Pub Date : 2025-12-08DOI: 10.1038/s44160-025-00949-7
Keisuke Kondo, Matthew Lowe, Nathan Davison, Paul G. Waddell, Roly J. Armstrong, Erli Lu, Koji Kubota, Hajime Ito
Organometallic reagents are essential in organic synthesis, with organolithium compounds being most widely used. However, as lithium becomes less abundant and increasingly expensive, organosodium compounds have emerged as promising alternatives, but their use in organic synthesis is limited by their poor solubility in organic solvents, the need for pre-activated sodium sources and the necessity for highly anhydrous conditions. Here we report a mechanochemical protocol for the direct generation of organosodium compounds from cheap and shelf-stable sodium lumps and readily available organic halides under bulk, solvent-free conditions. These reactions generate an array of organosodium compounds in minutes, without special precautions against moisture or temperature control. These nucleophiles can be used directly for one-pot nucleophilic addition reactions with electrophiles and nickel-catalysed cross-coupling reactions. Furthermore, this mechanochemical approach enables the sodiation of inert C–F bonds in organic fluorides. This method is anticipated to drive progress in sodium-based synthetic chemistry.
{"title":"Mechanochemical synthesis of organosodium compounds through direct sodiation of organic halides","authors":"Keisuke Kondo, Matthew Lowe, Nathan Davison, Paul G. Waddell, Roly J. Armstrong, Erli Lu, Koji Kubota, Hajime Ito","doi":"10.1038/s44160-025-00949-7","DOIUrl":"https://doi.org/10.1038/s44160-025-00949-7","url":null,"abstract":"Organometallic reagents are essential in organic synthesis, with organolithium compounds being most widely used. However, as lithium becomes less abundant and increasingly expensive, organosodium compounds have emerged as promising alternatives, but their use in organic synthesis is limited by their poor solubility in organic solvents, the need for pre-activated sodium sources and the necessity for highly anhydrous conditions. Here we report a mechanochemical protocol for the direct generation of organosodium compounds from cheap and shelf-stable sodium lumps and readily available organic halides under bulk, solvent-free conditions. These reactions generate an array of organosodium compounds in minutes, without special precautions against moisture or temperature control. These nucleophiles can be used directly for one-pot nucleophilic addition reactions with electrophiles and nickel-catalysed cross-coupling reactions. Furthermore, this mechanochemical approach enables the sodiation of inert C–F bonds in organic fluorides. This method is anticipated to drive progress in sodium-based synthetic chemistry.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145711519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-05DOI: 10.1038/s44160-025-00936-y
Weihua Guo, Zihao Li, Libei Huang, Ma Qian, James M. Tour, Ruquan Ye
Laser technology has revolutionized industrial manufacturing by offering localized high energy, precise spatial resolution and seamless automation. Compared with traditional thermal processes, laser-assisted manufacturing integrates materials synthesis and structural design, thereby reducing waste and enhancing productivity. The rapid kinetics and transient behaviour of laser processes enable control over phase transitions, heterostructure design, defect engineering, nucleation, compositional variations, recrystallization and amorphization, producing materials with interesting properties. Here we examine atomic- and nanoscale control in laser-assisted materials manufacturing. We discuss the laser processing synthesis and resultant properties of materials including metals, perovskites, graphene and other inorganic materials. The efficacy of atomic- and nanoscale modulation by laser processing is demonstrated by improved performance in diverse domains, including catalysis, mechanical reinforcement, electronics or optoelectronics, and drug screening. By emphasizing atomic-scale perspectives, this Review offers understanding of laser-assisted materials manufacturing while inspiring materials development. Laser technology offers high energy, precise spatial resolution and seamless automation for materials synthesis and device fabrication. This Review highlights laser-assisted materials engineering at the atomic and nanoscales and examines the laser-assisted discovery of materials with interesting properties and applications.
{"title":"Laser-assisted materials engineering at the atomic and nanoscales","authors":"Weihua Guo, Zihao Li, Libei Huang, Ma Qian, James M. Tour, Ruquan Ye","doi":"10.1038/s44160-025-00936-y","DOIUrl":"10.1038/s44160-025-00936-y","url":null,"abstract":"Laser technology has revolutionized industrial manufacturing by offering localized high energy, precise spatial resolution and seamless automation. Compared with traditional thermal processes, laser-assisted manufacturing integrates materials synthesis and structural design, thereby reducing waste and enhancing productivity. The rapid kinetics and transient behaviour of laser processes enable control over phase transitions, heterostructure design, defect engineering, nucleation, compositional variations, recrystallization and amorphization, producing materials with interesting properties. Here we examine atomic- and nanoscale control in laser-assisted materials manufacturing. We discuss the laser processing synthesis and resultant properties of materials including metals, perovskites, graphene and other inorganic materials. The efficacy of atomic- and nanoscale modulation by laser processing is demonstrated by improved performance in diverse domains, including catalysis, mechanical reinforcement, electronics or optoelectronics, and drug screening. By emphasizing atomic-scale perspectives, this Review offers understanding of laser-assisted materials manufacturing while inspiring materials development. Laser technology offers high energy, precise spatial resolution and seamless automation for materials synthesis and device fabrication. This Review highlights laser-assisted materials engineering at the atomic and nanoscales and examines the laser-assisted discovery of materials with interesting properties and applications.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"4 12","pages":"1488-1503"},"PeriodicalIF":20.0,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145680549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-03DOI: 10.1038/s44160-025-00946-w
Di Wang, Noah L. Mason, Fatemeh Karimi, Yinan Yang, Alexander S. Filatov, Young-Hwan Kim, Chenkun Zhou, De-en Jiang, Robert F. Klie, Dmitri V. Talapin
{"title":"Molecular organohalides as general precursors for direct synthesis of two-dimensional transition metal carbide MXenes","authors":"Di Wang, Noah L. Mason, Fatemeh Karimi, Yinan Yang, Alexander S. Filatov, Young-Hwan Kim, Chenkun Zhou, De-en Jiang, Robert F. Klie, Dmitri V. Talapin","doi":"10.1038/s44160-025-00946-w","DOIUrl":"https://doi.org/10.1038/s44160-025-00946-w","url":null,"abstract":"","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145665167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01DOI: 10.1038/s44160-025-00952-y
Natalia M. Padial, Carlos Martí-Gastaldo
Confining conjugated polymers within chiral metal–organic frameworks enables direct visualization of helical order and enhances their charge transport and spin selectivity properties.
将共轭聚合物限制在手性金属有机框架内,可以直接可视化螺旋秩序,增强其电荷输运和自旋选择性。
{"title":"Helically ordered polymers under metal–organic framework confinement","authors":"Natalia M. Padial, Carlos Martí-Gastaldo","doi":"10.1038/s44160-025-00952-y","DOIUrl":"10.1038/s44160-025-00952-y","url":null,"abstract":"Confining conjugated polymers within chiral metal–organic frameworks enables direct visualization of helical order and enhances their charge transport and spin selectivity properties.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"5 1","pages":"6-7"},"PeriodicalIF":20.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145645244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01DOI: 10.1038/s44160-025-00953-x
Jet-Sing M. Lee
Building space into solids is the focus of the 2025 Nobel Prize in Chemistry, which has been awarded to Susumu Kitagawa (Kyoto University), Richard Robson (University of Melbourne) and Omar M. Yaghi (University of California, Berkeley) “for the development of metal–organic frameworks (MOFs)”. These materials, composed of metal ions or clusters linked by organic molecules, contain permanent and tunable cavities that have transformed how chemists design in the solid state.
将空间构建成固体是2025年诺贝尔化学奖的焦点,该奖项被授予Susumu Kitagawa(京都大学),Richard Robson(墨尔本大学)和Omar M. Yaghi(加州大学伯克利分校),以“开发金属有机框架(MOFs)”。这些材料由金属离子或有机分子连接的簇组成,包含永久性和可调的腔,这些腔改变了化学家在固态下的设计方式。
{"title":"Medal for metal–organic frameworks","authors":"Jet-Sing M. Lee","doi":"10.1038/s44160-025-00953-x","DOIUrl":"10.1038/s44160-025-00953-x","url":null,"abstract":"Building space into solids is the focus of the 2025 Nobel Prize in Chemistry, which has been awarded to Susumu Kitagawa (Kyoto University), Richard Robson (University of Melbourne) and Omar M. Yaghi (University of California, Berkeley) “for the development of metal–organic frameworks (MOFs)”. These materials, composed of metal ions or clusters linked by organic molecules, contain permanent and tunable cavities that have transformed how chemists design in the solid state.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"4 12","pages":"1485-1485"},"PeriodicalIF":20.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145645138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The small size of nanoparticles complicates surface adsorption studies, and their unclear structure limits the accuracy of traditional analytical methods. Nanoclusters, with precise structures, offer a molecular-level approach for studying surface adsorption phenomena. Here we used flexible, sterically hindered probenecid ligands to mimic surfactants in classic micelle structures and developed a co-encapsulation strategy to synthesize spherical aluminium oxo clusters (SAlOC-1). The spherical surface of SAlOC-1 maximally exposes supramolecular sites and provides a guest-accessible environment. SAlOC-1 can accommodate up to 20 different drug-related guests across a wide range of sizes at room temperature via a single-crystal-to-single-crystal transformation. These results highlight SAlOC-1’s advantages in guest determination, including the ability to overcome limitations associated with liquid-phase host–guest chemistry in traditional discrete systems, ease of operation, the coexistence of universality and selectivity, and biomimetic multicomponent binding. Theoretical studies reveal that SAlOC-1’s recognition mechanism differs from that of porous framework materials, relying instead on ligand flexibility to form a half-open-door configuration, acting as a molecular catcher. Nanoclusters have precise structures and therefore offer a molecular-level approach for studying surface adsorption phenomena. Here, spherical aluminium oxo clusters are synthesized via a co-encapsulation strategy to examine the inclusion of various guest molecules. This model paves the way for rapid recognition of organic molecules by nanoparticle surfaces.
{"title":"Precise synthesis of spherical aluminium oxo clusters for accurate surface guest recognition","authors":"Si-Hao Shen, Jian Hao, Minyi Zhang, Ying-Hua Yu, Jian-Bing Chen, Dominic Wright, Chunsen Li, Wei-Hui Fang, Jian Zhang","doi":"10.1038/s44160-025-00927-z","DOIUrl":"10.1038/s44160-025-00927-z","url":null,"abstract":"The small size of nanoparticles complicates surface adsorption studies, and their unclear structure limits the accuracy of traditional analytical methods. Nanoclusters, with precise structures, offer a molecular-level approach for studying surface adsorption phenomena. Here we used flexible, sterically hindered probenecid ligands to mimic surfactants in classic micelle structures and developed a co-encapsulation strategy to synthesize spherical aluminium oxo clusters (SAlOC-1). The spherical surface of SAlOC-1 maximally exposes supramolecular sites and provides a guest-accessible environment. SAlOC-1 can accommodate up to 20 different drug-related guests across a wide range of sizes at room temperature via a single-crystal-to-single-crystal transformation. These results highlight SAlOC-1’s advantages in guest determination, including the ability to overcome limitations associated with liquid-phase host–guest chemistry in traditional discrete systems, ease of operation, the coexistence of universality and selectivity, and biomimetic multicomponent binding. Theoretical studies reveal that SAlOC-1’s recognition mechanism differs from that of porous framework materials, relying instead on ligand flexibility to form a half-open-door configuration, acting as a molecular catcher. Nanoclusters have precise structures and therefore offer a molecular-level approach for studying surface adsorption phenomena. Here, spherical aluminium oxo clusters are synthesized via a co-encapsulation strategy to examine the inclusion of various guest molecules. This model paves the way for rapid recognition of organic molecules by nanoparticle surfaces.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"5 2","pages":"290-301"},"PeriodicalIF":20.0,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-27DOI: 10.1038/s44160-025-00963-9
Wenying Cao, Jie Yang, Benke Hong
{"title":"Author Correction: Discovery and engineering of the biosynthesis of rotenoids","authors":"Wenying Cao, Jie Yang, Benke Hong","doi":"10.1038/s44160-025-00963-9","DOIUrl":"10.1038/s44160-025-00963-9","url":null,"abstract":"","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"5 1","pages":"151-151"},"PeriodicalIF":20.0,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44160-025-00963-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}