Solving partial differential equations (PDEs) using neural networks has become a central focus in scientific machine learning. Training neural networks for singularly perturbed problems is particularly challenging due to certain parameters in the PDEs that introduce near-singularities in the loss function. In this study, we overcome this challenge by introducing a novel method based on homotopy dynamics to effectively manipulate these parameters. From a theoretical perspective, we analyze the effects of these parameters on training difficulty in these singularly perturbed problems and establish the convergence of the proposed homotopy dynamics method. Experimentally, we demonstrate that our approach significantly accelerates convergence and improves the accuracy of these singularly perturbed problems. These findings present an efficient optimization strategy leveraging homotopy dynamics, offering a robust framework to extend the applicability of neural networks for solving singularly perturbed differential equations.
{"title":"Learn Singularly Perturbed Solutions via Homotopy Dynamics.","authors":"Chuqi Chen, Yahong Yang, Yang Xiang, Wenrui Hao","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Solving partial differential equations (PDEs) using neural networks has become a central focus in scientific machine learning. Training neural networks for singularly perturbed problems is particularly challenging due to certain parameters in the PDEs that introduce near-singularities in the loss function. In this study, we overcome this challenge by introducing a novel method based on homotopy dynamics to effectively manipulate these parameters. From a theoretical perspective, we analyze the effects of these parameters on training difficulty in these singularly perturbed problems and establish the convergence of the proposed homotopy dynamics method. Experimentally, we demonstrate that our approach significantly accelerates convergence and improves the accuracy of these singularly perturbed problems. These findings present an efficient optimization strategy leveraging homotopy dynamics, offering a robust framework to extend the applicability of neural networks for solving singularly perturbed differential equations.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"267 ","pages":"9590-9613"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12662737/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145650332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural recording technologies now enable simultaneous recording of population activity across many brain regions, motivating the development of data-driven models of communication between brain regions. However, existing models can struggle to disentangle the sources that influence recorded neural populations, leading to inaccurate portraits of inter-regional communication. Here, we introduce Multi-Region Latent Factor Analysis via Dynamical Systems (MR-LFADS), a sequential variational autoencoder designed to disentangle inter-regional communication, inputs from unobserved regions, and local neural population dynamics. We show that MR-LFADS outperforms existing approaches at identifying communication across dozens of simulations of task-trained multi-region networks. When applied to large-scale electrophysiology, MR-LFADS predicts brain-wide effects of circuit perturbations that were held out during model fitting. These validations on synthetic and real neural data position MR-LFADS as a promising tool for discovering principles of brain-wide information processing.
{"title":"Accurate Identification of Communication Between Multiple Interacting Neural Populations.","authors":"Belle Liu, Jacob Sacks, Matthew D Golub","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Neural recording technologies now enable simultaneous recording of population activity across many brain regions, motivating the development of data-driven models of communication between brain regions. However, existing models can struggle to disentangle the sources that influence recorded neural populations, leading to inaccurate portraits of inter-regional communication. Here, we introduce Multi-Region Latent Factor Analysis via Dynamical Systems (MR-LFADS), a sequential variational autoencoder designed to disentangle inter-regional communication, inputs from unobserved regions, and local neural population dynamics. We show that MR-LFADS outperforms existing approaches at identifying communication across dozens of simulations of task-trained multi-region networks. When applied to large-scale electrophysiology, MR-LFADS predicts brain-wide effects of circuit perturbations that were held out during model fitting. These validations on synthetic and real neural data position MR-LFADS as a promising tool for discovering principles of brain-wide information processing.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"267 ","pages":"39381-39404"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12715561/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145806697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osman Berke Guney, Ketan Suhaas Saichandran, Karim Elzokm, Ziming Zhang, Vijaya B Kolachalama
In many practical applications, including medicine, acquiring all relevant data for machine learning models is often infeasible due to constraints on time, cost, and resources. This makes it important to selectively acquire only the most informative features, yet traditional static feature selection methods fall short in scenarios where feature importance varies across instances. Here, we propose an active feature acquisition (AFA) framework, which dynamically selects features based on their importance to each individual case. Our method leverages local explanation techniques to generate instance-specific feature importance rankings. We then reframe the AFA problem as a feature prediction task, introducing a policy network grounded in a decision transformer architecture. This policy network is trained to select the next most informative feature by learning from the feature importance rankings. As a result, features are acquired sequentially, ordered by their predictive significance, leading to more efficient feature selection and acquisition. Extensive experiments on multiple datasets demonstrate that our approach outperforms current state-of-the-art AFA methods in predictive accuracy and feature acquisition efficiency. These findings highlight the promise of an explainability-driven AFA strategy in scenarios where feature acquisition is a concern.
{"title":"Active Feature Acquisition Via Explainability-driven Ranking.","authors":"Osman Berke Guney, Ketan Suhaas Saichandran, Karim Elzokm, Ziming Zhang, Vijaya B Kolachalama","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>In many practical applications, including medicine, acquiring all relevant data for machine learning models is often infeasible due to constraints on time, cost, and resources. This makes it important to selectively acquire only the most informative features, yet traditional static feature selection methods fall short in scenarios where feature importance varies across instances. Here, we propose an active feature acquisition (AFA) framework, which dynamically selects features based on their importance to each individual case. Our method leverages local explanation techniques to generate instance-specific feature importance rankings. We then reframe the AFA problem as a feature prediction task, introducing a policy network grounded in a decision transformer architecture. This policy network is trained to select the next most informative feature by learning from the feature importance rankings. As a result, features are acquired sequentially, ordered by their predictive significance, leading to more efficient feature selection and acquisition. Extensive experiments on multiple datasets demonstrate that our approach outperforms current state-of-the-art AFA methods in predictive accuracy and feature acquisition efficiency. These findings highlight the promise of an explainability-driven AFA strategy in scenarios where feature acquisition is a concern.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"267 ","pages":"20748-20765"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12661659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145650405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Missing data is pervasive in healthcare. Many imputation methods exist to fill in missing values, yet most were evaluated using randomly deleted values rather than the actual mechanisms they were designed to address. We aimed to determine real-world accuracy for missing data imputation with three missing data mechanisms (missing completely at random, MCAR; missing at random, MAR; and not missing at random, NMAR) for state of the art and commonly used imputation methods. Using two time series data targets (continuous glucose monitoring, Loop dataset; heart rate, All of Us dataset) we simulated missingness by masking values for each mechanism, at a range of missingness percentages (5-30%) and tested 12 imputation methods. We evaluated accuracy with multiple metrics including root mean square error (RMSE) and bias. We found that overall, accuracy was significantly better on MCAR than on MAR and NMAR, despite many methods being developed for those mechanisms. Linear interpolation had the lowest RMSE with all mechanisms and for all demographic groups, with low bias. This study shows that current evaluation practices do not provide an accurate picture of real world performance with realistic patterns of missingness. Future research is needed to develop evaluation practices that better capture real-world accuracy, and methods that better address real-world mechanisms.
数据缺失在医疗保健行业非常普遍。存在许多填入方法来填补缺失值,但是大多数都是使用随机删除的值进行评估,而不是设计它们来处理的实际机制。我们的目标是通过三种缺失数据机制(完全随机缺失,MCAR;随机缺失,MAR;非随机缺失,NMAR)来确定最先进和常用的缺失数据插入方法的真实世界准确性。使用两个时间序列数据目标(连续血糖监测,Loop数据集;心率,All of Us数据集),我们在缺失百分比范围内(5-30%)通过每种机制的掩蔽值模拟缺失,并测试了12种imputation方法。我们用包括均方根误差(RMSE)和偏倚在内的多个指标来评估准确性。我们发现,总体而言,尽管针对这些机制开发了许多方法,但MCAR的准确性明显优于MAR和NMAR。线性插值在所有机制和所有人口群体中均具有最低的RMSE,偏差低。这项研究表明,目前的评估实践不能提供真实世界的表现与现实模式的缺失的准确图片。未来的研究需要开发评估实践,以更好地捕捉现实世界的准确性,以及更好地解决现实世界机制的方法。
{"title":"Benchmarking Missing Data Imputation Methods for Time Series Using Real-World Test Cases.","authors":"Adedolapo Aishat Toye, Asuman Celik, Samantha Kleinberg","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Missing data is pervasive in healthcare. Many imputation methods exist to fill in missing values, yet most were evaluated using randomly deleted values rather than the actual mechanisms they were designed to address. We aimed to determine real-world accuracy for missing data imputation with three missing data mechanisms (missing completely at random, MCAR; missing at random, MAR; and not missing at random, NMAR) for state of the art and commonly used imputation methods. Using two time series data targets (continuous glucose monitoring, Loop dataset; heart rate, All of Us dataset) we simulated missingness by masking values for each mechanism, at a range of missingness percentages (5-30%) and tested 12 imputation methods. We evaluated accuracy with multiple metrics including root mean square error (RMSE) and bias. We found that overall, accuracy was significantly better on MCAR than on MAR and NMAR, despite many methods being developed for those mechanisms. Linear interpolation had the lowest RMSE with all mechanisms and for all demographic groups, with low bias. This study shows that current evaluation practices do not provide an accurate picture of real world performance with realistic patterns of missingness. Future research is needed to develop evaluation practices that better capture real-world accuracy, and methods that better address real-world mechanisms.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"287 ","pages":"480-501"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12392262/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144981808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shahriar Noroozizadeh, Pim Welle, Jeremy C Weiss, George H Chen
This study quantifies the association between non-adherence to antipsychotic medications and adverse outcomes in individuals with schizophrenia. We frame the problem using survival analysis, focusing on the time to the earliest of several adverse events (early death, involuntary hospitalization, jail booking). We extend standard causal inference methods (T-learner, S-learner, nearest neighbor matching) to utilize various survival models to estimate individual and average treatment effects, where treatment corresponds to medication non-adherence. Analyses are repeated using different amounts of longitudinal information (3, 6, 9, and 12 months). Using data from Allegheny County in western Pennsylvania, we find strong evidence that non-adherence advances adverse outcomes by approximately 1 to 4 months. Ablation studies confirm that county-provided risk scores adjust for key confounders, as their removal amplifies the estimated effects. Subgroup analyses by medication formulation (injectable vs. oral) and medication type consistently show that non-adherence is associated with earlier adverse events. These findings highlight the clinical importance of adherence in delaying psychiatric crises and show that integrating survival analysis with causal inference tools can yield policy-relevant insights. We caution that although we apply causal inference, we only make associative claims and discuss assumptions needed for causal interpretation.
{"title":"The Impact of Medication Non-adherence on Adverse Outcomes: Evidence from Schizophrenia Patients via Survival Analysis.","authors":"Shahriar Noroozizadeh, Pim Welle, Jeremy C Weiss, George H Chen","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This study quantifies the association between non-adherence to antipsychotic medications and adverse outcomes in individuals with schizophrenia. We frame the problem using survival analysis, focusing on the time to the earliest of several adverse events (early death, involuntary hospitalization, jail booking). We extend standard causal inference methods (T-learner, S-learner, nearest neighbor matching) to utilize various survival models to estimate individual and average treatment effects, where treatment corresponds to medication non-adherence. Analyses are repeated using different amounts of longitudinal information (3, 6, 9, and 12 months). Using data from Allegheny County in western Pennsylvania, we find strong evidence that non-adherence advances adverse outcomes by approximately 1 to 4 months. Ablation studies confirm that county-provided risk scores adjust for key confounders, as their removal amplifies the estimated effects. Subgroup analyses by medication formulation (injectable vs. oral) and medication type consistently show that non-adherence is associated with earlier adverse events. These findings highlight the clinical importance of adherence in delaying psychiatric crises and show that integrating survival analysis with causal inference tools can yield policy-relevant insights. We caution that although we apply causal inference, we only make associative claims and discuss assumptions needed for causal interpretation.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"287 ","pages":"573-609"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12444782/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145115155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao Yu Cindy Zhang, Carlos R Ferreira, Francis Rossignol, Raymond T Ng, Wyeth Wasserman, Jian Zhu
Rare diseases, including Inborn Errors of Metabolism (IEM), pose significant diagnostic challenges. Case reports serve as key but computationally underutilized resources to inform diagnosis. Clinical dense information extraction refers to organizing medical information into structured predefined categories. Large Language Models (LLMs) may enable scalable information extraction from case reports but are rarely evaluated for this task. We introduce CaseReportBench, an expert-annotated dataset for dense information extraction of case reports (focusing on IEMs). Using this dataset, we assess various models and promptings, introducing novel strategies of category-specific prompting and subheading-filtered data integration. Zero-shot chain-of-thought offers little advantage over zero-shot prompting. Category-specific prompting improves alignment to benchmark. Open-source Qwen2.5:7B outperforms GPT-4o for this task. Our clinician evaluations show that LLMs can extract clinically relevant details from case reports, supporting rare disease diagnosis and management. We also highlight areas for improvement, such as LLMs' limitations in recognizing negative findings for differential diagnosis. This work advances LLM-driven clinical NLP, paving the way for scalable medical AI applications.
{"title":"CaseReportBench: An LLM Benchmark Dataset for Dense Information Extraction in Clinical Case Reports.","authors":"Xiao Yu Cindy Zhang, Carlos R Ferreira, Francis Rossignol, Raymond T Ng, Wyeth Wasserman, Jian Zhu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Rare diseases, including Inborn Errors of Metabolism (IEM), pose significant diagnostic challenges. Case reports serve as key but computationally underutilized resources to inform diagnosis. Clinical dense information extraction refers to organizing medical information into structured predefined categories. Large Language Models (LLMs) may enable scalable information extraction from case reports but are rarely evaluated for this task. We introduce <b>CaseReportBench</b>, an expert-annotated dataset for dense information extraction of case reports (focusing on IEMs). Using this dataset, we assess various models and promptings, introducing novel strategies of <b>category-specific prompting</b> and <b>subheading-filtered data integration</b>. Zero-shot chain-of-thought offers little advantage over zero-shot prompting. <b>Category-specific prompting</b> improves alignment to benchmark. Open-source <b>Qwen2.5:7B</b> outperforms <b>GPT-4o</b> for this task. Our clinician evaluations show that LLMs can extract clinically relevant details from case reports, supporting rare disease diagnosis and management. We also highlight areas for improvement, such as LLMs' limitations in recognizing negative findings for differential diagnosis. This work advances LLM-driven clinical NLP, paving the way for scalable medical AI applications.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"287 ","pages":"527-542"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12477612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145202365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hye Sun Yun, Karen Y C Zhang, Ramez Kouzy, Iain J Marshall, Junyi Jessy Li, Byron C Wallace
Medical research faces well-documented challenges in translating novel treatments into clinical practice. Publishing incentives encourage researchers to present "positive" findings, even when empirical results are equivocal. Consequently, it is well-documented that authors often spin study results, especially in article abstracts. Such spin can influence clinician interpretation of evidence and may affect patient care decisions. In this study, we ask whether the interpretation of trial results offered by Large Language Models (LLMs) is similarly affected by spin. This is important since LLMs are increasingly being used to trawl through and synthesize published medical evidence. We evaluated 22 LLMs and found that they are across the board more susceptible to spin than humans. They might also propagate spin into their outputs: We find evidence, e.g., that LLMs implicitly incorporate spin into plain language summaries that they generate. We also find, however, that LLMs are generally capable of recognizing spin, and can be prompted in a way to mitigate spin's impact on LLM outputs.
{"title":"Caught in the Web of Words: Do LLMs Fall for Spin in Medical Literature?","authors":"Hye Sun Yun, Karen Y C Zhang, Ramez Kouzy, Iain J Marshall, Junyi Jessy Li, Byron C Wallace","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Medical research faces well-documented challenges in translating novel treatments into clinical practice. Publishing incentives encourage researchers to present \"positive\" findings, even when empirical results are equivocal. Consequently, it is well-documented that authors often <i>spin</i> study results, especially in article abstracts. Such spin can influence clinician interpretation of evidence and may affect patient care decisions. In this study, we ask whether the interpretation of trial results offered by Large Language Models (LLMs) is similarly affected by spin. This is important since LLMs are increasingly being used to trawl through and synthesize published medical evidence. We evaluated 22 LLMs and found that they are across the board <i>more</i> susceptible to spin than humans. They might also propagate spin into their outputs: We find evidence, e.g., that LLMs implicitly incorporate spin into plain language summaries that they generate. We also find, however, that LLMs are generally capable of recognizing spin, and can be prompted in a way to mitigate spin's impact on LLM outputs.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"287 ","pages":"458-479"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12622377/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145552263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengying Yan, Meng Xia, Wei A Huang, Chuan Hong, Benjamin A Goldstein, Matthew M Engelhard
Predicting long-term clinical outcomes often requires large-scale training data with sufficiently long follow-up. However, in electronic health records (EHR) data, long-term labels may not be available for contemporary patient cohorts. Given the dynamic nature of clinical practice, models that rely on historical training data may not perform optimally. In this work, we frame the problem as a positive-unlabeled domain adaptation task, where we seek to adapt from a fully labeled source domain (e.g., historical data) to a partially labeled target domain (e.g., contemporary data). We propose an adversarial framework that includes three core components: (1) Overall Alignment, to match feature distributions between source and target domains; (2) Partial Alignment, to map source negatives to unlabeled target samples; and (3) Conditional Alignment, to address conditional shift using available positive labels in the target domain. We evaluate our method on a benchmark digit classification task (SVHN-MNIST), and two real-world EHR applications: prediction of one-year mortality post COVID-19, and long-term prediction of neurodevelopmental conditions (NDC) in children. In all settings, our approach consistently outperforms baseline models and, in most cases, achieves performance close to an oracle model trained with fully observed labels.
{"title":"Predicting Partially Observed Long-Term Outcomes with Adversarial Positive-Unlabeled Domain Adaptation.","authors":"Mengying Yan, Meng Xia, Wei A Huang, Chuan Hong, Benjamin A Goldstein, Matthew M Engelhard","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Predicting long-term clinical outcomes often requires large-scale training data with sufficiently long follow-up. However, in electronic health records (EHR) data, long-term labels may not be available for contemporary patient cohorts. Given the dynamic nature of clinical practice, models that rely on historical training data may not perform optimally. In this work, we frame the problem as a positive-unlabeled domain adaptation task, where we seek to adapt from a fully labeled source domain (e.g., historical data) to a partially labeled target domain (e.g., contemporary data). We propose an adversarial framework that includes three core components: (1) Overall Alignment, to match feature distributions between source and target domains; (2) Partial Alignment, to map source negatives to unlabeled target samples; and (3) Conditional Alignment, to address conditional shift using available positive labels in the target domain. We evaluate our method on a benchmark digit classification task (SVHN-MNIST), and two real-world EHR applications: prediction of one-year mortality post COVID-19, and long-term prediction of neurodevelopmental conditions (NDC) in children. In all settings, our approach consistently outperforms baseline models and, in most cases, achieves performance close to an oracle model trained with fully observed labels.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"287 ","pages":"672-690"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12779109/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145936701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Many scientific fields collect longitudinal count compositional data. Each observation is a multivariate count vector, where the total counts are arbitrary, and the information lies in the relative frequency of the counts. Multiple authors have proposed Bayesian Multinomial Logistic-Normal Dynamic Linear Models (MLN-DLMs) as a flexible approach to modeling these data. However, adoption of these methods has been limited by computational challenges. This article develops an efficient and accurate approach to posterior state estimation, called Fenrir. Our approach relies on a novel algorithm for MAP estimation and an accurate approximation to a key posterior marginal of the model. As there are no equivalent methods against which we can compare, we also develop an optimized Stan implementation of MLN-DLMs. Our experiments suggest that Fenrir can be three orders of magnitude more efficient than Stan and can even be incorporated into larger sampling schemes for joint inference of model hyperparameters. Our methods are made available to the community as a user-friendly software library written in C++ with an R interface.
{"title":"Scalable Inference for Bayesian Multinomial Logistic-Normal Dynamic Linear Models.","authors":"Manan Saxena, Tinghua Chen, Justin D Silverman","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Many scientific fields collect longitudinal count compositional data. Each observation is a multivariate count vector, where the total counts are arbitrary, and the information lies in the relative frequency of the counts. Multiple authors have proposed Bayesian Multinomial Logistic-Normal Dynamic Linear Models (MLN-DLMs) as a flexible approach to modeling these data. However, adoption of these methods has been limited by computational challenges. This article develops an efficient and accurate approach to posterior state estimation, called Fenrir. Our approach relies on a novel algorithm for MAP estimation and an accurate approximation to a key posterior marginal of the model. As there are no equivalent methods against which we can compare, we also develop an optimized Stan implementation of MLN-DLMs. Our experiments suggest that Fenrir can be three orders of magnitude more efficient than Stan and can even be incorporated into larger sampling schemes for joint inference of model hyperparameters. Our methods are made available to the community as a user-friendly software library written in C++ with an R interface.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"258 ","pages":"442-450"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12774479/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145919262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leon Deng, Hong Xiong, Feng Wu, Sanyam Kapoor, Soumya Ghosh, Zach Shahn, Li-Wei H Lehman
In medical decision-making, clinicians must choose between different time-varying treatment strategies. Counterfactual prediction via g-computation enables comparison of alternative outcome distributions under such treatment strategies. While deep learning can better model high-dimensional data with complex temporal dependencies, incorporating model uncertainty into predicted conditional counterfactual distributions remains challenging. We propose a principled approach to model uncertainty in deep learning implementations of g-computations using approximate Bayesian posterior predictive distributions of counterfactual outcomes via variational dropout and deep ensembles. We evaluate these methods by comparing their counterfactual predictive calibration and performance in decision-making tasks, using two simulated datasets from mechanistic models and a real-world sepsis dataset. Our findings suggest that the proposed uncertainty quantification approach improves both calibration and decision-making performance, particularly in minimizing risks of worst-case adverse clinical outcomes under alternative dynamic treatment regimes. To our knowledge, this is the first work to propose and compare multiple uncertainty quantification methods in machine learning models of g-computation in estimating conditional treatment effects under dynamic treatment regimes.
{"title":"Uncertainty Quantification for Conditional Treatment Effect Estimation under Dynamic Treatment Regimes.","authors":"Leon Deng, Hong Xiong, Feng Wu, Sanyam Kapoor, Soumya Ghosh, Zach Shahn, Li-Wei H Lehman","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>In medical decision-making, clinicians must choose between different time-varying treatment strategies. Counterfactual prediction via g-computation enables comparison of alternative outcome distributions under such treatment strategies. While deep learning can better model high-dimensional data with complex temporal dependencies, incorporating model uncertainty into predicted conditional counterfactual distributions remains challenging. We propose a principled approach to model uncertainty in deep learning implementations of g-computations using approximate Bayesian posterior predictive distributions of counterfactual outcomes via variational dropout and deep ensembles. We evaluate these methods by comparing their counterfactual predictive calibration and performance in decision-making tasks, using two simulated datasets from mechanistic models and a real-world sepsis dataset. Our findings suggest that the proposed uncertainty quantification approach improves both calibration and decision-making performance, particularly in minimizing risks of worst-case adverse clinical outcomes under alternative dynamic treatment regimes. To our knowledge, this is the first work to propose and compare multiple uncertainty quantification methods in machine learning models of g-computation in estimating conditional treatment effects under dynamic treatment regimes.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"259 ","pages":"248-266"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121963/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144182919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}