demonstrate the proposed approach outperforms most SOTA works.
在媒体取证领域,深度伪造检测受到越来越多的研究关注,各种研究成果层出不穷。然而,压缩可能会消除细微的伪影,基于卷积神经网络(CNN)的检测器在压缩后对假脸图像的检测无效。在这项工作中,我们提出了一种双流网络深度检假技术。我们发现,高频噪声特征和空间特征在本质上是互补的。因此,空间特征和高频噪声特征都可用于人脸伪造检测。具体来说,我们设计了一个双频变压器模块(DFTM)来引导从局部伪造区域学习空间特征。为了有效融合空间特征和高频噪声特征,我们设计了双域注意力融合模块(DDAFM)。我们还为模型训练引入了局部关系约束损失,它只需要图像级标签。我们在五个大型基准数据集上对所提出的方法进行了评估,大量实验结果表明所提出的方法优于大多数 SOTA 作品。
{"title":"Face Forgery Detection Based on Fine-Grained Clues and Noise Inconsistency","authors":"Dengyong Zhang;Ruiyi He;Xin Liao;Feng Li;Jiaxin Chen;Gaobo Yang","doi":"10.1109/TAI.2024.3455311","DOIUrl":"https://doi.org/10.1109/TAI.2024.3455311","url":null,"abstract":"Deepfake detection has gained increasing research attention in media forensics, and a variety of works have been produced. However, subtle artifacts might be eliminated by compression, and the convolutional neural networks (CNNs)-based detectors are invalidated for fake face images with compression. In this work, we propose a two-stream network for deepfake detection. We observed that high-frequency noise features and spatial features are inherently complementary to each other. Thus, both spatial features and high-frequency noise features are exploited for face forgery detection. Specifically, we design a double-frequency transformer module (DFTM) to guide the learning of spatial features from local artifact regions. To effectively fuse spatial features and high-frequency noise features, a dual-domain attention fusion module (DDAFM) is designed. We also introduce a local relationship constraint loss, which requires only image-level labels, for model training. We evaluate the proposed approach on five large-scale benchmark datasets, and extensive experimental results demonstrate the proposed approach outperforms most SOTA works.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 1","pages":"144-158"},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1109/TAI.2024.3455313
Leena Heistrene;Juri Belikov;Dmitry Baimel;Liran Katzir;Ram Machlev;Kfir Levy;Shie Mannor;Yoash Levron
Forecasting errors in power markets, even as small as 1%, can have significant financial implications. However, even high-performance artificial intelligence (AI) based electricity price forecasting (EPF) models have instances when their prediction error is much higher than those shown by mean performance metrics. To date, explainable AI has been used to enhance the model transparency and trustworthiness of AI-based EPF models. However, this article demonstrates that insights from explainable AI (XAI) techniques can be expanded beyond its primary task of explanatory visualizations. This work presents a XAI-based error compensation approach to improve model performance and identify irregular predictions. The first phase of the proposed approach involves error quantification through a Shapley additive explanations (SHAP) based corrector model that fine-tunes the base predictor's forecasts. Using this corrector model's SHAP explanations, the proposed approach distinguishes high-accuracy predictions from lower ones in the second stage. Additionally, these explanations are more simplified than the base model, making them easier for nonexpert users such as bidding agents. Performance enhancement and insightful user-centric explanations are crucial for real-world scenarios such as price spikes during network congestion, high renewable penetration, and fluctuating fuel costs. Case studies discussed here show the efficacy of the proposed approach independent of model architecture, feature combination, or behavioral patterns of electricity prices in different markets.
{"title":"An Improved and Explainable Electricity Price Forecasting Model via SHAP-Based Error Compensation Approach","authors":"Leena Heistrene;Juri Belikov;Dmitry Baimel;Liran Katzir;Ram Machlev;Kfir Levy;Shie Mannor;Yoash Levron","doi":"10.1109/TAI.2024.3455313","DOIUrl":"https://doi.org/10.1109/TAI.2024.3455313","url":null,"abstract":"Forecasting errors in power markets, even as small as 1%, can have significant financial implications. However, even high-performance artificial intelligence (AI) based electricity price forecasting (EPF) models have instances when their prediction error is much higher than those shown by mean performance metrics. To date, explainable AI has been used to enhance the model transparency and trustworthiness of AI-based EPF models. However, this article demonstrates that insights from explainable AI (XAI) techniques can be expanded beyond its primary task of explanatory visualizations. This work presents a XAI-based error compensation approach to improve model performance and identify irregular predictions. The first phase of the proposed approach involves error quantification through a Shapley additive explanations (SHAP) based corrector model that fine-tunes the base predictor's forecasts. Using this corrector model's SHAP explanations, the proposed approach distinguishes high-accuracy predictions from lower ones in the second stage. Additionally, these explanations are more simplified than the base model, making them easier for nonexpert users such as bidding agents. Performance enhancement and insightful user-centric explanations are crucial for real-world scenarios such as price spikes during network congestion, high renewable penetration, and fluctuating fuel costs. Case studies discussed here show the efficacy of the proposed approach independent of model architecture, feature combination, or behavioral patterns of electricity prices in different markets.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 1","pages":"159-168"},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1109/TAI.2024.3455308
Ashley S. Dale;Lauren Christopher
A trustworthy artificial intelligence (AI) model should be robust to perturbed data, where robustness correlates with the dimensionality and linearity of feature representations in the model latent space. Existing methods for evaluating feature representations in the latent space are restricted to white-box models. In this work, we introduce direct adversarial latent estimation