Educational data mining (EDM) offers an effective solution to predict students’ course grades in the next term. Conventional grade prediction methods can be viewed as regressing an expectation of the probability distribution of the student's grade, typically called single-value grade prediction. The reliable prediction outcomes of these methods depend on the complete input information related to students. However, next-term grade prediction often encounters the challenge of incomplete input information due to the inaccessibility of future data and the privacy of data. In this scenario, single-value grade prediction struggles to assess students’ academic status, as it may not be represented and assessed by relying on a singular expectation value. This limitation increases the risk of misjudgment, and may lead to errors in educational decision-making. Considering the challenge of collecting complete input information, we shift from traditional single-value predictions to forecasting the explicit probability distribution of the course grade. The probability distribution of the grade can assess the students’ academic status by providing probabilities corresponding to all possible grade values rather than relying solely on an expectation value, which offers the foundation to support the educators’ decision-making. In this article, the course grade distribution prediction (CGDP) model is proposed, aiming to estimate an explicit conditional probability distribution of course grades in the next term. This model can identify at-risk students, offering comprehensive decision-making information for educators and students. To ensure precise distribution predictions, a calibration method is also employed to improve the alignment between predicted and actual probabilities. Experimental results verify the effectiveness of the proposed model in early grade warning for undergraduates, based on real university data.
{"title":"A Novel Grades Prediction Method for Undergraduate Students by Learning Explicit Conditional Distribution","authors":"Na Zhang;Ming Liu;Lin Wang;Shuangrong Liu;Runyuan Sun;Bo Yang;Shenghui Zhu;Chengdong Li;Cheng Yang;Yuhu Cheng","doi":"10.1109/TAI.2024.3416077","DOIUrl":"https://doi.org/10.1109/TAI.2024.3416077","url":null,"abstract":"Educational data mining (EDM) offers an effective solution to predict students’ course grades in the next term. Conventional grade prediction methods can be viewed as regressing an expectation of the probability distribution of the student's grade, typically called single-value grade prediction. The reliable prediction outcomes of these methods depend on the complete input information related to students. However, next-term grade prediction often encounters the challenge of incomplete input information due to the inaccessibility of future data and the privacy of data. In this scenario, single-value grade prediction struggles to assess students’ academic status, as it may not be represented and assessed by relying on a singular expectation value. This limitation increases the risk of misjudgment, and may lead to errors in educational decision-making. Considering the challenge of collecting complete input information, we shift from traditional single-value predictions to forecasting the explicit probability distribution of the course grade. The probability distribution of the grade can assess the students’ academic status by providing probabilities corresponding to all possible grade values rather than relying solely on an expectation value, which offers the foundation to support the educators’ decision-making. In this article, the course grade distribution prediction (CGDP) model is proposed, aiming to estimate an explicit conditional probability distribution of course grades in the next term. This model can identify at-risk students, offering comprehensive decision-making information for educators and students. To ensure precise distribution predictions, a calibration method is also employed to improve the alignment between predicted and actual probabilities. Experimental results verify the effectiveness of the proposed model in early grade warning for undergraduates, based on real university data.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 9","pages":"4837-4848"},"PeriodicalIF":0.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1109/TAI.2024.3415549
Huai-Ning Wu;Xiao-Yan Jiang;Mi Wang
Since human beings are of limited reasoning ability as well as the machines do not usually know human intentions, how to learn human cognitive levels in shared control to enhance the machines’ intelligence is a challenging issue. In this study, this issue is addressed in the context of human–machine shared control for a class of human-in-the-loop (HiTL) systems based on a differential game with bounded rationality and incomplete information. Initially, we formulate the human–machine shared control problem as a two-player nonzero-sum linear quadratic dynamic game (LQDG), where the weighting matrix of the cost function representing the human intention is unknown for the machine. To model the human bounded rationality, the level- $boldsymbol{k}$