Pub Date : 2024-07-16DOI: 10.1109/TAI.2024.3429052
Qingtan Meng;Qian Ma
This article investigates the adaptive fuzzy control problem for singular systems with actuator saturation and nonlinear perturbation, where the system consists of two coupled differential and algebraic subsystems. To cope with the actuator saturation, a new auxiliary system whose order is the same as the differential subsystem is introduced. With the help of the backstepping method and adaptive fuzzy control method, an observer-based adaptive output feedback tracking control approach is utilized. Under the designed controller, it is proved that the closed-loop system is impulse-free and regular, and all the involved signals are bounded. Furthermore, it is ensured that the tracking error can be adjusted by the errors between the control inputs and the corresponding saturated inputs, as well as the design parameters. Finally, simulation studies demonstrate the validity of the control approach.
{"title":"Observer-Based Adaptive Fuzzy Control for Singular Systems with Nonlinear Perturbation and Actuator Saturation","authors":"Qingtan Meng;Qian Ma","doi":"10.1109/TAI.2024.3429052","DOIUrl":"https://doi.org/10.1109/TAI.2024.3429052","url":null,"abstract":"This article investigates the adaptive fuzzy control problem for singular systems with actuator saturation and nonlinear perturbation, where the system consists of two coupled differential and algebraic subsystems. To cope with the actuator saturation, a new auxiliary system whose order is the same as the differential subsystem is introduced. With the help of the backstepping method and adaptive fuzzy control method, an observer-based adaptive output feedback tracking control approach is utilized. Under the designed controller, it is proved that the closed-loop system is impulse-free and regular, and all the involved signals are bounded. Furthermore, it is ensured that the tracking error can be adjusted by the errors between the control inputs and the corresponding saturated inputs, as well as the design parameters. Finally, simulation studies demonstrate the validity of the control approach.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 10","pages":"5090-5099"},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-16DOI: 10.1109/TAI.2024.3429048
Xue Hu;Fabrizio Cutolo;Hisham Iqbal;Johann Henckel;Ferdinando Rodriguez y Baena
Conventional orthopedic navigation systems depend on marker-based tracking, which may introduce additional skin incisions, increase the risk and discomfort for the patient, and entail increased workflow complexity. The guidance is conveyed via 2-D monitors, which may distract the surgeon and increase the cognitive burden. This study presents an artificial intelligence (AI)—driven surgical navigation framework for knee replacement surgery. The system comprises an augmented reality (AR) interface that combines an occlusions-robust deep learning-based markerless bone tracking and registration algorithm with a commercial HoloLens 2 headset calibrated for the user's perspective on both eyes. The feasibility of such a system in navigating a bone drilling task is investigated with an experienced orthopedic surgeon on three cadaveric knees under realistic operating room (OR) conditions. After registering an implant model to computed tomography (CT) scans, the preoperative plans are determined based on the location of the fixation pins. Navigation accuracy is quantified using a highly accurate optical tracking system. The achieved drilling error is 7.88 $pm$