Pub Date : 2024-08-13DOI: 10.1109/TAI.2024.3442153
Jun Fu;Yan Wang
Community detection is a fundamental and widely studied field in network science. To perform community detection, various competitive multiobjective evolutionary algorithms (MOEAs) have been proposed. It is worth noting that the latest continuous encoding (CE) method transforms the original discrete problem into a continuous one, which can achieve better community partitioning. However, the original CE ignored important structural features of nodes, such as the clustering coefficient (CC), resulting in poor initial solutions and reduced the performance of community detection. Therefore, we propose a simple scheme to effectively utilize node structure feature vectors to enhance community detection. Specifically, a CE and CC-based (CE-CC) MOEA called CECC-Net is proposed. In CECC-Net, the CC vector performs the Hadamard product with a continuous vector (i.e., a concatenation of the continuous variables $mathbf{x}$