Background: A significant proportion of young at-risk patients and nonsmokers are excluded by the current guidelines for lung cancer (LC) screening, resulting in low-screening adoption. The vision of the US National Academy of Medicine to transform health systems into learning health systems (LHS) holds promise for bringing necessary structural changes to health care, thereby addressing the exclusivity and adoption issues of LC screening.
Objective: This study aims to realize the LHS vision by designing an equitable, machine learning (ML)-enabled LHS unit for LC screening. It focuses on developing an inclusive and practical LC risk prediction model, suitable for initializing the ML-enabled LHS (ML-LHS) unit. This model aims to empower primary physicians in a clinical research network, linking central hospitals and rural clinics, to routinely deliver risk-based screening for enhancing LC early detection in broader populations.
Methods: We created a standardized data set of health factors from 1397 patients with LC and 1448 control patients, all aged 30 years and older, including both smokers and nonsmokers, from a hospital's electronic medical record system. Initially, a data-centric ML approach was used to create inclusive ML models for risk prediction from all available health factors. Subsequently, a quantitative distribution of LC health factors was used in feature engineering to refine the models into a more practical model with fewer variables.
Results: The initial inclusive 250-variable XGBoost model for LC risk prediction achieved performance metrics of 0.86 recall, 0.90 precision, and 0.89 accuracy. Post feature refinement, a practical 29-variable XGBoost model was developed, displaying performance metrics of 0.80 recall, 0.82 precision, and 0.82 accuracy. This model met the criteria for initializing the ML-LHS unit for risk-based, inclusive LC screening within clinical research networks.
Conclusions: This study designed an innovative ML-LHS unit for a clinical research network, aiming to sustainably provide inclusive LC screening to all at-risk populations. It developed an inclusive and practical XGBoost model from hospital electronic medical record data, capable of initializing such an ML-LHS unit for community and rural clinics. The anticipated deployment of this ML-LHS unit is expected to significantly improve LC-screening rates and early detection among broader populations, including those typically overlooked by existing screening guidelines.
Background: Collecting information on adverse events following immunization from as many sources as possible is critical for promptly identifying potential safety concerns and taking appropriate actions. Febrile convulsions are recognized as an important potential reaction to vaccination in children aged <6 years.
Objective: The primary aim of this study was to evaluate the performance of natural language processing techniques and machine learning (ML) models for the rapid detection of febrile convulsion presentations in emergency departments (EDs), especially with respect to the minimum training data requirements to obtain optimum model performance. In addition, we examined the deployment requirements for a ML model to perform real-time monitoring of ED triage notes.
Methods: We developed a pattern matching approach as a baseline and evaluated ML models for the classification of febrile convulsions in ED triage notes to determine both their training requirements and their effectiveness in detecting febrile convulsions. We measured their performance during training and then compared the deployed models' result on new incoming ED data.
Results: Although the best standard neural networks had acceptable performance and were low-resource models, transformer-based models outperformed them substantially, justifying their ongoing deployment.
Conclusions: Using natural language processing, particularly with the use of large language models, offers significant advantages in syndromic surveillance. Large language models make highly effective classifiers, and their text generation capacity can be used to enhance the quality and diversity of training data.
Background: Lung disease is a severe problem in the United States. Despite the decreasing rates of cigarette smoking, chronic obstructive pulmonary disease (COPD) continues to be a health burden in the United States. In this paper, we focus on COPD in the United States from 2016 to 2019.
Objective: We gathered a diverse set of non-personally identifiable information from public data sources to better understand and predict COPD rates at the core-based statistical area (CBSA) level in the United States. Our objective was to compare linear models with machine learning models to obtain the most accurate and interpretable model of COPD.
Methods: We integrated non-personally identifiable information from multiple Centers for Disease Control and Prevention sources and used them to analyze COPD with different types of methods. We included cigarette smoking, a well-known contributing factor, and race/ethnicity because health disparities among different races and ethnicities in the United States are also well known. The models also included the air quality index, education, employment, and economic variables. We fitted models with both multiple linear regression and machine learning methods.
Results: The most accurate multiple linear regression model has variance explained of 81.1%, mean absolute error of 0.591, and symmetric mean absolute percentage error of 9.666. The most accurate machine learning model has variance explained of 85.7%, mean absolute error of 0.456, and symmetric mean absolute percentage error of 6.956. Overall, cigarette smoking and household income are the strongest predictor variables. Moderately strong predictors include education level and unemployment level, as well as American Indian or Alaska Native, Black, and Hispanic population percentages, all measured at the CBSA level.
Conclusions: This research highlights the importance of using diverse data sources as well as multiple methods to understand and predict COPD. The most accurate model was a gradient boosted tree, which captured nonlinearities in a model whose accuracy is superior to the best multiple linear regression. Our interpretable models suggest ways that individual predictor variables can be used in tailored interventions aimed at decreasing COPD rates in specific demographic and ethnographic communities. Gaps in understanding the health impacts of poor air quality, particularly in relation to climate change, suggest a need for further research to design interventions and improve public health.
Background: Predicting hospitalization from nurse triage notes has the potential to augment care. However, there needs to be careful considerations for which models to choose for this goal. Specifically, health systems will have varying degrees of computational infrastructure available and budget constraints.
Objective: To this end, we compared the performance of the deep learning, Bidirectional Encoder Representations from Transformers (BERT)-based model, Bio-Clinical-BERT, with a bag-of-words (BOW) logistic regression (LR) model incorporating term frequency-inverse document frequency (TF-IDF). These choices represent different levels of computational requirements.
Methods: A retrospective analysis was conducted using data from 1,391,988 patients who visited emergency departments in the Mount Sinai Health System spanning from 2017 to 2022. The models were trained on 4 hospitals' data and externally validated on a fifth hospital's data.
Results: The Bio-Clinical-BERT model achieved higher areas under the receiver operating characteristic curve (0.82, 0.84, and 0.85) compared to the BOW-LR-TF-IDF model (0.81, 0.83, and 0.84) across training sets of 10,000; 100,000; and ~1,000,000 patients, respectively. Notably, both models proved effective at using triage notes for prediction, despite the modest performance gap.
Conclusions: Our findings suggest that simpler machine learning models such as BOW-LR-TF-IDF could serve adequately in resource-limited settings. Given the potential implications for patient care and hospital resource management, further exploration of alternative models and techniques is warranted to enhance predictive performance in this critical domain.
International registered report identifier (irrid): RR2-10.1101/2023.08.07.23293699.
Background: The integration of machine learning (ML) in predicting asthma-related outcomes in children presents a novel approach in pediatric health care.
Objective: This scoping review aims to analyze studies published since 2019, focusing on ML algorithms, their applications, and predictive performances.
Methods: We searched Ovid MEDLINE ALL and Embase on Ovid, the Cochrane Library (Wiley), CINAHL (EBSCO), and Web of Science (core collection). The search covered the period from January 1, 2019, to July 18, 2023. Studies applying ML models in predicting asthma-related outcomes in children aged <18 years were included. Covidence was used for citation management, and the risk of bias was assessed using the Prediction Model Risk of Bias Assessment Tool.
Results: From 1231 initial articles, 15 met our inclusion criteria. The sample size ranged from 74 to 87,413 patients. Most studies used multiple ML techniques, with logistic regression (n=7, 47%) and random forests (n=6, 40%) being the most common. Key outcomes included predicting asthma exacerbations, classifying asthma phenotypes, predicting asthma diagnoses, and identifying potential risk factors. For predicting exacerbations, recurrent neural networks and XGBoost showed high performance, with XGBoost achieving an area under the receiver operating characteristic curve (AUROC) of 0.76. In classifying asthma phenotypes, support vector machines were highly effective, achieving an AUROC of 0.79. For diagnosis prediction, artificial neural networks outperformed logistic regression, with an AUROC of 0.63. To identify risk factors focused on symptom severity and lung function, random forests achieved an AUROC of 0.88. Sound-based studies distinguished wheezing from nonwheezing and asthmatic from normal coughs. The risk of bias assessment revealed that most studies (n=8, 53%) exhibited low to moderate risk, ensuring a reasonable level of confidence in the findings. Common limitations across studies included data quality issues, sample size constraints, and interpretability concerns.
Conclusions: This review highlights the diverse application of ML in predicting pediatric asthma outcomes, with each model offering unique strengths and challenges. Future research should address data quality, increase sample sizes, and enhance model interpretability to optimize ML utility in clinical settings for pediatric asthma management.
Background: Opioid use disorder (OUD) is a critical public health crisis in the United States, affecting >5.5 million Americans in 2021. Machine learning has been used to predict patient risk of incident OUD. However, little is known about the fairness and bias of these predictive models.
Objective: The aims of this study are two-fold: (1) to develop a machine learning bias mitigation algorithm for sociodemographic features and (2) to develop a fairness-aware weighted majority voting (WMV) classifier for OUD prediction.
Methods: We used the 2020 National Survey on Drug and Health data to develop a neural network (NN) model using stochastic gradient descent (SGD; NN-SGD) and an NN model using Adam (NN-Adam) optimizers and evaluated sociodemographic bias by comparing the area under the curve values. A bias mitigation algorithm, based on equality of odds, was implemented to minimize disparities in specificity and recall. Finally, a WMV classifier was developed for fairness-aware prediction of OUD. To further analyze bias detection and mitigation, we did a 1-N matching of OUD to non-OUD cases, controlling for socioeconomic variables, and evaluated the performance of the proposed bias mitigation algorithm and WMV classifier.
Results: Our bias mitigation algorithm substantially reduced bias with NN-SGD, by 21.66% for sex, 1.48% for race, and 21.04% for income, and with NN-Adam by 16.96% for sex, 8.87% for marital status, 8.45% for working condition, and 41.62% for race. The fairness-aware WMV classifier achieved a recall of 85.37% and 92.68% and an accuracy of 58.85% and 90.21% using NN-SGD and NN-Adam, respectively. The results after matching also indicated remarkable bias reduction with NN-SGD and NN-Adam, respectively, as follows: sex (0.14% vs 0.97%), marital status (12.95% vs 10.33%), working condition (14.79% vs 15.33%), race (60.13% vs 41.71%), and income (0.35% vs 2.21%). Moreover, the fairness-aware WMV classifier achieved high performance with a recall of 100% and 85.37% and an accuracy of 73.20% and 89.38% using NN-SGD and NN-Adam, respectively.
Conclusions: The application of the proposed bias mitigation algorithm shows promise in reducing sociodemographic bias, with the WMV classifier confirming bias reduction and high performance in OUD prediction.
Background: With the rapid evolution of artificial intelligence (AI), particularly large language models (LLMs) such as ChatGPT-4 (OpenAI), there is an increasing interest in their potential to assist in scholarly tasks, including conducting literature reviews. However, the efficacy of AI-generated reviews compared with traditional human-led approaches remains underexplored.
Objective: This study aims to compare the quality of literature reviews conducted by the ChatGPT-4 model with those conducted by human researchers, focusing on the relational dynamics between physicians and patients.
Methods: We included 2 literature reviews in the study on the same topic, namely, exploring factors affecting relational dynamics between physicians and patients in medicolegal contexts. One review used GPT-4, last updated in September 2021, and the other was conducted by human researchers. The human review involved a comprehensive literature search using medical subject headings and keywords in Ovid MEDLINE, followed by a thematic analysis of the literature to synthesize information from selected articles. The AI-generated review used a new prompt engineering approach, using iterative and sequential prompts to generate results. Comparative analysis was based on qualitative measures such as accuracy, response time, consistency, breadth and depth of knowledge, contextual understanding, and transparency.
Results: GPT-4 produced an extensive list of relational factors rapidly. The AI model demonstrated an impressive breadth of knowledge but exhibited limitations in in-depth and contextual understanding, occasionally producing irrelevant or incorrect information. In comparison, human researchers provided a more nuanced and contextually relevant review. The comparative analysis assessed the reviews based on criteria including accuracy, response time, consistency, breadth and depth of knowledge, contextual understanding, and transparency. While GPT-4 showed advantages in response time and breadth of knowledge, human-led reviews excelled in accuracy, depth of knowledge, and contextual understanding.
Conclusions: The study suggests that GPT-4, with structured prompt engineering, can be a valuable tool for conducting preliminary literature reviews by providing a broad overview of topics quickly. However, its limitations necessitate careful expert evaluation and refinement, making it an assistant rather than a substitute for human expertise in comprehensive literature reviews. Moreover, this research highlights the potential and limitations of using AI tools like GPT-4 in academic research, particularly in the fields of health services and medical research. It underscores the necessity of combining AI's rapid information retrieval capabilities with human expertise for more accurate and contextually rich scholarly outputs.
Background: The discourse surrounding medical artificial intelligence (AI) often focuses on narratives that either hype the technology's potential or predict dystopian futures. AI narratives have a significant influence on the direction of research, funding, and public opinion and thus shape the future of medicine.
Objective: The paper aims to offer critical reflections on AI narratives, with a specific focus on medical AI, and to raise awareness as to how people working with medical AI talk about AI and discharge their "narrative responsibility."
Methods: Qualitative semistructured interviews were conducted with 41 participants from different disciplines who were exposed to medical AI in their profession. The research represents a secondary analysis of data using a thematic narrative approach. The analysis resulted in 2 main themes, each with 2 other subthemes.
Results: Stories about the AI-physician interaction depicted either a competitive or collaborative relationship. Some participants argued that AI might replace physicians, as it performs better than physicians. However, others believed that physicians should not be replaced and that AI should rather assist and support physicians. The idea of excessive technological deferral and automation bias was discussed, highlighting the risk of "losing" decisional power. The possibility that AI could relieve physicians from burnout and allow them to spend more time with patients was also considered. Finally, a few participants reported an extremely optimistic account of medical AI, while the majority criticized this type of story. The latter lamented the existence of a "magical theory" of medical AI, identified with techno-solutionist positions.
Conclusions: Most of the participants reported a nuanced view of technology, recognizing both its benefits and challenges and avoiding polarized narratives. However, some participants did contribute to the hype surrounding medical AI, comparing it to human capabilities and depicting it as superior. Overall, the majority agreed that medical AI should assist rather than replace clinicians. The study concludes that a balanced narrative (that focuses on the technology's present capabilities and limitations) is necessary to fully realize the potential of medical AI while avoiding unrealistic expectations and hype.