首页 > 最新文献

Nature synthesis最新文献

英文 中文
Biosynthesis of plant vitexin-derived flavonoid glycosides in yeast 植物牡荆素类黄酮苷在酵母中的生物合成
0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-05 DOI: 10.1038/s44160-025-00929-x
Zhilan Qian, Haishuang Yu, Chenglin Song, Yang Zhang, Qi Liu, Xudong Qu, Min Ye, Xue Qiao, Menghao Cai
{"title":"Biosynthesis of plant vitexin-derived flavonoid glycosides in yeast","authors":"Zhilan Qian, Haishuang Yu, Chenglin Song, Yang Zhang, Qi Liu, Xudong Qu, Min Ye, Xue Qiao, Menghao Cai","doi":"10.1038/s44160-025-00929-x","DOIUrl":"https://doi.org/10.1038/s44160-025-00929-x","url":null,"abstract":"","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"138 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145680550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular organohalides as general precursors for direct synthesis of two-dimensional transition metal carbide MXenes 分子有机卤化物作为直接合成二维过渡金属碳化物MXenes的一般前体
0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-03 DOI: 10.1038/s44160-025-00946-w
Di Wang, Noah L. Mason, Fatemeh Karimi, Yinan Yang, Alexander S. Filatov, Young-Hwan Kim, Chenkun Zhou, De-en Jiang, Robert F. Klie, Dmitri V. Talapin
{"title":"Molecular organohalides as general precursors for direct synthesis of two-dimensional transition metal carbide MXenes","authors":"Di Wang, Noah L. Mason, Fatemeh Karimi, Yinan Yang, Alexander S. Filatov, Young-Hwan Kim, Chenkun Zhou, De-en Jiang, Robert F. Klie, Dmitri V. Talapin","doi":"10.1038/s44160-025-00946-w","DOIUrl":"https://doi.org/10.1038/s44160-025-00946-w","url":null,"abstract":"","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145665167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Helically ordered polymers under metal–organic framework confinement 金属有机框架约束下的螺旋有序聚合物
IF 2 0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-01 DOI: 10.1038/s44160-025-00952-y
Natalia M. Padial, Carlos Martí-Gastaldo
Confining conjugated polymers within chiral metal–organic frameworks enables direct visualization of helical order and enhances their charge transport and spin selectivity properties.
将共轭聚合物限制在手性金属有机框架内,可以直接可视化螺旋秩序,增强其电荷输运和自旋选择性。
{"title":"Helically ordered polymers under metal–organic framework confinement","authors":"Natalia M. Padial, Carlos Martí-Gastaldo","doi":"10.1038/s44160-025-00952-y","DOIUrl":"10.1038/s44160-025-00952-y","url":null,"abstract":"Confining conjugated polymers within chiral metal–organic frameworks enables direct visualization of helical order and enhances their charge transport and spin selectivity properties.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"5 1","pages":"6-7"},"PeriodicalIF":20.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145645244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heuristic data-driven approach for synergistic cobalt(IV)–enamine catalysis 协同钴(IV) -烯胺催化的启发式数据驱动方法
0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-01 DOI: 10.1038/s44160-025-00944-y
Liang Cheng, Zhenzhi Tan, Zongbin Jia, Qifeng Lin, Qi Yang, Sanzhong Luo
{"title":"Heuristic data-driven approach for synergistic cobalt(IV)–enamine catalysis","authors":"Liang Cheng, Zhenzhi Tan, Zongbin Jia, Qifeng Lin, Qi Yang, Sanzhong Luo","doi":"10.1038/s44160-025-00944-y","DOIUrl":"https://doi.org/10.1038/s44160-025-00944-y","url":null,"abstract":"","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145645137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Medal for metal–organic frameworks 金属有机框架奖
IF 2 0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-01 DOI: 10.1038/s44160-025-00953-x
Jet-Sing M. Lee
Building space into solids is the focus of the 2025 Nobel Prize in Chemistry, which has been awarded to Susumu Kitagawa (Kyoto University), Richard Robson (University of Melbourne) and Omar M. Yaghi (University of California, Berkeley) “for the development of metal–organic frameworks (MOFs)”. These materials, composed of metal ions or clusters linked by organic molecules, contain permanent and tunable cavities that have transformed how chemists design in the solid state.
将空间构建成固体是2025年诺贝尔化学奖的焦点,该奖项被授予Susumu Kitagawa(京都大学),Richard Robson(墨尔本大学)和Omar M. Yaghi(加州大学伯克利分校),以“开发金属有机框架(MOFs)”。这些材料由金属离子或有机分子连接的簇组成,包含永久性和可调的腔,这些腔改变了化学家在固态下的设计方式。
{"title":"Medal for metal–organic frameworks","authors":"Jet-Sing M. Lee","doi":"10.1038/s44160-025-00953-x","DOIUrl":"10.1038/s44160-025-00953-x","url":null,"abstract":"Building space into solids is the focus of the 2025 Nobel Prize in Chemistry, which has been awarded to Susumu Kitagawa (Kyoto University), Richard Robson (University of Melbourne) and Omar M. Yaghi (University of California, Berkeley) “for the development of metal–organic frameworks (MOFs)”. These materials, composed of metal ions or clusters linked by organic molecules, contain permanent and tunable cavities that have transformed how chemists design in the solid state.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"4 12","pages":"1485-1485"},"PeriodicalIF":20.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145645138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precise synthesis of spherical aluminium oxo clusters for accurate surface guest recognition 精确合成球形铝氧簇,用于精确的表面客体识别
IF 2 0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-27 DOI: 10.1038/s44160-025-00927-z
Si-Hao Shen, Jian Hao, Minyi Zhang, Ying-Hua Yu, Jian-Bing Chen, Dominic Wright, Chunsen Li, Wei-Hui Fang, Jian Zhang
The small size of nanoparticles complicates surface adsorption studies, and their unclear structure limits the accuracy of traditional analytical methods. Nanoclusters, with precise structures, offer a molecular-level approach for studying surface adsorption phenomena. Here we used flexible, sterically hindered probenecid ligands to mimic surfactants in classic micelle structures and developed a co-encapsulation strategy to synthesize spherical aluminium oxo clusters (SAlOC-1). The spherical surface of SAlOC-1 maximally exposes supramolecular sites and provides a guest-accessible environment. SAlOC-1 can accommodate up to 20 different drug-related guests across a wide range of sizes at room temperature via a single-crystal-to-single-crystal transformation. These results highlight SAlOC-1’s advantages in guest determination, including the ability to overcome limitations associated with liquid-phase host–guest chemistry in traditional discrete systems, ease of operation, the coexistence of universality and selectivity, and biomimetic multicomponent binding. Theoretical studies reveal that SAlOC-1’s recognition mechanism differs from that of porous framework materials, relying instead on ligand flexibility to form a half-open-door configuration, acting as a molecular catcher. Nanoclusters have precise structures and therefore offer a molecular-level approach for studying surface adsorption phenomena. Here, spherical aluminium oxo clusters are synthesized via a co-encapsulation strategy to examine the inclusion of various guest molecules. This model paves the way for rapid recognition of organic molecules by nanoparticle surfaces.
纳米颗粒的小尺寸使表面吸附研究变得复杂,其不明确的结构限制了传统分析方法的准确性。纳米团簇具有精确的结构,为研究表面吸附现象提供了分子水平的方法。在这里,我们使用柔性的,空间阻碍的预预配体来模拟经典胶束结构的表面活性剂,并开发了一种共包封策略来合成球形铝氧簇(SAlOC-1)。SAlOC-1的球形表面最大限度地暴露了超分子位点,并提供了一个客人可访问的环境。通过单晶到单晶的转变,SAlOC-1可以在室温下容纳多达20种不同尺寸的与药物相关的客人。这些结果突出了SAlOC-1在客体确定方面的优势,包括能够克服传统离散系统中液相主客体化学的局限性,易于操作,普遍性和选择性并存,以及仿生多组分结合。理论研究表明,SAlOC-1的识别机制与多孔骨架材料不同,SAlOC-1的识别机制依赖于配体的柔韧性形成半开门构型,起到分子捕集器的作用。纳米团簇具有精确的结构,因此为研究表面吸附现象提供了分子水平的方法。在这里,通过共封装策略合成球形铝氧簇,以检查各种客体分子的包涵。该模型为通过纳米颗粒表面快速识别有机分子铺平了道路。
{"title":"Precise synthesis of spherical aluminium oxo clusters for accurate surface guest recognition","authors":"Si-Hao Shen, Jian Hao, Minyi Zhang, Ying-Hua Yu, Jian-Bing Chen, Dominic Wright, Chunsen Li, Wei-Hui Fang, Jian Zhang","doi":"10.1038/s44160-025-00927-z","DOIUrl":"10.1038/s44160-025-00927-z","url":null,"abstract":"The small size of nanoparticles complicates surface adsorption studies, and their unclear structure limits the accuracy of traditional analytical methods. Nanoclusters, with precise structures, offer a molecular-level approach for studying surface adsorption phenomena. Here we used flexible, sterically hindered probenecid ligands to mimic surfactants in classic micelle structures and developed a co-encapsulation strategy to synthesize spherical aluminium oxo clusters (SAlOC-1). The spherical surface of SAlOC-1 maximally exposes supramolecular sites and provides a guest-accessible environment. SAlOC-1 can accommodate up to 20 different drug-related guests across a wide range of sizes at room temperature via a single-crystal-to-single-crystal transformation. These results highlight SAlOC-1’s advantages in guest determination, including the ability to overcome limitations associated with liquid-phase host–guest chemistry in traditional discrete systems, ease of operation, the coexistence of universality and selectivity, and biomimetic multicomponent binding. Theoretical studies reveal that SAlOC-1’s recognition mechanism differs from that of porous framework materials, relying instead on ligand flexibility to form a half-open-door configuration, acting as a molecular catcher. Nanoclusters have precise structures and therefore offer a molecular-level approach for studying surface adsorption phenomena. Here, spherical aluminium oxo clusters are synthesized via a co-encapsulation strategy to examine the inclusion of various guest molecules. This model paves the way for rapid recognition of organic molecules by nanoparticle surfaces.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"5 2","pages":"290-301"},"PeriodicalIF":20.0,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Discovery and engineering of the biosynthesis of rotenoids 作者更正:类鱼素生物合成的发现与工程
IF 2 0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-27 DOI: 10.1038/s44160-025-00963-9
Wenying Cao, Jie Yang, Benke Hong
{"title":"Author Correction: Discovery and engineering of the biosynthesis of rotenoids","authors":"Wenying Cao, Jie Yang, Benke Hong","doi":"10.1038/s44160-025-00963-9","DOIUrl":"10.1038/s44160-025-00963-9","url":null,"abstract":"","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"5 1","pages":"151-151"},"PeriodicalIF":20.0,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44160-025-00963-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skeletal editing of C(sp3)–C(sp3) bonds via photoinduced oxidative oxygen migration 通过光诱导氧化氧迁移对C(sp3) -C (sp3)键进行骨架编辑
0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-27 DOI: 10.1038/s44160-025-00950-0
Ajay H. Bansode, Marvin Parasram
{"title":"Skeletal editing of C(sp3)–C(sp3) bonds via photoinduced oxidative oxygen migration","authors":"Ajay H. Bansode, Marvin Parasram","doi":"10.1038/s44160-025-00950-0","DOIUrl":"https://doi.org/10.1038/s44160-025-00950-0","url":null,"abstract":"","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Algorithmic iterative reticular synthesis of zeolitic imidazolate framework crystals 咪唑酸分子筛骨架晶体的算法迭代网状合成
0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-25 DOI: 10.1038/s44160-025-00939-9
Zichao Rong, Zihao Chen, Felix Luong, Saumil Chheda, H. T. Nhan Luong, Zhiling Zheng, Kevin Greco, Abdullah A. Alghamdi, K. Huyen Bui, Théo Jaffrelot Inizan, Tung Nguyen-Dang, H. Hieu Pham, Dung D. Le, Joachim Sauer, Viet Bac T. Phung, Jennifer T. Chayes, Christian Borgs, Mario Boley, Laurent El Ghaoui, Omar M. Yaghi
The discovery of crystalline reticular materials remains largely trial-and-error despite their societal importance. We introduce our algorithmic iterative reticular synthesis (AIRES) cycle, which integrates automated synthesis, image recognition, single-crystal X-ray diffraction and, crucially, customized algorithmic decision-making, to maximize distinct crystal discoveries rather than optimizing single targets. Demonstrated on zeolitic imidazolate frameworks (ZIFs), AIRES achieves twice the discovery rate of random exploration, crystallizing 10 new linkers into diverse ZIF topologies and expanding the single-linker Zn-ZIF library by one-third. By transforming reticular synthesis from an empirical process to a systematic exploration, AIRES provides a scalable and efficient blueprint for accelerating materials discovery.
尽管晶体网状材料具有重要的社会意义,但它们的发现仍然在很大程度上是反复试验的结果。我们介绍了我们的算法迭代网状合成(AIRES)周期,它集成了自动合成、图像识别、单晶x射线衍射以及最重要的定制算法决策,以最大限度地发现不同的晶体,而不是优化单一目标。在沸石咪唑盐框架(ZIF)上进行了演示,AIRES实现了随机探索发现率的两倍,将10个新连接物结晶成不同的ZIF拓扑,并将单连接物Zn-ZIF库扩展了三分之一。通过将网状合成从经验过程转变为系统探索,AIRES为加速材料发现提供了可扩展和有效的蓝图。
{"title":"Algorithmic iterative reticular synthesis of zeolitic imidazolate framework crystals","authors":"Zichao Rong, Zihao Chen, Felix Luong, Saumil Chheda, H. T. Nhan Luong, Zhiling Zheng, Kevin Greco, Abdullah A. Alghamdi, K. Huyen Bui, Théo Jaffrelot Inizan, Tung Nguyen-Dang, H. Hieu Pham, Dung D. Le, Joachim Sauer, Viet Bac T. Phung, Jennifer T. Chayes, Christian Borgs, Mario Boley, Laurent El Ghaoui, Omar M. Yaghi","doi":"10.1038/s44160-025-00939-9","DOIUrl":"https://doi.org/10.1038/s44160-025-00939-9","url":null,"abstract":"The discovery of crystalline reticular materials remains largely trial-and-error despite their societal importance. We introduce our algorithmic iterative reticular synthesis (AIRES) cycle, which integrates automated synthesis, image recognition, single-crystal X-ray diffraction and, crucially, customized algorithmic decision-making, to maximize distinct crystal discoveries rather than optimizing single targets. Demonstrated on zeolitic imidazolate frameworks (ZIFs), AIRES achieves twice the discovery rate of random exploration, crystallizing 10 new linkers into diverse ZIF topologies and expanding the single-linker Zn-ZIF library by one-third. By transforming reticular synthesis from an empirical process to a systematic exploration, AIRES provides a scalable and efficient blueprint for accelerating materials discovery.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145593789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liquid metal nanoreactors forge dynamic and stable nanocatalysts 液态金属纳米反应器可锻造动态稳定的纳米催化剂
IF 2 0 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-24 DOI: 10.1038/s44160-025-00932-2
Yangwoo Lee, Hyung-Jun Koo
Liquid gallium is employed as a reaction medium to synthesize uniquely structured solid–liquid–solid core–shell–shell nanoparticles, enabling the fabrication of diverse metallic nanostructures with excellent electrocatalytic performance.
以液态镓为反应介质,合成结构独特的固-液-固核-壳-壳纳米颗粒,制备出具有优异电催化性能的多种金属纳米结构。
{"title":"Liquid metal nanoreactors forge dynamic and stable nanocatalysts","authors":"Yangwoo Lee, Hyung-Jun Koo","doi":"10.1038/s44160-025-00932-2","DOIUrl":"10.1038/s44160-025-00932-2","url":null,"abstract":"Liquid gallium is employed as a reaction medium to synthesize uniquely structured solid–liquid–solid core–shell–shell nanoparticles, enabling the fabrication of diverse metallic nanostructures with excellent electrocatalytic performance.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"4 12","pages":"1477-1478"},"PeriodicalIF":20.0,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145583126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature synthesis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1