Hui Wei, Maxwell A Xu, Colin Samplawski, James M Rehg, Santosh Kumar, Benjamin M Marlin
Wearable sensors enable health researchers to continuously collect data pertaining to the physiological state of individuals in real-world settings. However, such data can be subject to extensive missingness due to a complex combination of factors. In this work, we study the problem of imputation of missing step count data, one of the most ubiquitous forms of wearable sensor data. We construct a novel and large scale data set consisting of a training set with over 3 million hourly step count observations and a test set with over 2.5 million hourly step count observations. We propose a domain knowledge-informed sparse self-attention model for this task that captures the temporal multi-scale nature of step-count data. We assess the performance of the model relative to baselines and conduct ablation studies to verify our specific model designs.
{"title":"Temporally Multi-Scale Sparse Self-Attention for Physical Activity Data Imputation.","authors":"Hui Wei, Maxwell A Xu, Colin Samplawski, James M Rehg, Santosh Kumar, Benjamin M Marlin","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Wearable sensors enable health researchers to continuously collect data pertaining to the physiological state of individuals in real-world settings. However, such data can be subject to extensive missingness due to a complex combination of factors. In this work, we study the problem of imputation of missing step count data, one of the most ubiquitous forms of wearable sensor data. We construct a novel and large scale data set consisting of a training set with over 3 million hourly step count observations and a test set with over 2.5 million hourly step count observations. We propose a domain knowledge-informed sparse self-attention model for this task that captures the temporal multi-scale nature of step-count data. We assess the performance of the model relative to baselines and conduct ablation studies to verify our specific model designs.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"248 ","pages":"137-154"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421853/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142334005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shachi Deshpande, Charles Marx, Volodymyr Kuleshov
Accurate uncertainty estimates are important in sequential model-based decision-making tasks such as Bayesian optimization. However, these estimates can be imperfect if the data violates assumptions made by the model (e.g., Gaussianity). This paper studies which uncertainties are needed in model-based decision-making and in Bayesian optimization, and argues that uncertainties can benefit from calibration-i.e., an 80% predictive interval should contain the true outcome 80% of the time. Maintaining calibration, however, can be challenging when the data is non-stationary and depends on our actions. We propose using simple algorithms based on online learning to provably maintain calibration on non-i.i.d. data, and we show how to integrate these algorithms in Bayesian optimization with minimal overhead. Empirically, we find that calibrated Bayesian optimization converges to better optima in fewer steps, and we demonstrate improved performance on standard benchmark functions and hyperparameter optimization tasks.
{"title":"Online Calibrated and Conformal Prediction Improves Bayesian Optimization.","authors":"Shachi Deshpande, Charles Marx, Volodymyr Kuleshov","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Accurate uncertainty estimates are important in sequential model-based decision-making tasks such as Bayesian optimization. However, these estimates can be imperfect if the data violates assumptions made by the model (e.g., Gaussianity). This paper studies which uncertainties are needed in model-based decision-making and in Bayesian optimization, and argues that uncertainties can benefit from calibration-i.e., an 80% predictive interval should contain the true outcome 80% of the time. Maintaining calibration, however, can be challenging when the data is non-stationary and depends on our actions. We propose using simple algorithms based on online learning to provably maintain calibration on non-i.i.d. data, and we show how to integrate these algorithms in Bayesian optimization with minimal overhead. Empirically, we find that calibrated Bayesian optimization converges to better optima in fewer steps, and we demonstrate improved performance on standard benchmark functions and hyperparameter optimization tasks.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"238 ","pages":"1450-1458"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482741/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jimmy Hickey, Ricardo Henao, Daniel Wojdyla, Michael Pencina, Matthew Engelhard
Recently developed survival analysis methods improve upon existing approaches by predicting the probability of event occurrence in each of a number pre-specified (discrete) time intervals. By avoiding placing strong parametric assumptions on the event density, this approach tends to improve prediction performance, particularly when data are plentiful. However, in clinical settings with limited available data, it is often preferable to judiciously partition the event time space into a limited number of intervals well suited to the prediction task at hand. In this work, we develop Adaptive Discretization for Event PredicTion (ADEPT) to learn from data a set of cut points defining such a partition. We show that in two simulated datasets, we are able to recover intervals that match the underlying generative model. We then demonstrate improved prediction performance on three real-world observational datasets, including a large, newly harmonized stroke risk prediction dataset. Finally, we argue that our approach facilitates clinical decision-making by suggesting time intervals that are most appropriate for each task, in the sense that they facilitate more accurate risk prediction.
最近开发的生存分析方法对现有方法进行了改进,预测了在若干预先指定的(离散)时间间隔内事件发生的概率。这种方法避免了对事件密度进行强参数假设,因此往往能提高预测效果,尤其是在数据丰富的情况下。然而,在可用数据有限的临床环境中,明智地将事件时间空间划分为适合当前预测任务的数量有限的时间间隔往往更为可取。在这项工作中,我们开发了 "事件预测自适应离散化"(Adaptive Discretization for Event PredicTion,ADEPT),以从数据中学习一组定义这种分区的切点。我们表明,在两个模拟数据集中,我们能够恢复与底层生成模型相匹配的区间。然后,我们在三个真实世界观察数据集(包括一个新近统一的大型中风风险预测数据集)上证明了预测性能的提高。最后,我们认为,我们的方法通过提出最适合每项任务的时间间隔来促进临床决策,因为它们有助于更准确的风险预测。
{"title":"Adaptive Discretization for Event PredicTion (ADEPT).","authors":"Jimmy Hickey, Ricardo Henao, Daniel Wojdyla, Michael Pencina, Matthew Engelhard","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Recently developed survival analysis methods improve upon existing approaches by predicting the probability of event occurrence in each of a number pre-specified (discrete) time intervals. By avoiding placing strong parametric assumptions on the event density, this approach tends to improve prediction performance, particularly when data are plentiful. However, in clinical settings with limited available data, it is often preferable to judiciously partition the event time space into a limited number of intervals well suited to the prediction task at hand. In this work, we develop Adaptive Discretization for Event PredicTion (ADEPT) to learn from data a set of cut points defining such a partition. We show that in two simulated datasets, we are able to recover intervals that match the underlying generative model. We then demonstrate improved prediction performance on three real-world observational datasets, including a large, newly harmonized stroke risk prediction dataset. Finally, we argue that our approach facilitates clinical decision-making by suggesting time intervals that are most appropriate for each task, in the sense that they facilitate more accurate risk prediction.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"238 ","pages":"1351-1359"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11078624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140900566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Missing values are prevalent in temporal electronic health records (EHR) data and are known to complicate data analysis and lead to biased results. The current state-of-the-art (SOTA) models for imputing missing values in EHR primarily leverage correlations across time points and across features, which perform well when data have strong correlation across time points, such as in ICU data where high-frequency time series data are collected. However, this is often insufficient for temporal EHR data from non-ICU settings (e.g., outpatient visits for primary care or specialty care), where data are collected at substantially sparser time points, resulting in much weaker correlation across time points. To address this methodological gap, we propose the Similarity-Aware Diffusion Model-Based Imputation (SADI), a novel imputation method that leverages the diffusion model and utilizes information across dependent variables. We apply SADI to impute incomplete temporal EHR data and propose a similarity-aware denoising function, which includes a self-attention mechanism to model the correlations between time points, features, and similar patients. To the best of our knowledge, this is the first time that the information of similar patients is directly used to construct imputation for incomplete temporal EHR data. Our extensive experiments on two datasets, the Critical Path For Alzheimer's Disease (CPAD) data and the PhysioNet Challenge 2012 data, show that SADI outperforms the current SOTA under various missing data mechanisms, including missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR).
缺失值在时态电子健康记录(EHR)数据中非常普遍,众所周知,缺失值会使数据分析复杂化并导致结果偏差。目前最先进的(SOTA)模型主要利用跨时间点和跨特征的相关性来弥补电子健康记录中的缺失值,在数据跨时间点相关性很强的情况下,例如在收集高频时间序列数据的重症监护室数据中,这种模型表现良好。然而,对于非重症监护室环境下的时间 EHR 数据(如初级保健或专科护理的门诊就诊)来说,这往往是不够的,因为在这些环境下,数据收集的时间点要稀疏得多,导致跨时间点的相关性要弱得多。为了弥补这一方法上的不足,我们提出了基于相似性感知扩散模型的估算(SADI),这是一种利用扩散模型和跨因变量信息的新型估算方法。我们将 SADI 应用于不完整的时间 EHR 数据的估算,并提出了一种相似性感知去噪函数,其中包括一种自我关注机制,用于模拟时间点、特征和相似患者之间的相关性。据我们所知,这是首次直接利用相似患者的信息来构建不完整时态电子病历数据的估算。我们在两个数据集(阿尔茨海默病关键路径(CPAD)数据和 2012 年物理网挑战赛数据)上进行了大量实验,结果表明,在各种数据缺失机制下,包括完全随机缺失(MCAR)、随机缺失(MAR)和非随机缺失(MNAR),SADI 都优于目前的 SOTA。
{"title":"SADI: Similarity-Aware Diffusion Model-Based Imputation for Incomplete Temporal EHR Data.","authors":"Zongyu Dai, Emily Getzen, Qi Long","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Missing values are prevalent in temporal electronic health records (EHR) data and are known to complicate data analysis and lead to biased results. The current state-of-the-art (SOTA) models for imputing missing values in EHR primarily leverage correlations across time points and across features, which perform well when data have strong correlation across time points, such as in ICU data where high-frequency time series data are collected. However, this is often insufficient for temporal EHR data from non-ICU settings (e.g., outpatient visits for primary care or specialty care), where data are collected at substantially sparser time points, resulting in much weaker correlation across time points. To address this methodological gap, we propose the Similarity-Aware Diffusion Model-Based Imputation (SADI), a novel imputation method that leverages the diffusion model and utilizes information across dependent variables. We apply SADI to impute incomplete temporal EHR data and propose a similarity-aware denoising function, which includes a self-attention mechanism to model the correlations between time points, features, and similar patients. To the best of our knowledge, this is the first time that the information of similar patients is directly used to construct imputation for incomplete temporal EHR data. Our extensive experiments on two datasets, the Critical Path For Alzheimer's Disease (CPAD) data and the PhysioNet Challenge 2012 data, show that SADI outperforms the current SOTA under various missing data mechanisms, including missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR).</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"238 ","pages":"4195-4203"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391213/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano
This paper introduces an online bilevel optimization setting in which a sequence of time-varying bilevel problems is revealed one after the other. We extend the known regret bounds for single-level online algorithms to the bilevel setting. Specifically, we provide new notions of bilevel regret, develop an online alternating time-averaged gradient method that is capable of leveraging smoothness, and give regret bounds in terms of the path-length of the inner and outer minimizer sequences.
{"title":"Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods.","authors":"Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This paper introduces an <i>online bilevel optimization</i> setting in which a sequence of time-varying bilevel problems is revealed one after the other. We extend the known regret bounds for single-level online algorithms to the bilevel setting. Specifically, we provide new notions of <i>bilevel regret</i>, develop an online alternating time-averaged gradient method that is capable of leveraging smoothness, and give regret bounds in terms of the path-length of the inner and outer minimizer sequences.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"238 ","pages":"2854-2862"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452163/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent advances in unsupervised learning have shown that unsupervised pre-training, followed by fine-tuning, can improve model generalization. However, a rigorous understanding of how the representation function learned on an unlabeled dataset affects the generalization of the fine-tuned model is lacking. Existing theoretical research does not adequately account for the heterogeneity of the distribution and tasks in pre-training and fine-tuning stage. To bridge this gap, this paper introduces a novel theoretical framework that illuminates the critical factor influencing the transferability of knowledge acquired during unsupervised pre-training to the subsequent fine-tuning phase, ultimately affecting the generalization capabilities of the fine-tuned model on downstream tasks. We apply our theoretical framework to analyze generalization bound of two distinct scenarios: Context Encoder pre-training with deep neural networks and Masked Autoencoder pre-training with deep transformers, followed by fine-tuning on a binary classification task. Finally, inspired by our findings, we propose a novel regularization method during pre-training to further enhances the generalization of fine-tuned model. Overall, our results contribute to a better understanding of unsupervised pre-training and fine-tuning paradigm, and can shed light on the design of more effective pre-training algorithms.
{"title":"On the Generalization Ability of Unsupervised Pretraining.","authors":"Yuyang Deng, Junyuan Hong, Jiayu Zhou, Mehrdad Mahdavi","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Recent advances in unsupervised learning have shown that unsupervised pre-training, followed by fine-tuning, can improve model generalization. However, a rigorous understanding of how the representation function learned on an unlabeled dataset affects the generalization of the fine-tuned model is lacking. Existing theoretical research does not adequately account for the heterogeneity of the distribution and tasks in pre-training and fine-tuning stage. To bridge this gap, this paper introduces a novel theoretical framework that illuminates the critical factor influencing the transferability of knowledge acquired during unsupervised pre-training to the subsequent fine-tuning phase, ultimately affecting the generalization capabilities of the fine-tuned model on downstream tasks. We apply our theoretical framework to analyze generalization bound of two distinct scenarios: Context Encoder pre-training with deep neural networks and Masked Autoencoder pre-training with deep transformers, followed by fine-tuning on a binary classification task. Finally, inspired by our findings, we propose a novel regularization method during pre-training to further enhances the generalization of fine-tuned model. Overall, our results contribute to a better understanding of unsupervised pre-training and fine-tuning paradigm, and can shed light on the design of more effective pre-training algorithms.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"238 ","pages":"4519-4527"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484219/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We consider the contextual bandit problem where at each time, the agent only has access to a noisy version of the context and the error variance (or an estimator of this variance). This setting is motivated by a wide range of applications where the true context for decision-making is unobserved, and only a prediction of the context by a potentially complex machine learning algorithm is available. When the context error is non-vanishing, classical bandit algorithms fail to achieve sublinear regret. We propose the first online algorithm in this setting with sublinear regret guarantees under mild conditions. The key idea is to extend the measurement error model in classical statistics to the online decision-making setting, which is nontrivial due to the policy being dependent on the noisy context observations. We further demonstrate the benefits of the proposed approach in simulation environments based on synthetic and real digital intervention datasets.
{"title":"Online learning in bandits with predicted context.","authors":"Yongyi Guo, Ziping Xu, Susan Murphy","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>We consider the contextual bandit problem where at each time, the agent only has access to a noisy version of the context and the error variance (or an estimator of this variance). This setting is motivated by a wide range of applications where the true context for decision-making is unobserved, and only a prediction of the context by a potentially complex machine learning algorithm is available. When the context error is non-vanishing, classical bandit algorithms fail to achieve sublinear regret. We propose the first online algorithm in this setting with sublinear regret guarantees under mild conditions. The key idea is to extend the measurement error model in classical statistics to the online decision-making setting, which is nontrivial due to the policy being dependent on the noisy context observations. We further demonstrate the benefits of the proposed approach in simulation environments based on synthetic and real digital intervention datasets.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"238 ","pages":"2215-2223"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501084/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Interpretability is crucial for doctors, hospitals, pharmaceutical companies and biotechnology corporations to analyze and make decisions for high stakes problems that involve human health. Tree-based methods have been widely adopted for survival analysis due to their appealing interpretablility and their ability to capture complex relationships. However, most existing methods to produce survival trees rely on heuristic (or greedy) algorithms, which risk producing sub-optimal models. We present a dynamic-programming-with-bounds approach that finds provably-optimal sparse survival tree models, frequently in only a few seconds.
{"title":"Optimal Sparse Survival Trees.","authors":"Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Interpretability is crucial for doctors, hospitals, pharmaceutical companies and biotechnology corporations to analyze and make decisions for high stakes problems that involve human health. Tree-based methods have been widely adopted for <i>survival analysis</i> due to their appealing interpretablility and their ability to capture complex relationships. However, most existing methods to produce survival trees rely on heuristic (or greedy) algorithms, which risk producing sub-optimal models. We present a dynamic-programming-with-bounds approach that finds provably-optimal sparse survival tree models, frequently in only a few seconds.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"238 ","pages":"352-360"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417463/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142309319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An individualized treatment rule (ITR) is a decision rule that recommends treatments for patients based on their individual feature variables. In many practices, the ideal ITR for the primary outcome is also expected to cause minimal harm to other secondary outcomes. Therefore, our objective is to learn an ITR that not only maximizes the value function for the primary outcome, but also approximates the optimal rule for the secondary outcomes as closely as possible. To achieve this goal, we introduce a fusion penalty to encourage the ITRs based on different outcomes to yield similar recommendations. Two algorithms are proposed to estimate the ITR using surrogate loss functions. We prove that the agreement rate between the estimated ITR of the primary outcome and the optimal ITRs of the secondary outcomes converges to the true agreement rate faster than if the secondary outcomes are not taken into consideration. Furthermore, we derive the non-asymptotic properties of the value function and misclassification rate for the proposed method. Finally, simulation studies and a real data example are used to demonstrate the finite-sample performance of the proposed method.
{"title":"Fusing Individualized Treatment Rules Using Secondary Outcomes.","authors":"Daiqi Gao, Yuanjia Wang, Donglin Zeng","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>An individualized treatment rule (ITR) is a decision rule that recommends treatments for patients based on their individual feature variables. In many practices, the ideal ITR for the primary outcome is also expected to cause minimal harm to other secondary outcomes. Therefore, our objective is to learn an ITR that not only maximizes the value function for the primary outcome, but also approximates the optimal rule for the secondary outcomes as closely as possible. To achieve this goal, we introduce a fusion penalty to encourage the ITRs based on different outcomes to yield similar recommendations. Two algorithms are proposed to estimate the ITR using surrogate loss functions. We prove that the agreement rate between the estimated ITR of the primary outcome and the optimal ITRs of the secondary outcomes converges to the true agreement rate faster than if the secondary outcomes are not taken into consideration. Furthermore, we derive the non-asymptotic properties of the value function and misclassification rate for the proposed method. Finally, simulation studies and a real data example are used to demonstrate the finite-sample performance of the proposed method.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"238 ","pages":"712-720"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450767/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AI-enabled precision medicine promises a transformational improvement in healthcare outcomes. However, training on biomedical data presents significant challenges as they are often high dimensional, clustered, and of limited sample size. To overcome these challenges, we propose a simple and scalable approach for cluster-aware embedding that combines latent factor methods with a convex clustering penalty in a modular way. Our novel approach overcomes the complexity and limitations of current joint embedding and clustering methods and enables hierarchically clustered principal component analysis (PCA), locally linear embedding (LLE), and canonical correlation analysis (CCA). Through numerical experiments and real-world examples, we demonstrate that our approach outperforms fourteen clustering methods on highly underdetermined problems (e.g., with limited sample size) as well as on large sample datasets. Importantly, our approach does not require the user to choose the desired number of clusters, yields improved model selection if they do, and yields interpretable hierarchically clustered embedding dendrograms. Thus, our approach improves significantly on existing methods for identifying patient subgroups in multiomics and neuroimaging data and enables scalable and interpretable biomarkers for precision medicine.
{"title":"Simple and Scalable Algorithms for Cluster-Aware Precision Medicine.","authors":"Amanda M Buch, Conor Liston, Logan Grosenick","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>AI-enabled precision medicine promises a transformational improvement in healthcare outcomes. However, training on biomedical data presents significant challenges as they are often high dimensional, clustered, and of limited sample size. To overcome these challenges, we propose a simple and scalable approach for cluster-aware embedding that combines latent factor methods with a convex clustering penalty in a modular way. Our novel approach overcomes the complexity and limitations of current joint embedding and clustering methods and enables hierarchically clustered principal component analysis (PCA), locally linear embedding (LLE), and canonical correlation analysis (CCA). Through numerical experiments and real-world examples, we demonstrate that our approach outperforms fourteen clustering methods on highly underdetermined problems (e.g., with limited sample size) as well as on large sample datasets. Importantly, our approach does not require the user to choose the desired number of clusters, yields improved model selection if they do, and yields interpretable hierarchically clustered embedding dendrograms. Thus, our approach improves significantly on existing methods for identifying patient subgroups in multiomics and neuroimaging data and enables scalable and interpretable biomarkers for precision medicine.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"238 ","pages":"136-144"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251711/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}