Objective
Atherosclerosis is a leading cause of mortality in the rapidly growing population with diabetes mellitus. Vascular interventions in patients with diabetes can lead to complications attributed to defective vascular remodeling and impaired healing response in the vessel wall. In this study, we aim to elucidate the molecular differences in the vascular healing response over time using a rat model of arterial injury applied to healthy and diabetic conditions.
Methods
Wistar (healthy) and Goto-Kakizaki (GK, diabetic) rats (n = 40 per strain) were subjected to left common carotid artery (CCA) balloon injury and euthanized at different timepoints: 0 and 20 hours, 5 days, and 2, 4, and 6 weeks. Noninvasive morphological and physiological assessment of the CCA was performed with ultrasound biomicroscopy (Vevo 2100) and corroborated with histology. Total RNA was isolated from the injured CCA at each timepoint, and microarray profiling was performed (n = 3 rats per timepoint; RaGene-1_0-st-v1 platform). Bioinformatic analyses were conducted using R software, DAVID bioinformatic tool, online STRING database, and Cytoscape software.
Results
Significant increase in the neointimal thickness (P < .01; two-way analysis of variance) as well as exaggerated negative remodeling was observed after 2 weeks of injury in GK rats compared with heathy rats, which was confirmed by histological analyses. Bioinformatic analyses showed defective expression patterns for smooth muscle cells and immune cell markers, along with reduced expression of key extracellular matrix-related genes and increased expression of pro-thrombotic genes, indicating potential faults on cell regulation level. Transcription factor–protein-protein interaction analysis provided mechanistic evidence with an array of transcription factors dysregulated in diabetic rats.
Conclusions
In this study, we have demonstrated that diabetic rats exhibit impaired arterial remodeling characterized by a delayed healing response. We show that increased contractile smooth muscle cell marker expression coincided with decreased matrix metalloproteinase expression, indicating a potential mechanism for a lack of extracellular matrix reorganization in the impaired vascular healing in GK rats. These results further corroborate the higher prevalence of restenosis in patients with diabetes and provide vital molecular insights into the mechanisms contributing to the impaired arterial healing response in diabetes. Moreover, the presented study provides the research community with the valuable longitudinal gene expression data bank for further exploration of diabetic vasculopathy.