首页 > 最新文献

Information processing in medical imaging : proceedings of the ... conference最新文献

英文 中文
Representation Disentanglement for Multi-modal Brain MRI Analysis. 多模态脑MRI分析的表征解缠。
Pub Date : 2021-06-01 Epub Date: 2021-06-14 DOI: 10.1007/978-3-030-78191-0_25
Jiahong Ouyang, Ehsan Adeli, Kilian M Pohl, Qingyu Zhao, Greg Zaharchuk

Multi-modal MRIs are widely used in neuroimaging applications since different MR sequences provide complementary information about brain structures. Recent works have suggested that multi-modal deep learning analysis can benefit from explicitly disentangling anatomical (shape) and modality (appearance) information into separate image presentations. In this work, we challenge mainstream strategies by showing that they do not naturally lead to representation disentanglement both in theory and in practice. To address this issue, we propose a margin loss that regularizes the similarity in relationships of the representations across subjects and modalities. To enable robust training, we further use a conditional convolution to design a single model for encoding images of all modalities. Lastly, we propose a fusion function to combine the disentangled anatomical representations as a set of modality-invariant features for downstream tasks. We evaluate the proposed method on three multi-modal neuroimaging datasets. Experiments show that our proposed method can achieve superior disentangled representations compared to existing disentanglement strategies. Results also indicate that the fused anatomical representation has potential in the downstream task of zero-dose PET reconstruction and brain tumor segmentation.

多模态核磁共振被广泛应用于神经成像应用,因为不同的核磁共振序列提供了大脑结构的互补信息。最近的研究表明,多模态深度学习分析可以从明确地将解剖(形状)和模态(外观)信息分离到单独的图像表示中受益。在这项工作中,我们通过表明它们在理论和实践中都不会自然地导致表征解纠缠来挑战主流策略。为了解决这个问题,我们提出了一个边际损失,它使跨主体和模态的表征关系中的相似性规范化。为了实现鲁棒性训练,我们进一步使用条件卷积来设计一个单一的模型来编码所有模态的图像。最后,我们提出了一个融合函数,将解纠缠的解剖表示组合为一组模态不变的特征,用于下游任务。我们在三个多模态神经成像数据集上评估了所提出的方法。实验表明,与现有的解纠缠策略相比,我们提出的方法可以获得更好的解纠缠表示。结果还表明,融合的解剖表征在后续的零剂量PET重建和脑肿瘤分割任务中具有潜在的应用价值。
{"title":"Representation Disentanglement for Multi-modal Brain MRI Analysis.","authors":"Jiahong Ouyang,&nbsp;Ehsan Adeli,&nbsp;Kilian M Pohl,&nbsp;Qingyu Zhao,&nbsp;Greg Zaharchuk","doi":"10.1007/978-3-030-78191-0_25","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_25","url":null,"abstract":"<p><p>Multi-modal MRIs are widely used in neuroimaging applications since different MR sequences provide complementary information about brain structures. Recent works have suggested that multi-modal deep learning analysis can benefit from explicitly disentangling anatomical (shape) and modality (appearance) information into separate image presentations. In this work, we challenge mainstream strategies by showing that they do not naturally lead to representation disentanglement both in theory and in practice. To address this issue, we propose a margin loss that regularizes the similarity in relationships of the representations across subjects and modalities. To enable robust training, we further use a conditional convolution to design a single model for encoding images of all modalities. Lastly, we propose a fusion function to combine the disentangled anatomical representations as a set of modality-invariant features for downstream tasks. We evaluate the proposed method on three multi-modal neuroimaging datasets. Experiments show that our proposed method can achieve superior disentangled representations compared to existing disentanglement strategies. Results also indicate that the fused anatomical representation has potential in the downstream task of zero-dose PET reconstruction and brain tumor segmentation.</p>","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":" ","pages":"321-333"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844656/pdf/nihms-1776957.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39929535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Going Beyond Saliency Maps: Training Deep Models to Interpret Deep Models. 超越显著性地图:训练深度模型,解读深度模型。
Pub Date : 2021-06-01 Epub Date: 2021-06-14 DOI: 10.1007/978-3-030-78191-0_6
Zixuan Liu, Ehsan Adeli, Kilian M Pohl, Qingyu Zhao

Interpretability is a critical factor in applying complex deep learning models to advance the understanding of brain disorders in neuroimaging studies. To interpret the decision process of a trained classifier, existing techniques typically rely on saliency maps to quantify the voxel-wise or feature-level importance for classification through partial derivatives. Despite providing some level of localization, these maps are not human-understandable from the neuroscience perspective as they often do not inform the specific type of morphological changes linked to the brain disorder. Inspired by the image-to-image translation scheme, we propose to train simulator networks to inject (or remove) patterns of the disease into a given MRI based on a warping operation, such that the classifier increases (or decreases) its confidence in labeling the simulated MRI as diseased. To increase the robustness of training, we propose to couple the two simulators into a unified model based on conditional convolution. We applied our approach to interpreting classifiers trained on a synthetic dataset and two neuroimaging datasets to visualize the effect of Alzheimer's disease and alcohol dependence. Compared to the saliency maps generated by baseline approaches, our simulations and visualizations based on the Jacobian determinants of the warping field reveal meaningful and understandable patterns related to the diseases.

在神经成像研究中,应用复杂的深度学习模型来促进对脑部疾病的理解,可解释性是一个关键因素。为了解释训练有素的分类器的决策过程,现有技术通常依赖于显著性图,通过偏导数量化体素或特征级分类的重要性。尽管这些图谱提供了一定程度的定位,但从神经科学的角度来看,它们并不为人类所理解,因为它们通常无法告知与脑部疾病相关的形态变化的具体类型。受图像到图像转换方案的启发,我们建议训练模拟器网络,根据扭曲操作将疾病模式注入(或移除)给定的磁共振成像中,从而增加(或减少)分类器将模拟磁共振成像标记为疾病的置信度。为了提高训练的鲁棒性,我们建议将两个模拟器结合到一个基于条件卷积的统一模型中。我们将我们的方法应用于解释在合成数据集和两个神经成像数据集上训练的分类器,以直观显示阿尔茨海默病和酒精依赖的影响。与基线方法生成的显著性地图相比,我们基于翘曲场雅各布决定因素的模拟和可视化揭示了与疾病相关的有意义且可理解的模式。
{"title":"Going Beyond Saliency Maps: Training Deep Models to Interpret Deep Models.","authors":"Zixuan Liu, Ehsan Adeli, Kilian M Pohl, Qingyu Zhao","doi":"10.1007/978-3-030-78191-0_6","DOIUrl":"10.1007/978-3-030-78191-0_6","url":null,"abstract":"<p><p>Interpretability is a critical factor in applying complex deep learning models to advance the understanding of brain disorders in neuroimaging studies. To interpret the decision process of a trained classifier, existing techniques typically rely on <i>saliency maps</i> to quantify the voxel-wise or feature-level importance for classification through partial derivatives. Despite providing some level of localization, these maps are not human-understandable from the neuroscience perspective as they often do not inform the specific type of morphological changes linked to the brain disorder. Inspired by the image-to-image translation scheme, we propose to train simulator networks to inject (or remove) patterns of the disease into a given MRI based on a warping operation, such that the classifier increases (or decreases) its confidence in labeling the simulated MRI as diseased. To increase the robustness of training, we propose to couple the two simulators into a unified model based on <i>conditional convolution</i>. We applied our approach to interpreting classifiers trained on a synthetic dataset and two neuroimaging datasets to visualize the effect of Alzheimer's disease and alcohol dependence. Compared to the saliency maps generated by baseline approaches, our simulations and visualizations based on the Jacobian determinants of the warping field reveal meaningful and understandable patterns related to the diseases.</p>","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":" ","pages":"71-82"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8451265/pdf/nihms-1738816.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39436817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equivariant Spherical Deconvolution: Learning Sparse Orientation Distribution Functions from Spherical Data. 等变球面反卷积:从球面数据中学习稀疏方向分布函数。
Pub Date : 2021-06-01 DOI: 10.1007/978-3-030-78191-0_21
Axel Elaldi, Neel Dey, Heejong Kim, Guido Gerig

We present a rotation-equivariant self-supervised learning framework for the sparse deconvolution of non-negative scalar fields on the unit sphere. Spherical signals with multiple peaks naturally arise in Diffusion MRI (dMRI), where each voxel consists of one or more signal sources corresponding to anisotropic tissue structure such as white matter. Due to spatial and spectral partial voluming, clinically-feasible dMRI struggles to resolve crossing-fiber white matter configurations, leading to extensive development in spherical deconvolution methodology to recover underlying fiber directions. However, these methods are typically linear and struggle with small crossing-angles and partial volume fraction estimation. In this work, we improve on current methodologies by nonlinearly estimating fiber structures via self-supervised spherical convolutional networks with guaranteed equivariance to spherical rotation. We perform validation via extensive single and multi-shell synthetic benchmarks demonstrating competitive performance against common base-lines. We further show improved downstream performance on fiber tractography measures on the Tractometer benchmark dataset. Finally, we show downstream improvements in terms of tractography and partial volume estimation on a multi-shell dataset of human subjects.

提出了单位球上非负标量场稀疏反卷积的旋转等变自监督学习框架。具有多峰的球形信号在扩散MRI (dMRI)中自然出现,其中每个体素由一个或多个与各向异性组织结构(如白质)相对应的信号源组成。由于空间和光谱部分体积,临床上可行的dMRI难以解决交叉纤维白质结构,导致球形反褶积方法的广泛发展,以恢复潜在的纤维方向。然而,这些方法通常是线性的,并且难以进行小的交叉角和部分体积分数估计。在这项工作中,我们改进了现有的方法,通过保证球旋转等方差的自监督球面卷积网络非线性估计纤维结构。我们通过广泛的单壳和多壳合成基准进行验证,展示了与普通基线相比的竞争性能。我们在Tractometer基准数据集上进一步展示了光纤牵引测量的下游性能改进。最后,我们在人类受试者的多壳数据集上展示了在示踪和部分体积估计方面的下游改进。
{"title":"Equivariant Spherical Deconvolution: Learning Sparse Orientation Distribution Functions from Spherical Data.","authors":"Axel Elaldi,&nbsp;Neel Dey,&nbsp;Heejong Kim,&nbsp;Guido Gerig","doi":"10.1007/978-3-030-78191-0_21","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_21","url":null,"abstract":"<p><p>We present a rotation-equivariant self-supervised learning framework for the sparse deconvolution of non-negative scalar fields on the unit sphere. Spherical signals with multiple peaks naturally arise in Diffusion MRI (dMRI), where each voxel consists of one or more signal sources corresponding to anisotropic tissue structure such as white matter. Due to spatial and spectral partial voluming, clinically-feasible dMRI struggles to resolve crossing-fiber white matter configurations, leading to extensive development in spherical deconvolution methodology to recover underlying fiber directions. However, these methods are typically linear and struggle with small crossing-angles and partial volume fraction estimation. In this work, we improve on current methodologies by nonlinearly estimating fiber structures via self-supervised spherical convolutional networks with guaranteed equivariance to spherical rotation. We perform validation via extensive single and multi-shell synthetic benchmarks demonstrating competitive performance against common base-lines. We further show improved downstream performance on fiber tractography measures on the Tractometer benchmark dataset. Finally, we show downstream improvements in terms of tractography and partial volume estimation on a multi-shell dataset of human subjects.</p>","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"12729 ","pages":"267-278"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422024/pdf/nihms-1922058.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10008226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Cortical Morphometry Analysis based on Worst Transportation Theory. 基于最坏运输理论的皮质形态计量学分析。
Pub Date : 2021-06-01 Epub Date: 2021-06-14 DOI: 10.1007/978-3-030-78191-0_13
Min Zhang, Dongsheng An, Na Lei, Jianfeng Wu, Tong Zhao, Xiaoyin Xu, Yalin Wang, Xianfeng Gu

Biomarkers play an important role in early detection and intervention in Alzheimer's disease (AD). However, obtaining effective biomarkers for AD is still a big challenge. In this work, we propose to use the worst transportation cost as a univariate biomarker to index cortical morphometry for tracking AD progression. The worst transportation (WT) aims to find the least economical way to transport one measure to the other, which contrasts to the optimal transportation (OT) that finds the most economical way between measures. To compute the WT cost, we generalize the Brenier theorem for the OT map to the WT map, and show that the WT map is the gradient of a concave function satisfying the Monge-Ampere equation. We also develop an efficient algorithm to compute the WT map based on computational geometry. We apply the algorithm to analyze cortical shape difference between dementia due to AD and normal aging individuals. The experimental results reveal the effectiveness of our proposed method which yields better statistical performance than other competiting methods including the OT.

生物标志物在阿尔茨海默病(AD)的早期发现和干预中发挥着重要作用。然而,获得有效的AD生物标志物仍然是一个很大的挑战。在这项工作中,我们建议使用最差运输成本作为单变量生物标志物来索引皮质形态测量,以跟踪AD的进展。最差运输(WT)的目标是寻找最不经济的方式将一个措施运输到另一个措施,而最优运输(OT)是寻找最经济的方式在措施之间。为了计算WT代价,我们将OT映射的Brenier定理推广到WT映射,并证明WT映射是满足Monge-Ampere方程的凹函数的梯度。我们还开发了一种基于计算几何的高效算法来计算WT映射。我们应用该算法分析了阿尔茨海默氏症引起的痴呆与正常衰老个体之间皮层形状的差异。实验结果表明了该方法的有效性,其统计性能优于包括OT在内的其他竞争方法。
{"title":"Cortical Morphometry Analysis based on Worst Transportation Theory.","authors":"Min Zhang,&nbsp;Dongsheng An,&nbsp;Na Lei,&nbsp;Jianfeng Wu,&nbsp;Tong Zhao,&nbsp;Xiaoyin Xu,&nbsp;Yalin Wang,&nbsp;Xianfeng Gu","doi":"10.1007/978-3-030-78191-0_13","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_13","url":null,"abstract":"<p><p>Biomarkers play an important role in early detection and intervention in Alzheimer's disease (AD). However, obtaining effective biomarkers for AD is still a big challenge. In this work, we propose to use the worst transportation cost as a univariate biomarker to index cortical morphometry for tracking AD progression. The worst transportation (WT) aims to find the least economical way to transport one measure to the other, which contrasts to the optimal transportation (OT) that finds the most economical way between measures. To compute the WT cost, we generalize the Brenier theorem for the OT map to the WT map, and show that the WT map is the gradient of a concave function satisfying the Monge-Ampere equation. We also develop an efficient algorithm to compute the WT map based on computational geometry. We apply the algorithm to analyze cortical shape difference between dementia due to AD and normal aging individuals. The experimental results reveal the effectiveness of our proposed method which yields better statistical performance than other competiting methods including the OT.</p>","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":" ","pages":"163-176"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8291742/pdf/nihms-1689887.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39206848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multi-scale Spatial and Temporal Attention Network on Dynamic Connectivity to Localize the Eloquent Cortex in Brain Tumor Patients 基于动态连通性的多尺度时空注意网络定位脑肿瘤患者大脑皮层
Pub Date : 2021-06-01 DOI: 10.1007/978-3-030-78191-0_19
Naresh Nandakumar, K. Manzoor, S. Agarwal, J. Pillai, S. Gujar, H. Sair, A. Venkataraman
{"title":"A Multi-scale Spatial and Temporal Attention Network on Dynamic Connectivity to Localize the Eloquent Cortex in Brain Tumor Patients","authors":"Naresh Nandakumar, K. Manzoor, S. Agarwal, J. Pillai, S. Gujar, H. Sair, A. Venkataraman","doi":"10.1007/978-3-030-78191-0_19","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_19","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"12729 1","pages":"241-252"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48604772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Cytoarchitecture Measurements in Brain Gray Matter Using Likelihood-Free Inference 使用无似然推断的脑灰质细胞结构测量
Pub Date : 2021-05-15 DOI: 10.1007/978-3-030-78191-0_15
Maëliss Jallais, P. Rodrigues, Alexandre Gramfort, D. Wassermann
{"title":"Cytoarchitecture Measurements in Brain Gray Matter Using Likelihood-Free Inference","authors":"Maëliss Jallais, P. Rodrigues, Alexandre Gramfort, D. Wassermann","doi":"10.1007/978-3-030-78191-0_15","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_15","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"22 1","pages":"191-202"},"PeriodicalIF":0.0,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91257956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
TopoTxR: A Topological Biomarker for Predicting Treatment Response in Breast Cancer TopoTxR:预测乳腺癌治疗反应的拓扑生物标志物
Pub Date : 2021-05-13 DOI: 10.1007/978-3-030-78191-0_30
Fan Wang, S. Kapse, Steven Liu, P. Prasanna, Chao Chen
{"title":"TopoTxR: A Topological Biomarker for Predicting Treatment Response in Breast Cancer","authors":"Fan Wang, S. Kapse, Steven Liu, P. Prasanna, Chao Chen","doi":"10.1007/978-3-030-78191-0_30","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_30","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"8 1","pages":"386-397"},"PeriodicalIF":0.0,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75460357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Spatially Varying Label Smoothing: Capturing Uncertainty from Expert Annotations 空间变化标签平滑:从专家注释中捕获不确定性
Pub Date : 2021-04-12 DOI: 10.1007/978-3-030-78191-0_52
Mobarakol Islam, B. Glocker
{"title":"Spatially Varying Label Smoothing: Capturing Uncertainty from Expert Annotations","authors":"Mobarakol Islam, B. Glocker","doi":"10.1007/978-3-030-78191-0_52","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_52","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"42 1","pages":"677-688"},"PeriodicalIF":0.0,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78107449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
MR Slice Profile Estimation by Learning to Match Internal Patch Distributions 学习匹配内部斑块分布的MR切片轮廓估计
Pub Date : 2021-03-31 DOI: 10.1007/978-3-030-78191-0_9
Shuo Han, Samuel W. Remedios, A. Carass, M. Schar, Jerry L Prince
{"title":"MR Slice Profile Estimation by Learning to Match Internal Patch Distributions","authors":"Shuo Han, Samuel W. Remedios, A. Carass, M. Schar, Jerry L Prince","doi":"10.1007/978-3-030-78191-0_9","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_9","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"52 1","pages":"108-119"},"PeriodicalIF":0.0,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85884655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Information-based Disentangled Representation Learning for Unsupervised MR Harmonization 基于信息的无监督MR协调解纠缠表示学习
Pub Date : 2021-03-24 DOI: 10.1007/978-3-030-78191-0_27
Lianrui Zuo, B. Dewey, A. Carass, Yihao Liu, Yufan He, P. Calabresi, Jerry L Prince
{"title":"Information-based Disentangled Representation Learning for Unsupervised MR Harmonization","authors":"Lianrui Zuo, B. Dewey, A. Carass, Yihao Liu, Yufan He, P. Calabresi, Jerry L Prince","doi":"10.1007/978-3-030-78191-0_27","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_27","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"8 1 1","pages":"346-359"},"PeriodicalIF":0.0,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83680741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
期刊
Information processing in medical imaging : proceedings of the ... conference
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1