首页 > 最新文献

Nature synthesis最新文献

英文 中文
Mechanochemical synthesis of organosodium compounds through direct sodiation of organic halides 有机卤化物直接钠化合成有机钠化合物的机械化学方法
0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-08 DOI: 10.1038/s44160-025-00949-7
Keisuke Kondo, Matthew Lowe, Nathan Davison, Paul G. Waddell, Roly J. Armstrong, Erli Lu, Koji Kubota, Hajime Ito
Organometallic reagents are essential in organic synthesis, with organolithium compounds being most widely used. However, as lithium becomes less abundant and increasingly expensive, organosodium compounds have emerged as promising alternatives, but their use in organic synthesis is limited by their poor solubility in organic solvents, the need for pre-activated sodium sources and the necessity for highly anhydrous conditions. Here we report a mechanochemical protocol for the direct generation of organosodium compounds from cheap and shelf-stable sodium lumps and readily available organic halides under bulk, solvent-free conditions. These reactions generate an array of organosodium compounds in minutes, without special precautions against moisture or temperature control. These nucleophiles can be used directly for one-pot nucleophilic addition reactions with electrophiles and nickel-catalysed cross-coupling reactions. Furthermore, this mechanochemical approach enables the sodiation of inert C–F bonds in organic fluorides. This method is anticipated to drive progress in sodium-based synthetic chemistry.
有机金属试剂在有机合成中是必不可少的,其中有机锂化合物的应用最为广泛。然而,随着锂的储量越来越少,价格越来越贵,有机钠化合物已经成为有前途的替代品,但它们在有机合成中的应用受到限制,因为它们在有机溶剂中的溶解度差,需要预活化的钠源,并且必须在高度无水的条件下使用。在这里,我们报告了一种在散装,无溶剂条件下,从廉价且货架稳定的钠块和易得的有机卤化物直接生成有机钠化合物的机械化学方案。这些反应在几分钟内产生一系列有机钠化合物,不需要特别的防潮或温度控制措施。这些亲核试剂可直接用于与亲电试剂的一锅亲核加成反应和镍催化的交叉偶联反应。此外,这种机械化学方法使有机氟化物中惰性C-F键的碱化成为可能。这种方法有望推动钠基合成化学的发展。
{"title":"Mechanochemical synthesis of organosodium compounds through direct sodiation of organic halides","authors":"Keisuke Kondo, Matthew Lowe, Nathan Davison, Paul G. Waddell, Roly J. Armstrong, Erli Lu, Koji Kubota, Hajime Ito","doi":"10.1038/s44160-025-00949-7","DOIUrl":"https://doi.org/10.1038/s44160-025-00949-7","url":null,"abstract":"Organometallic reagents are essential in organic synthesis, with organolithium compounds being most widely used. However, as lithium becomes less abundant and increasingly expensive, organosodium compounds have emerged as promising alternatives, but their use in organic synthesis is limited by their poor solubility in organic solvents, the need for pre-activated sodium sources and the necessity for highly anhydrous conditions. Here we report a mechanochemical protocol for the direct generation of organosodium compounds from cheap and shelf-stable sodium lumps and readily available organic halides under bulk, solvent-free conditions. These reactions generate an array of organosodium compounds in minutes, without special precautions against moisture or temperature control. These nucleophiles can be used directly for one-pot nucleophilic addition reactions with electrophiles and nickel-catalysed cross-coupling reactions. Furthermore, this mechanochemical approach enables the sodiation of inert C–F bonds in organic fluorides. This method is anticipated to drive progress in sodium-based synthetic chemistry.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145711519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser-assisted materials engineering at the atomic and nanoscales 原子和纳米尺度的激光辅助材料工程
IF 2 0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-05 DOI: 10.1038/s44160-025-00936-y
Weihua Guo, Zihao Li, Libei Huang, Ma Qian, James M. Tour, Ruquan Ye
Laser technology has revolutionized industrial manufacturing by offering localized high energy, precise spatial resolution and seamless automation. Compared with traditional thermal processes, laser-assisted manufacturing integrates materials synthesis and structural design, thereby reducing waste and enhancing productivity. The rapid kinetics and transient behaviour of laser processes enable control over phase transitions, heterostructure design, defect engineering, nucleation, compositional variations, recrystallization and amorphization, producing materials with interesting properties. Here we examine atomic- and nanoscale control in laser-assisted materials manufacturing. We discuss the laser processing synthesis and resultant properties of materials including metals, perovskites, graphene and other inorganic materials. The efficacy of atomic- and nanoscale modulation by laser processing is demonstrated by improved performance in diverse domains, including catalysis, mechanical reinforcement, electronics or optoelectronics, and drug screening. By emphasizing atomic-scale perspectives, this Review offers understanding of laser-assisted materials manufacturing while inspiring materials development. Laser technology offers high energy, precise spatial resolution and seamless automation for materials synthesis and device fabrication. This Review highlights laser-assisted materials engineering at the atomic and nanoscales and examines the laser-assisted discovery of materials with interesting properties and applications.
激光技术通过提供本地化的高能量、精确的空间分辨率和无缝自动化,彻底改变了工业制造。与传统的热工艺相比,激光辅助制造集成了材料合成和结构设计,从而减少了浪费,提高了生产率。激光过程的快速动力学和瞬态行为可以控制相变、异质结构设计、缺陷工程、成核、成分变化、再结晶和非晶化,从而生产出具有有趣性能的材料。在这里,我们研究了激光辅助材料制造中的原子和纳米级控制。讨论了金属、钙钛矿、石墨烯等无机材料的激光加工合成及其性能。通过激光处理的原子和纳米级调制的有效性通过在催化,机械增强,电子或光电子以及药物筛选等多个领域的改进性能得到证明。通过强调原子尺度的观点,本综述提供了对激光辅助材料制造的理解,同时启发了材料的发展。激光技术为材料合成和器件制造提供了高能量、精确的空间分辨率和无缝自动化。本文重点介绍了原子和纳米尺度的激光辅助材料工程,并探讨了激光辅助发现具有有趣性质和应用的材料。
{"title":"Laser-assisted materials engineering at the atomic and nanoscales","authors":"Weihua Guo, Zihao Li, Libei Huang, Ma Qian, James M. Tour, Ruquan Ye","doi":"10.1038/s44160-025-00936-y","DOIUrl":"10.1038/s44160-025-00936-y","url":null,"abstract":"Laser technology has revolutionized industrial manufacturing by offering localized high energy, precise spatial resolution and seamless automation. Compared with traditional thermal processes, laser-assisted manufacturing integrates materials synthesis and structural design, thereby reducing waste and enhancing productivity. The rapid kinetics and transient behaviour of laser processes enable control over phase transitions, heterostructure design, defect engineering, nucleation, compositional variations, recrystallization and amorphization, producing materials with interesting properties. Here we examine atomic- and nanoscale control in laser-assisted materials manufacturing. We discuss the laser processing synthesis and resultant properties of materials including metals, perovskites, graphene and other inorganic materials. The efficacy of atomic- and nanoscale modulation by laser processing is demonstrated by improved performance in diverse domains, including catalysis, mechanical reinforcement, electronics or optoelectronics, and drug screening. By emphasizing atomic-scale perspectives, this Review offers understanding of laser-assisted materials manufacturing while inspiring materials development. Laser technology offers high energy, precise spatial resolution and seamless automation for materials synthesis and device fabrication. This Review highlights laser-assisted materials engineering at the atomic and nanoscales and examines the laser-assisted discovery of materials with interesting properties and applications.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"4 12","pages":"1488-1503"},"PeriodicalIF":20.0,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145680549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosynthesis of plant vitexin-derived flavonoid glycosides in yeast 植物牡荆素类黄酮苷在酵母中的生物合成
0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-05 DOI: 10.1038/s44160-025-00929-x
Zhilan Qian, Haishuang Yu, Chenglin Song, Yang Zhang, Qi Liu, Xudong Qu, Min Ye, Xue Qiao, Menghao Cai
{"title":"Biosynthesis of plant vitexin-derived flavonoid glycosides in yeast","authors":"Zhilan Qian, Haishuang Yu, Chenglin Song, Yang Zhang, Qi Liu, Xudong Qu, Min Ye, Xue Qiao, Menghao Cai","doi":"10.1038/s44160-025-00929-x","DOIUrl":"https://doi.org/10.1038/s44160-025-00929-x","url":null,"abstract":"","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"138 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145680550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular organohalides as general precursors for direct synthesis of two-dimensional transition metal carbide MXenes 分子有机卤化物作为直接合成二维过渡金属碳化物MXenes的一般前体
0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-03 DOI: 10.1038/s44160-025-00946-w
Di Wang, Noah L. Mason, Fatemeh Karimi, Yinan Yang, Alexander S. Filatov, Young-Hwan Kim, Chenkun Zhou, De-en Jiang, Robert F. Klie, Dmitri V. Talapin
{"title":"Molecular organohalides as general precursors for direct synthesis of two-dimensional transition metal carbide MXenes","authors":"Di Wang, Noah L. Mason, Fatemeh Karimi, Yinan Yang, Alexander S. Filatov, Young-Hwan Kim, Chenkun Zhou, De-en Jiang, Robert F. Klie, Dmitri V. Talapin","doi":"10.1038/s44160-025-00946-w","DOIUrl":"https://doi.org/10.1038/s44160-025-00946-w","url":null,"abstract":"","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145665167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Helically ordered polymers under metal–organic framework confinement 金属有机框架约束下的螺旋有序聚合物
IF 2 0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-01 DOI: 10.1038/s44160-025-00952-y
Natalia M. Padial, Carlos Martí-Gastaldo
Confining conjugated polymers within chiral metal–organic frameworks enables direct visualization of helical order and enhances their charge transport and spin selectivity properties.
将共轭聚合物限制在手性金属有机框架内,可以直接可视化螺旋秩序,增强其电荷输运和自旋选择性。
{"title":"Helically ordered polymers under metal–organic framework confinement","authors":"Natalia M. Padial, Carlos Martí-Gastaldo","doi":"10.1038/s44160-025-00952-y","DOIUrl":"10.1038/s44160-025-00952-y","url":null,"abstract":"Confining conjugated polymers within chiral metal–organic frameworks enables direct visualization of helical order and enhances their charge transport and spin selectivity properties.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"5 1","pages":"6-7"},"PeriodicalIF":20.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145645244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heuristic data-driven approach for synergistic cobalt(IV)–enamine catalysis 协同钴(IV) -烯胺催化的启发式数据驱动方法
0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-01 DOI: 10.1038/s44160-025-00944-y
Liang Cheng, Zhenzhi Tan, Zongbin Jia, Qifeng Lin, Qi Yang, Sanzhong Luo
{"title":"Heuristic data-driven approach for synergistic cobalt(IV)–enamine catalysis","authors":"Liang Cheng, Zhenzhi Tan, Zongbin Jia, Qifeng Lin, Qi Yang, Sanzhong Luo","doi":"10.1038/s44160-025-00944-y","DOIUrl":"https://doi.org/10.1038/s44160-025-00944-y","url":null,"abstract":"","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145645137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Medal for metal–organic frameworks 金属有机框架奖
IF 2 0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-01 DOI: 10.1038/s44160-025-00953-x
Jet-Sing M. Lee
Building space into solids is the focus of the 2025 Nobel Prize in Chemistry, which has been awarded to Susumu Kitagawa (Kyoto University), Richard Robson (University of Melbourne) and Omar M. Yaghi (University of California, Berkeley) “for the development of metal–organic frameworks (MOFs)”. These materials, composed of metal ions or clusters linked by organic molecules, contain permanent and tunable cavities that have transformed how chemists design in the solid state.
将空间构建成固体是2025年诺贝尔化学奖的焦点,该奖项被授予Susumu Kitagawa(京都大学),Richard Robson(墨尔本大学)和Omar M. Yaghi(加州大学伯克利分校),以“开发金属有机框架(MOFs)”。这些材料由金属离子或有机分子连接的簇组成,包含永久性和可调的腔,这些腔改变了化学家在固态下的设计方式。
{"title":"Medal for metal–organic frameworks","authors":"Jet-Sing M. Lee","doi":"10.1038/s44160-025-00953-x","DOIUrl":"10.1038/s44160-025-00953-x","url":null,"abstract":"Building space into solids is the focus of the 2025 Nobel Prize in Chemistry, which has been awarded to Susumu Kitagawa (Kyoto University), Richard Robson (University of Melbourne) and Omar M. Yaghi (University of California, Berkeley) “for the development of metal–organic frameworks (MOFs)”. These materials, composed of metal ions or clusters linked by organic molecules, contain permanent and tunable cavities that have transformed how chemists design in the solid state.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"4 12","pages":"1485-1485"},"PeriodicalIF":20.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145645138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precise synthesis of spherical aluminium oxo clusters for accurate surface guest recognition 精确合成球形铝氧簇,用于精确的表面客体识别
IF 2 0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-27 DOI: 10.1038/s44160-025-00927-z
Si-Hao Shen, Jian Hao, Minyi Zhang, Ying-Hua Yu, Jian-Bing Chen, Dominic Wright, Chunsen Li, Wei-Hui Fang, Jian Zhang
The small size of nanoparticles complicates surface adsorption studies, and their unclear structure limits the accuracy of traditional analytical methods. Nanoclusters, with precise structures, offer a molecular-level approach for studying surface adsorption phenomena. Here we used flexible, sterically hindered probenecid ligands to mimic surfactants in classic micelle structures and developed a co-encapsulation strategy to synthesize spherical aluminium oxo clusters (SAlOC-1). The spherical surface of SAlOC-1 maximally exposes supramolecular sites and provides a guest-accessible environment. SAlOC-1 can accommodate up to 20 different drug-related guests across a wide range of sizes at room temperature via a single-crystal-to-single-crystal transformation. These results highlight SAlOC-1’s advantages in guest determination, including the ability to overcome limitations associated with liquid-phase host–guest chemistry in traditional discrete systems, ease of operation, the coexistence of universality and selectivity, and biomimetic multicomponent binding. Theoretical studies reveal that SAlOC-1’s recognition mechanism differs from that of porous framework materials, relying instead on ligand flexibility to form a half-open-door configuration, acting as a molecular catcher. Nanoclusters have precise structures and therefore offer a molecular-level approach for studying surface adsorption phenomena. Here, spherical aluminium oxo clusters are synthesized via a co-encapsulation strategy to examine the inclusion of various guest molecules. This model paves the way for rapid recognition of organic molecules by nanoparticle surfaces.
纳米颗粒的小尺寸使表面吸附研究变得复杂,其不明确的结构限制了传统分析方法的准确性。纳米团簇具有精确的结构,为研究表面吸附现象提供了分子水平的方法。在这里,我们使用柔性的,空间阻碍的预预配体来模拟经典胶束结构的表面活性剂,并开发了一种共包封策略来合成球形铝氧簇(SAlOC-1)。SAlOC-1的球形表面最大限度地暴露了超分子位点,并提供了一个客人可访问的环境。通过单晶到单晶的转变,SAlOC-1可以在室温下容纳多达20种不同尺寸的与药物相关的客人。这些结果突出了SAlOC-1在客体确定方面的优势,包括能够克服传统离散系统中液相主客体化学的局限性,易于操作,普遍性和选择性并存,以及仿生多组分结合。理论研究表明,SAlOC-1的识别机制与多孔骨架材料不同,SAlOC-1的识别机制依赖于配体的柔韧性形成半开门构型,起到分子捕集器的作用。纳米团簇具有精确的结构,因此为研究表面吸附现象提供了分子水平的方法。在这里,通过共封装策略合成球形铝氧簇,以检查各种客体分子的包涵。该模型为通过纳米颗粒表面快速识别有机分子铺平了道路。
{"title":"Precise synthesis of spherical aluminium oxo clusters for accurate surface guest recognition","authors":"Si-Hao Shen, Jian Hao, Minyi Zhang, Ying-Hua Yu, Jian-Bing Chen, Dominic Wright, Chunsen Li, Wei-Hui Fang, Jian Zhang","doi":"10.1038/s44160-025-00927-z","DOIUrl":"10.1038/s44160-025-00927-z","url":null,"abstract":"The small size of nanoparticles complicates surface adsorption studies, and their unclear structure limits the accuracy of traditional analytical methods. Nanoclusters, with precise structures, offer a molecular-level approach for studying surface adsorption phenomena. Here we used flexible, sterically hindered probenecid ligands to mimic surfactants in classic micelle structures and developed a co-encapsulation strategy to synthesize spherical aluminium oxo clusters (SAlOC-1). The spherical surface of SAlOC-1 maximally exposes supramolecular sites and provides a guest-accessible environment. SAlOC-1 can accommodate up to 20 different drug-related guests across a wide range of sizes at room temperature via a single-crystal-to-single-crystal transformation. These results highlight SAlOC-1’s advantages in guest determination, including the ability to overcome limitations associated with liquid-phase host–guest chemistry in traditional discrete systems, ease of operation, the coexistence of universality and selectivity, and biomimetic multicomponent binding. Theoretical studies reveal that SAlOC-1’s recognition mechanism differs from that of porous framework materials, relying instead on ligand flexibility to form a half-open-door configuration, acting as a molecular catcher. Nanoclusters have precise structures and therefore offer a molecular-level approach for studying surface adsorption phenomena. Here, spherical aluminium oxo clusters are synthesized via a co-encapsulation strategy to examine the inclusion of various guest molecules. This model paves the way for rapid recognition of organic molecules by nanoparticle surfaces.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"5 2","pages":"290-301"},"PeriodicalIF":20.0,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Discovery and engineering of the biosynthesis of rotenoids 作者更正:类鱼素生物合成的发现与工程
IF 2 0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-27 DOI: 10.1038/s44160-025-00963-9
Wenying Cao, Jie Yang, Benke Hong
{"title":"Author Correction: Discovery and engineering of the biosynthesis of rotenoids","authors":"Wenying Cao, Jie Yang, Benke Hong","doi":"10.1038/s44160-025-00963-9","DOIUrl":"10.1038/s44160-025-00963-9","url":null,"abstract":"","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"5 1","pages":"151-151"},"PeriodicalIF":20.0,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44160-025-00963-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skeletal editing of C(sp3)–C(sp3) bonds via photoinduced oxidative oxygen migration 通过光诱导氧化氧迁移对C(sp3) -C (sp3)键进行骨架编辑
0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-27 DOI: 10.1038/s44160-025-00950-0
Ajay H. Bansode, Marvin Parasram
{"title":"Skeletal editing of C(sp3)–C(sp3) bonds via photoinduced oxidative oxygen migration","authors":"Ajay H. Bansode, Marvin Parasram","doi":"10.1038/s44160-025-00950-0","DOIUrl":"https://doi.org/10.1038/s44160-025-00950-0","url":null,"abstract":"","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature synthesis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1