首页 > 最新文献

Proceedings of machine learning research最新文献

英文 中文
Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods. 在线双级优化:在线梯度交替法的遗憾分析
Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano

This paper introduces an online bilevel optimization setting in which a sequence of time-varying bilevel problems is revealed one after the other. We extend the known regret bounds for single-level online algorithms to the bilevel setting. Specifically, we provide new notions of bilevel regret, develop an online alternating time-averaged gradient method that is capable of leveraging smoothness, and give regret bounds in terms of the path-length of the inner and outer minimizer sequences.

本文介绍了一种在线双层优化设置,在这种设置中,一连串时变双层问题相继揭示。我们将已知的单级在线算法的遗憾边界扩展到双级设置。具体来说,我们提供了双级遗憾的新概念,开发了一种能够利用平滑性的在线交替时间平均梯度法,并给出了内外部最小化序列的路径长度的遗憾边界。
{"title":"Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods.","authors":"Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This paper introduces an <i>online bilevel optimization</i> setting in which a sequence of time-varying bilevel problems is revealed one after the other. We extend the known regret bounds for single-level online algorithms to the bilevel setting. Specifically, we provide new notions of <i>bilevel regret</i>, develop an online alternating time-averaged gradient method that is capable of leveraging smoothness, and give regret bounds in terms of the path-length of the inner and outer minimizer sequences.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"238 ","pages":"2854-2862"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452163/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Sparse Survival Trees. 最优稀疏生存树
Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Interpretability is crucial for doctors, hospitals, pharmaceutical companies and biotechnology corporations to analyze and make decisions for high stakes problems that involve human health. Tree-based methods have been widely adopted for survival analysis due to their appealing interpretablility and their ability to capture complex relationships. However, most existing methods to produce survival trees rely on heuristic (or greedy) algorithms, which risk producing sub-optimal models. We present a dynamic-programming-with-bounds approach that finds provably-optimal sparse survival tree models, frequently in only a few seconds.

可解释性对于医生、医院、制药公司和生物技术公司分析涉及人类健康的重大问题并做出决策至关重要。基于树的方法因其极具吸引力的可解释性和捕捉复杂关系的能力,已被广泛用于生存分析。然而,大多数现有的生存树生成方法都依赖于启发式(或贪婪式)算法,这有可能生成次优模型。我们提出了一种动态编程加边界的方法,它能找到可证明的最优稀疏生存树模型,通常只需几秒钟。
{"title":"Optimal Sparse Survival Trees.","authors":"Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Interpretability is crucial for doctors, hospitals, pharmaceutical companies and biotechnology corporations to analyze and make decisions for high stakes problems that involve human health. Tree-based methods have been widely adopted for <i>survival analysis</i> due to their appealing interpretablility and their ability to capture complex relationships. However, most existing methods to produce survival trees rely on heuristic (or greedy) algorithms, which risk producing sub-optimal models. We present a dynamic-programming-with-bounds approach that finds provably-optimal sparse survival tree models, frequently in only a few seconds.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"238 ","pages":"352-360"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417463/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142309319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fusing Individualized Treatment Rules Using Secondary Outcomes. 利用次要结果融合个性化治疗规则。
Daiqi Gao, Yuanjia Wang, Donglin Zeng

An individualized treatment rule (ITR) is a decision rule that recommends treatments for patients based on their individual feature variables. In many practices, the ideal ITR for the primary outcome is also expected to cause minimal harm to other secondary outcomes. Therefore, our objective is to learn an ITR that not only maximizes the value function for the primary outcome, but also approximates the optimal rule for the secondary outcomes as closely as possible. To achieve this goal, we introduce a fusion penalty to encourage the ITRs based on different outcomes to yield similar recommendations. Two algorithms are proposed to estimate the ITR using surrogate loss functions. We prove that the agreement rate between the estimated ITR of the primary outcome and the optimal ITRs of the secondary outcomes converges to the true agreement rate faster than if the secondary outcomes are not taken into consideration. Furthermore, we derive the non-asymptotic properties of the value function and misclassification rate for the proposed method. Finally, simulation studies and a real data example are used to demonstrate the finite-sample performance of the proposed method.

个体化治疗规则(ITR)是根据患者的个体特征变量为其推荐治疗方法的决策规则。在许多实践中,针对主要结果的理想 ITR 也会对其他次要结果造成最小伤害。因此,我们的目标是学习一种 ITR,它不仅能使主要结果的价值函数最大化,还能尽可能接近次要结果的最优规则。为了实现这一目标,我们引入了融合惩罚,鼓励基于不同结果的 ITR 产生相似的建议。我们提出了两种使用替代损失函数估算 ITR 的算法。我们证明,与不考虑次要结果的情况相比,主要结果的估计 ITR 与次要结果的最优 ITR 之间的一致率收敛到真实一致率的速度更快。此外,我们还推导出了所提方法的价值函数和误分类率的非渐近特性。最后,我们使用模拟研究和真实数据实例来证明所提方法的有限样本性能。
{"title":"Fusing Individualized Treatment Rules Using Secondary Outcomes.","authors":"Daiqi Gao, Yuanjia Wang, Donglin Zeng","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>An individualized treatment rule (ITR) is a decision rule that recommends treatments for patients based on their individual feature variables. In many practices, the ideal ITR for the primary outcome is also expected to cause minimal harm to other secondary outcomes. Therefore, our objective is to learn an ITR that not only maximizes the value function for the primary outcome, but also approximates the optimal rule for the secondary outcomes as closely as possible. To achieve this goal, we introduce a fusion penalty to encourage the ITRs based on different outcomes to yield similar recommendations. Two algorithms are proposed to estimate the ITR using surrogate loss functions. We prove that the agreement rate between the estimated ITR of the primary outcome and the optimal ITRs of the secondary outcomes converges to the true agreement rate faster than if the secondary outcomes are not taken into consideration. Furthermore, we derive the non-asymptotic properties of the value function and misclassification rate for the proposed method. Finally, simulation studies and a real data example are used to demonstrate the finite-sample performance of the proposed method.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"238 ","pages":"712-720"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450767/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simple and Scalable Algorithms for Cluster-Aware Precision Medicine. 集群感知精准医学的简单可扩展算法。
Amanda M Buch, Conor Liston, Logan Grosenick

AI-enabled precision medicine promises a transformational improvement in healthcare outcomes. However, training on biomedical data presents significant challenges as they are often high dimensional, clustered, and of limited sample size. To overcome these challenges, we propose a simple and scalable approach for cluster-aware embedding that combines latent factor methods with a convex clustering penalty in a modular way. Our novel approach overcomes the complexity and limitations of current joint embedding and clustering methods and enables hierarchically clustered principal component analysis (PCA), locally linear embedding (LLE), and canonical correlation analysis (CCA). Through numerical experiments and real-world examples, we demonstrate that our approach outperforms fourteen clustering methods on highly underdetermined problems (e.g., with limited sample size) as well as on large sample datasets. Importantly, our approach does not require the user to choose the desired number of clusters, yields improved model selection if they do, and yields interpretable hierarchically clustered embedding dendrograms. Thus, our approach improves significantly on existing methods for identifying patient subgroups in multiomics and neuroimaging data and enables scalable and interpretable biomarkers for precision medicine.

人工智能支持的精准医疗有望实现医疗成果的变革性改善。然而,由于生物医学数据通常具有高维、聚类和样本量有限的特点,因此对其进行训练面临着巨大的挑战。为了克服这些挑战,我们提出了一种简单、可扩展的集群感知嵌入方法,它以模块化的方式将潜在因子方法与凸聚类惩罚相结合。我们的新方法克服了当前联合嵌入和聚类方法的复杂性和局限性,实现了分层聚类主成分分析(PCA)、局部线性嵌入(LLE)和典型相关分析(CCA)。通过数值实验和实际案例,我们证明了我们的方法在高度不确定问题(如样本量有限)和大样本数据集上的表现优于 14 种聚类分析方法。重要的是,我们的方法不需要用户选择所需的聚类数量,如果用户选择了,就能改进模型选择,并生成可解释的分层聚类嵌入树状图。因此,我们的方法大大改进了在多组学和神经成像数据中识别患者亚群的现有方法,并为精准医疗提供了可扩展、可解释的生物标记。
{"title":"Simple and Scalable Algorithms for Cluster-Aware Precision Medicine.","authors":"Amanda M Buch, Conor Liston, Logan Grosenick","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>AI-enabled precision medicine promises a transformational improvement in healthcare outcomes. However, training on biomedical data presents significant challenges as they are often high dimensional, clustered, and of limited sample size. To overcome these challenges, we propose a simple and scalable approach for cluster-aware embedding that combines latent factor methods with a convex clustering penalty in a modular way. Our novel approach overcomes the complexity and limitations of current joint embedding and clustering methods and enables hierarchically clustered principal component analysis (PCA), locally linear embedding (LLE), and canonical correlation analysis (CCA). Through numerical experiments and real-world examples, we demonstrate that our approach outperforms fourteen clustering methods on highly underdetermined problems (e.g., with limited sample size) as well as on large sample datasets. Importantly, our approach does not require the user to choose the desired number of clusters, yields improved model selection if they do, and yields interpretable hierarchically clustered embedding dendrograms. Thus, our approach improves significantly on existing methods for identifying patient subgroups in multiomics and neuroimaging data and enables scalable and interpretable biomarkers for precision medicine.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"238 ","pages":"136-144"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251711/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DeepFDR: A Deep Learning-based False Discovery Rate Control Method for Neuroimaging Data. DeepFDR:基于深度学习的神经影像数据错误发现率控制方法。
Taehyo Kim, Hai Shu, Qiran Jia, Mony J de Leon

Voxel-based multiple testing is widely used in neuroimaging data analysis. Traditional false discovery rate (FDR) control methods often ignore the spatial dependence among the voxel-based tests and thus suffer from substantial loss of testing power. While recent spatial FDR control methods have emerged, their validity and optimality remain questionable when handling the complex spatial dependencies of the brain. Concurrently, deep learning methods have revolutionized image segmentation, a task closely related to voxel-based multiple testing. In this paper, we propose DeepFDR, a novel spatial FDR control method that leverages unsupervised deep learning-based image segmentation to address the voxel-based multiple testing problem. Numerical studies, including comprehensive simulations and Alzheimer's disease FDG-PET image analysis, demonstrate DeepFDR's superiority over existing methods. DeepFDR not only excels in FDR control and effectively diminishes the false nondiscovery rate, but also boasts exceptional computational efficiency highly suited for tackling large-scale neuroimaging data.

基于体素的多重检验广泛应用于神经影像数据分析。传统的误诊率(FDR)控制方法通常会忽略基于体素的测试之间的空间依赖性,从而导致测试能力大幅下降。虽然最近出现了一些空间 FDR 控制方法,但在处理大脑复杂的空间依赖性时,这些方法的有效性和最优性仍然值得怀疑。与此同时,深度学习方法彻底改变了图像分割,这是一项与基于体素的多重测试密切相关的任务。在本文中,我们提出了 DeepFDR,这是一种新型的空间 FDR 控制方法,它利用基于深度学习的无监督图像分割来解决基于体素的多重测试问题。包括综合模拟和阿尔茨海默病 FDG-PET 图像分析在内的数值研究证明了 DeepFDR 优于现有方法。DeepFDR 不仅在 FDR 控制方面表现出色,有效降低了错误未发现率,而且具有卓越的计算效率,非常适合处理大规模神经影像数据。
{"title":"DeepFDR: A Deep Learning-based False Discovery Rate Control Method for Neuroimaging Data.","authors":"Taehyo Kim, Hai Shu, Qiran Jia, Mony J de Leon","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Voxel-based multiple testing is widely used in neuroimaging data analysis. Traditional false discovery rate (FDR) control methods often ignore the spatial dependence among the voxel-based tests and thus suffer from substantial loss of testing power. While recent spatial FDR control methods have emerged, their validity and optimality remain questionable when handling the complex spatial dependencies of the brain. Concurrently, deep learning methods have revolutionized image segmentation, a task closely related to voxel-based multiple testing. In this paper, we propose DeepFDR, a novel spatial FDR control method that leverages unsupervised deep learning-based image segmentation to address the voxel-based multiple testing problem. Numerical studies, including comprehensive simulations and Alzheimer's disease FDG-PET image analysis, demonstrate DeepFDR's superiority over existing methods. DeepFDR not only excels in FDR control and effectively diminishes the false nondiscovery rate, but also boasts exceptional computational efficiency highly suited for tackling large-scale neuroimaging data.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"238 ","pages":"946-954"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140917629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contextual Bandits with Budgeted Information Reveal. 有预算信息揭示的情境大盗。
Kyra Gan, Esmaeil Keyvanshokooh, Xueqing Liu, Susan Murphy

Contextual bandit algorithms are commonly used in digital health to recommend personalized treatments. However, to ensure the effectiveness of the treatments, patients are often requested to take actions that have no immediate benefit to them, which we refer to as pro-treatment actions. In practice, clinicians have a limited budget to encourage patients to take these actions and collect additional information. We introduce a novel optimization and learning algorithm to address this problem. This algorithm effectively combines the strengths of two algorithmic approaches in a seamless manner, including 1) an online primal-dual algorithm for deciding the optimal timing to reach out to patients, and 2) a contextual bandit learning algorithm to deliver personalized treatment to the patient. We prove that this algorithm admits a sub-linear regret bound. We illustrate the usefulness of this algorithm on both synthetic and real-world data.

数字医疗领域通常使用情境强盗算法来推荐个性化治疗方案。然而,为了确保治疗的有效性,患者往往会被要求采取对他们没有直接益处的行动,我们称之为支持治疗行动。在实践中,临床医生的预算有限,无法鼓励患者采取这些行动并收集更多信息。我们引入了一种新颖的优化和学习算法来解决这一问题。该算法有效地将两种算法方法的优势完美地结合在一起,包括:1)在线原始二元算法,用于决定接触患者的最佳时机;2)情境强盗学习算法,用于向患者提供个性化治疗。我们证明了这种算法具有亚线性遗憾约束。我们在合成数据和真实世界数据上说明了该算法的实用性。
{"title":"Contextual Bandits with Budgeted Information Reveal.","authors":"Kyra Gan, Esmaeil Keyvanshokooh, Xueqing Liu, Susan Murphy","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Contextual bandit algorithms are commonly used in digital health to recommend personalized treatments. However, to ensure the effectiveness of the treatments, patients are often requested to take actions that have no immediate benefit to them, which we refer to as <i>pro-treatment</i> actions. In practice, clinicians have a limited budget to encourage patients to take these actions and collect additional information. We introduce a novel optimization and learning algorithm to address this problem. This algorithm effectively combines the strengths of two algorithmic approaches in a seamless manner, including 1) an online primal-dual algorithm for deciding the optimal timing to reach out to patients, and 2) a contextual bandit learning algorithm to deliver personalized treatment to the patient. We prove that this algorithm admits a sub-linear regret bound. We illustrate the usefulness of this algorithm on both synthetic and real-world data.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"238 ","pages":"3970-3978"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503011/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
E(3) × SO(3)-Equivariant Networks for Spherical Deconvolution in Diffusion MRI. 用于扩散核磁共振成像中球形解卷积的 E(3) × SO(3) - Equivariant 网络
Axel Elaldi, Guido Gerig, Neel Dey

We present Roto-Translation Equivariant Spherical Deconvolution (RT-ESD), an E(3)×SO(3) equivariant framework for sparse deconvolution of volumes where each voxel contains a spherical signal. Such 6D data naturally arises in diffusion MRI (dMRI), a medical imaging modality widely used to measure microstructure and structural connectivity. As each dMRI voxel is typically a mixture of various overlapping structures, there is a need for blind deconvolution to recover crossing anatomical structures such as white matter tracts. Existing dMRI work takes either an iterative or deep learning approach to sparse spherical deconvolution, yet it typically does not account for relationships between neighboring measurements. This work constructs equivariant deep learning layers which respect to symmetries of spatial rotations, reflections, and translations, alongside the symmetries of voxelwise spherical rotations. As a result, RT-ESD improves on previous work across several tasks including fiber recovery on the DiSCo dataset, deconvolution-derived partial volume estimation on real-world in vivo human brain dMRI, and improved downstream reconstruction of fiber tractograms on the Tractometer dataset. Our implementation is available at https://github.com/AxelElaldi/e3so3_conv.

我们提出了旋转-平移等变球形解卷积(RT-ESD),这是一种 E(3)×SO(3) 等变框架,用于对每个体素都包含球形信号的体积进行稀疏解卷积。这种 6D 数据自然出现在弥散核磁共振成像(dMRI)中,这是一种广泛用于测量微观结构和结构连接性的医学成像模式。由于每个 dMRI 象素通常是各种重叠结构的混合物,因此需要进行盲解卷以恢复交叉解剖结构,如白质束。现有的 dMRI 研究采用迭代或深度学习方法进行稀疏球形去卷积,但通常不会考虑相邻测量值之间的关系。这项工作构建了等变深度学习层,在尊重空间旋转、反射和平移对称性的同时,也尊重体素球面旋转的对称性。因此,RT-ESD 在多个任务上都比以前的工作有所改进,包括 DiSCo 数据集上的纤维恢复、真实世界活体人脑 dMRI 上的去卷积衍生部分体积估计,以及 Tractometer 数据集上纤维束图的改进下游重建。我们的实施方案可在 https://github.com/AxelElaldi/e3so3_conv 上查阅。
{"title":"E(3) × SO(3)-Equivariant Networks for Spherical Deconvolution in Diffusion MRI.","authors":"Axel Elaldi, Guido Gerig, Neel Dey","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>We present Roto-Translation Equivariant Spherical Deconvolution (RT-ESD), an <math><mi>E</mi><mo>(</mo><mn>3</mn><mo>)</mo><mo>×</mo><mi>S</mi><mi>O</mi><mo>(</mo><mn>3</mn><mo>)</mo></math> equivariant framework for sparse deconvolution of volumes where each voxel contains a spherical signal. Such 6D data naturally arises in diffusion MRI (dMRI), a medical imaging modality widely used to measure microstructure and structural connectivity. As each dMRI voxel is typically a mixture of various overlapping structures, there is a need for blind deconvolution to recover crossing anatomical structures such as white matter tracts. Existing dMRI work takes either an iterative or deep learning approach to sparse spherical deconvolution, yet it typically does not account for relationships between neighboring measurements. This work constructs equivariant deep learning layers which respect to symmetries of spatial rotations, reflections, and translations, alongside the symmetries of voxelwise spherical rotations. As a result, RT-ESD improves on previous work across several tasks including fiber recovery on the DiSCo dataset, deconvolution-derived partial volume estimation on real-world <i>in vivo</i> human brain dMRI, and improved downstream reconstruction of fiber tractograms on the Tractometer dataset. Our implementation is available at https://github.com/AxelElaldi/e3so3_conv.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"227 ","pages":"301-319"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139991995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bridging the Gap: Rademacher Complexity in Robust and Standard Generalization. 缩小差距:鲁棒性和标准通用性中的拉德马赫复杂性。
Jiancong Xiao, Ruoyu Sun, Qi Long, Weijie J Su

Training Deep Neural Networks (DNNs) with adversarial examples often results in poor generalization to test-time adversarial data. This paper investigates this issue, known as adversarially robust generalization, through the lens of Rademacher complexity. Building upon the studies by Khim and Loh (2018); Yin et al. (2019), numerous works have been dedicated to this problem, yet achieving a satisfactory bound remains an elusive goal. Existing works on DNNs either apply to a surrogate loss instead of the robust loss or yield bounds that are notably looser compared to their standard counterparts. In the latter case, the bounds have a higher dependency on the width m of the DNNs or the dimension d of the data, with an extra factor of at least 𝒪 ( m ) or 𝒪 ( d ) . This paper presents upper bounds for adversarial Rademacher complexity of DNNs that match the best-known upper bounds in standard settings, as established in the work of Bartlett et al. (2017), with the dependency on width and dimension being 𝒪 ( ln ( d m ) ) . The central challenge addressed is calculating the covering number of adversarial function classes. We aim to construct a new cover that possesses two properties: 1) compatibility with adversarial examples, and 2) precision comparable to covers used in standard settings. To this end, we introduce a new variant of covering number called the uniform covering number, specifically designed and proven to reconcile these two properties. Consequently, our method effectively bridges the gap between Rademacher complexity in robust and standard generalization.

用对抗性示例训练深度神经网络(DNN)往往会导致对测试时对抗性数据的泛化效果不佳。本文通过拉德马赫复杂性的视角研究了这一问题,即所谓的对抗性鲁棒泛化(adversarially robust generalization)。在 Khim 和 Loh(2018 年)、Yin 等人(2019 年)的研究基础上,已有大量作品致力于解决这一问题,但要达到令人满意的界限仍是一个难以实现的目标。关于 DNN 的现有研究要么适用于替代损失而非稳健损失,要么产生的边界明显比标准边界宽松。在后一种情况下,边界对 DNNs 的宽度 m 或数据维度 d 有更高的依赖性,至少有 𝒪 ( m ) 或 𝒪 ( d ) 的额外系数。本文提出了 DNN 的对抗性拉德马赫复杂度上界,与 Bartlett 等人(2017)的研究中建立的标准设置中最著名的上界相匹配,对宽度和维度的依赖性为 𝒪 ( ln ( d m ) ) 。我们面临的核心挑战是计算对抗函数类的覆盖数。我们的目标是构建一个具有以下两个特性的新覆盖:1) 与对抗示例兼容,以及 2) 精度可与标准设置中使用的覆盖相媲美。为此,我们引入了一种新的覆盖数变体,称为统一覆盖数,它是为协调这两个特性而专门设计并经过验证的。因此,我们的方法有效地弥合了鲁棒性和标准泛函的拉德马赫复杂性之间的差距。
{"title":"Bridging the Gap: Rademacher Complexity in Robust and Standard Generalization.","authors":"Jiancong Xiao, Ruoyu Sun, Qi Long, Weijie J Su","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Training Deep Neural Networks (DNNs) with adversarial examples often results in poor generalization to test-time adversarial data. This paper investigates this issue, known as adversarially robust generalization, through the lens of Rademacher complexity. Building upon the studies by Khim and Loh (2018); Yin et al. (2019), numerous works have been dedicated to this problem, yet achieving a satisfactory bound remains an elusive goal. Existing works on DNNs either apply to a surrogate loss instead of the robust loss or yield bounds that are notably looser compared to their standard counterparts. In the latter case, the bounds have a higher dependency on the width <math><mi>m</mi></math> of the DNNs or the dimension <math><mi>d</mi></math> of the data, with an extra factor of at least <math><mi>𝒪</mi> <mo>(</mo> <msqrt><mi>m</mi></msqrt> <mo>)</mo></math> or <math><mi>𝒪</mi> <mo>(</mo> <msqrt><mi>d</mi></msqrt> <mo>)</mo></math> . This paper presents upper bounds for adversarial Rademacher complexity of DNNs that match the best-known upper bounds in standard settings, as established in the work of Bartlett et al. (2017), with the dependency on width and dimension being <math><mi>𝒪</mi> <mo>(</mo> <mtext>ln</mtext> <mspace></mspace> <mo>(</mo> <mi>d</mi> <mi>m</mi> <mo>)</mo> <mo>)</mo></math> . The central challenge addressed is calculating the covering number of adversarial function classes. We aim to construct a new cover that possesses two properties: 1) compatibility with adversarial examples, and 2) precision comparable to covers used in standard settings. To this end, we introduce a new variant of covering number called the <i>uniform covering number</i>, specifically designed and proven to reconcile these two properties. Consequently, our method effectively bridges the gap between Rademacher complexity in robust and standard generalization.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"247 ","pages":"5074-5075"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alleviating tiling effect by random walk sliding window in high-resolution histological whole slide image synthesis. 在高分辨率组织学整张切片图像合成中利用随机漫步滑动窗口缓解平铺效应
Shunxing Bao, Ho Hin Lee, Qi Yang, Lucas W Remedios, Ruining Deng, Can Cui, Leon Y Cai, Kaiwen Xu, Xin Yu, Sophie Chiron, Yike Li, Nathan Heath Patterson, Yaohong Wang, Jia Li, Qi Liu, Ken S Lau, Joseph T Roland, Lori A Coburn, Keith T Wilson, Bennett A Landman, Yuankai Huo

Multiplex immunofluorescence (MxIF) is an advanced molecular imaging technique that can simultaneously provide biologists with multiple (i.e., more than 20) molecular markers on a single histological tissue section. Unfortunately, due to imaging restrictions, the more routinely used hematoxylin and eosin (H&E) stain is typically unavailable with MxIF on the same tissue section. As biological H&E staining is not feasible, previous efforts have been made to obtain H&E whole slide image (WSI) from MxIF via deep learning empowered virtual staining. However, the tiling effect is a long-lasting problem in high-resolution WSI-wise synthesis. The MxIF to H&E synthesis is no exception. Limited by computational resources, the cross-stain image synthesis is typically performed at the patch-level. Thus, discontinuous intensities might be visually identified along with the patch boundaries assembling all individual patches back to a WSI. In this work, we propose a deep learning based unpaired high-resolution image synthesis method to obtain virtual H&E WSIs from MxIF WSIs (each with 27 markers/stains) with reduced tiling effects. Briefly, we first extend the CycleGAN framework by adding simultaneous nuclei and mucin segmentation supervision as spatial constraints. Then, we introduce a random walk sliding window shifting strategy during the optimized inference stage, to alleviate the tiling effects. The validation results show that our spatially constrained synthesis method achieves a 56% performance gain for the downstream cell segmentation task. The proposed inference method reduces the tiling effects by using 50% fewer computation resources without compromising performance. The proposed random sliding window inference method is a plug-and-play module, which can be generalized for other high-resolution WSI image synthesis applications. The source code with our proposed model are available at https://github.com/MASILab/RandomWalkSlidingWindow.git.

多重免疫荧光(MxIF)是一种先进的分子成像技术,可在单个组织切片上同时为生物学家提供多种(即 20 多种)分子标记。遗憾的是,由于成像限制,在同一组织切片上通常无法使用常规使用的苏木精和伊红(H&E)染色。由于生物 H&E 染色不可行,以前曾有人通过深度学习虚拟染色,从 MxIF 获取 H&E 全切片图像(WSI)。然而,平铺效应是高分辨率 WSI 合成中的一个长期问题。从 MxIF 到 H&E 的合成也不例外。受限于计算资源,交叉染色图像合成通常在斑块级进行。因此,在将所有单个斑块组装回 WSI 的过程中,可能会在视觉上识别出不连续的强度和斑块边界。在这项工作中,我们提出了一种基于深度学习的无配对高分辨率图像合成方法,以从 MxIF WSI(每个 WSI 有 27 个标记/污点)中获得虚拟 H&E WSI,并减少平铺效应。简而言之,我们首先扩展了 CycleGAN 框架,添加了同步的细胞核和粘蛋白分割监督作为空间约束。然后,我们在优化推理阶段引入了随机漫步滑动窗口移动策略,以减轻堆叠效应。验证结果表明,我们的空间约束合成方法在下游细胞分割任务中实现了 56% 的性能提升。所提出的推理方法在不影响性能的前提下减少了 50% 的计算资源,从而降低了平铺效应。所提出的随机滑动窗口推理方法是一个即插即用的模块,可以推广到其他高分辨率 WSI 图像合成应用中。我们提出的模型的源代码可在 https://github.com/MASILab/RandomWalkSlidingWindow.git 上获取。
{"title":"Alleviating tiling effect by random walk sliding window in high-resolution histological whole slide image synthesis.","authors":"Shunxing Bao, Ho Hin Lee, Qi Yang, Lucas W Remedios, Ruining Deng, Can Cui, Leon Y Cai, Kaiwen Xu, Xin Yu, Sophie Chiron, Yike Li, Nathan Heath Patterson, Yaohong Wang, Jia Li, Qi Liu, Ken S Lau, Joseph T Roland, Lori A Coburn, Keith T Wilson, Bennett A Landman, Yuankai Huo","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Multiplex immunofluorescence (MxIF) is an advanced molecular imaging technique that can simultaneously provide biologists with multiple (i.e., more than 20) molecular markers on a single histological tissue section. Unfortunately, due to imaging restrictions, the more routinely used hematoxylin and eosin (H&E) stain is typically unavailable with MxIF on the same tissue section. As biological H&E staining is not feasible, previous efforts have been made to obtain H&E whole slide image (WSI) from MxIF via deep learning empowered virtual staining. However, the tiling effect is a long-lasting problem in high-resolution WSI-wise synthesis. The MxIF to H&E synthesis is no exception. Limited by computational resources, the cross-stain image synthesis is typically performed at the patch-level. Thus, discontinuous intensities might be visually identified along with the patch boundaries assembling all individual patches back to a WSI. In this work, we propose a deep learning based unpaired high-resolution image synthesis method to obtain virtual H&E WSIs from MxIF WSIs (each with 27 markers/stains) with reduced tiling effects. Briefly, we first extend the CycleGAN framework by adding simultaneous nuclei and mucin segmentation supervision as spatial constraints. Then, we introduce a random walk sliding window shifting strategy during the optimized inference stage, to alleviate the tiling effects. The validation results show that our spatially constrained synthesis method achieves a 56% performance gain for the downstream cell segmentation task. The proposed inference method reduces the tiling effects by using 50% fewer computation resources without compromising performance. The proposed random sliding window inference method is a plug-and-play module, which can be generalized for other high-resolution WSI image synthesis applications. The source code with our proposed model are available at https://github.com/MASILab/RandomWalkSlidingWindow.git.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"227 ","pages":"1406-1422"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data Consistent Deep Rigid MRI Motion Correction. 数据一致的深度刚性磁共振成像运动校正。
Nalini M Singh, Neel Dey, Malte Hoffmann, Bruce Fischl, Elfar Adalsteinsson, Robert Frost, Adrian V Dalca, Polina Golland

Motion artifacts are a pervasive problem in MRI, leading to misdiagnosis or mischaracterization in population-level imaging studies. Current retrospective rigid intra-slice motion correction techniques jointly optimize estimates of the image and the motion parameters. In this paper, we use a deep network to reduce the joint image-motion parameter search to a search over rigid motion parameters alone. Our network produces a reconstruction as a function of two inputs: corrupted k-space data and motion parameters. We train the network using simulated, motion-corrupted k-space data generated with known motion parameters. At test-time, we estimate unknown motion parameters by minimizing a data consistency loss between the motion parameters, the network-based image reconstruction given those parameters, and the acquired measurements. Intra-slice motion correction experiments on simulated and realistic 2D fast spin echo brain MRI achieve high reconstruction fidelity while providing the benefits of explicit data consistency optimization. Our code is publicly available at https://www.github.com/nalinimsingh/neuroMoCo.

运动伪影是核磁共振成像中普遍存在的问题,会导致群体成像研究中的误诊或错误定性。目前的回顾性刚性片内运动校正技术需要联合优化图像和运动参数的估计值。在本文中,我们使用深度网络将图像-运动参数联合搜索简化为仅对刚性运动参数进行搜索。我们的网络根据两个输入的函数生成重建结果:损坏的 k 空间数据和运动参数。我们使用已知运动参数生成的模拟运动损坏 k 空间数据来训练网络。测试时,我们通过最小化运动参数、给定这些参数的基于网络的图像重建和获取的测量值之间的数据一致性损失来估计未知运动参数。在模拟和现实的二维快速自旋回波脑磁共振成像上进行的片内运动校正实验实现了高重建保真度,同时提供了显式数据一致性优化的优势。我们的代码可在 https://www.github.com/nalinimsingh/neuroMoCo 公开获取。
{"title":"Data Consistent Deep Rigid MRI Motion Correction.","authors":"Nalini M Singh, Neel Dey, Malte Hoffmann, Bruce Fischl, Elfar Adalsteinsson, Robert Frost, Adrian V Dalca, Polina Golland","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Motion artifacts are a pervasive problem in MRI, leading to misdiagnosis or mischaracterization in population-level imaging studies. Current retrospective rigid intra-slice motion correction techniques jointly optimize estimates of the image and the motion parameters. In this paper, we use a deep network to reduce the joint image-motion parameter search to a search over rigid motion parameters alone. Our network produces a reconstruction as a function of two inputs: corrupted k-space data and motion parameters. We train the network using simulated, motion-corrupted k-space data generated with known motion parameters. At test-time, we estimate unknown motion parameters by minimizing a data consistency loss between the motion parameters, the network-based image reconstruction given those parameters, and the acquired measurements. Intra-slice motion correction experiments on simulated and realistic 2D fast spin echo brain MRI achieve high reconstruction fidelity while providing the benefits of explicit data consistency optimization. Our code is publicly available at https://www.github.com/nalinimsingh/neuroMoCo.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"227 ","pages":"368-381"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482239/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Proceedings of machine learning research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1