A new alkaline earth metal three-dimensional polar MOF structure in barium carbamoylcyanonitrosomethanide is governed by bridging coordination of the nitroso- and aqua O-atoms, which support a face-sharing connection of coordination polyhedra.
In the structure of the title salt, {[Ba(μ3-C3H2N3O2)2(μ-H2O)(H2O)]·H2O}n, the barium ion and all three oxygen atoms of the water molecules reside on a mirror plane. The hydrogen atoms of the bridging water and the solvate water molecules are arranged across a mirror plane whereas all atoms of the monodentate aqua ligand are situated on this mirror plane. The distorted ninefold coordination of the Ba ions is completed with four nitroso-, two carbonyl- and three aqua-O atoms at the distances of 2.763 (3)–2.961 (4) Å and it is best described as tricapped trigonal prism. The three-dimensional framework structure is formed by face-sharing of the trigonal prisms, via μ-nitroso- and μ-aqua-O atoms, and also by the bridging coordination of the anions via carbonyl-O atoms occupying two out of the three cap positions. The solvate water molecules populate the crystal channels and facilitate a set of four directional hydrogen bonds. The principal Ba–carbamoylcyanonitrosomethanido linkage reveals a rare example of the inherently polar binodal six- and three-coordinated bipartite topology (three-letter notation sit). It suggests that small resonance-stabilized cyanonitroso anions can be utilized as bridging ligands for the supramolecular synthesis of MOF solids. Such an outcome may be anticipated for a broader range of hard Lewis acidic alkaline earth metal ions, which perfectly match the coordination preferences of highly nucleophilic nitroso-O atoms. Thermal analysis reveals two-stage dehydration of the title compound (383 and 473 K) followed by decomposition with release of CO2, HCN and H2O at 558 K.
The dihydroquinoxaline unit in the title molecule is not quite planar and the molecule adopts a hairpin conformation due in part to an intramolecular C—H⋯O hydrogen bond. In the crystal, the polar portions of the molecules are associated through C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π(ring) and C= O⋯π(ring) interactions, forming thick layers parallel to the bc plane and with the n-octyl groups on the outside surfaces.
In the title molecule, C25H29N5O, the dihydroquinoxaline unit is not quite planar (r.m.s. deviation = 0.030 Å) as there is a dihedral angle of 2.69 (3)° between the mean planes of the constituent rings and the molecule adopts a hairpin conformation. In the crystal, the polar portions of the molecules are associated through C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π(ring) and C=O⋯π(ring) interactions, forming thick layers parallel to the bc plane and with the n-octyl groups on the outside surfaces.
In the bicyclic title compound, C33H29ClN2O2, the two piperidine rings of the diazabicylco moiety adopt distorted-chair conformations.
In the title compound, C33H29ClN2O2, the two piperidine rings of the diazabicyclo moiety adopt distorted-chair conformations. Intermolecular C—H⋯π interactions are mainly responsible for the crystal packing. The intermolecular interactions were quantified and analysed using Hirshfeld surface analysis, revealing that H⋯H interactions contribute most to the crystal packing (52.3%). The molecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–31 G(d,p) level and is compared with the experimentally determined molecular structure in the solid state.
The single-crystal X-ray structure of [(18-crown-6)K][SnPh3(ox)] (ox = C2O42−) is reported. Integrity between neighboring molecules in the solid state is maintained by an array of C—H⋯O hydrogen bonds and C—H⋯π interactions.
The title complex, (1,4,7,10,13,16-hexaoxacyclooctadecane-1κ6O)(μ-oxalato-1κ2O1,O2:2κ2O1′,O2′)triphenyl-2κ3C-potassium(I)tin(IV), [KSn(C6H5)3(C2O4)(C12H24O6)] or K[18-Crown-6][(C6H5)3SnO4C2], was synthesized. The complex consists of a potassium cation coordinated to the six oxygen atoms of a crown ether molecule and the two oxygen atoms of the oxalatotriphenylstannate anion. It crystallizes in the monoclinic crystal system within the space group P21. The tin atom is coordinated by one chelating oxalate ligand and three phenyl groups, forming a cis-trigonal–bipyramidal geometry around the tin atom. The cations and anions form ion pairs, linked through carbonyl coordination to the potassium atoms. The crystal structure features C—H⋯O hydrogen bonds between the oxygen atoms of the oxalate group and the hydrogen atoms of the phenyl groups, resulting in an infinite chain structure extending along a-axis direction. The primary inter-chain interactions are van der Waals forces.
01).
01). Hirshfeld surface analysis revealed that H⋯H contacts contribute to most of the crystal packing with 38.9%, followed by H⋯O contacts with 36.2%.