Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems最新文献
Pub Date : 2014-09-01DOI: 10.1109/IROS.2014.6943121
Santhi Elayaperumal, Jung Hwa Bae, Bruce L Daniel, Mark R Cutkosky
This paper presents calibration and user test results of a 3-D tip-force sensing needle with haptic feedback. The needle is a modified MRI-compatible biopsy needle with embedded fiber Bragg grating (FBG) sensors for strain detection. After calibration, the needle is interrogated at 2 kHz, and dynamic forces are displayed remotely with a voice coil actuator. The needle is tested in a single-axis master/slave system, with the voice coil haptic display at the master, and the needle at the slave end. Tissue phantoms with embedded membranes were used to determine the ability of the tip-force sensors to provide real-time haptic feedback as compared to external sensors at the needle base during needle insertion via the master/slave system. Subjects were able to determine the position of the embedded membranes with significantly better accuracy using FBG tip feedback than with base feedback using a commercial force/torque sensor (p = 0.045) or with no added haptic feedback (p = 0.0024).
{"title":"Detection of Membrane Puncture with Haptic Feedback using a Tip-Force Sensing Needle.","authors":"Santhi Elayaperumal, Jung Hwa Bae, Bruce L Daniel, Mark R Cutkosky","doi":"10.1109/IROS.2014.6943121","DOIUrl":"https://doi.org/10.1109/IROS.2014.6943121","url":null,"abstract":"<p><p>This paper presents calibration and user test results of a 3-D tip-force sensing needle with haptic feedback. The needle is a modified MRI-compatible biopsy needle with embedded fiber Bragg grating (FBG) sensors for strain detection. After calibration, the needle is interrogated at 2 kHz, and dynamic forces are displayed remotely with a voice coil actuator. The needle is tested in a single-axis master/slave system, with the voice coil haptic display at the master, and the needle at the slave end. Tissue phantoms with embedded membranes were used to determine the ability of the tip-force sensors to provide real-time haptic feedback as compared to external sensors at the needle base during needle insertion via the master/slave system. Subjects were able to determine the position of the embedded membranes with significantly better accuracy using FBG tip feedback than with base feedback using a commercial force/torque sensor (p = 0.045) or with no added haptic feedback (p = 0.0024).</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2014 ","pages":"3975-3981"},"PeriodicalIF":0.0,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IROS.2014.6943121","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34124269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-09-01DOI: 10.1109/IROS.2014.6942725
Sungwook Yang, Robert A MacLachlan, Cameron N Riviere
This paper presents a technique for automated intraocular laser surgery using a handheld micromanipulator known as Micron. The novel handheld manipulator enables the automated scanning of a laser probe within a cylinder of 4 mm long and 4 mm in diameter. For the automation, the surface of the retina is reconstructed using a stereomicroscope, and then preplanned targets are placed on the surface. The laser probe is precisely located on the target via visual servoing of the aiming beam, while maintaining a specific distance above the surface. In addition, the system is capable of tracking the surface of the eye in order to compensate for any eye movement introduced during the operation. We compared the performance of the automated scanning using various control thresholds, in order to find the most effective threshold in terms of accuracy and speed. Given the selected threshold, we conducted the handheld operation above a fixed target surface. The average error and execution time are reduced by 63.6% and 28.5%, respectively, compared to the unaided trials. Finally, the automated laser photocoagulation was demonstrated also in an eye phantom, including compensation for the eye movement.
{"title":"Toward Automated Intraocular Laser Surgery Using a Handheld Micromanipulator.","authors":"Sungwook Yang, Robert A MacLachlan, Cameron N Riviere","doi":"10.1109/IROS.2014.6942725","DOIUrl":"https://doi.org/10.1109/IROS.2014.6942725","url":null,"abstract":"<p><p>This paper presents a technique for automated intraocular laser surgery using a handheld micromanipulator known as Micron. The novel handheld manipulator enables the automated scanning of a laser probe within a cylinder of 4 mm long and 4 mm in diameter. For the automation, the surface of the retina is reconstructed using a stereomicroscope, and then preplanned targets are placed on the surface. The laser probe is precisely located on the target via visual servoing of the aiming beam, while maintaining a specific distance above the surface. In addition, the system is capable of tracking the surface of the eye in order to compensate for any eye movement introduced during the operation. We compared the performance of the automated scanning using various control thresholds, in order to find the most effective threshold in terms of accuracy and speed. Given the selected threshold, we conducted the handheld operation above a fixed target surface. The average error and execution time are reduced by 63.6% and 28.5%, respectively, compared to the unaided trials. Finally, the automated laser photocoagulation was demonstrated also in an eye phantom, including compensation for the eye movement.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2014 ","pages":"1302-1307"},"PeriodicalIF":0.0,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IROS.2014.6942725","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33109410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-12-31DOI: 10.1109/IROS.2012.6386009
Nathan A Wood, Kevin Waugh, Tian Yu Tommy Liu, Marco A Zenati, Cameron N Riviere
This paper presents a framework for localizing a miniature epicardial crawling robot, HeartLander, on the beating heart using only 6-degree-of-freedom position measurements from an electromagnetic position tracker and a dynamic surface model of the heart. Using only this information, motion and observation models of the system are developed such that a particle filter can accurately estimate not only the location of the robot on the surface of the heart, but also the pose of the heart in the world coordinate frame as well as the current physiological phase of the heart. The presented framework is then demonstrated in simulation on a dynamic 3-D model of the human heart and a robot motion model which accurately mimics the behavior of the HeartLander robot.
{"title":"Space-Time Localization and Registration on the Beating Heart.","authors":"Nathan A Wood, Kevin Waugh, Tian Yu Tommy Liu, Marco A Zenati, Cameron N Riviere","doi":"10.1109/IROS.2012.6386009","DOIUrl":"https://doi.org/10.1109/IROS.2012.6386009","url":null,"abstract":"<p><p>This paper presents a framework for localizing a miniature epicardial crawling robot, HeartLander, on the beating heart using only 6-degree-of-freedom position measurements from an electromagnetic position tracker and a dynamic surface model of the heart. Using only this information, motion and observation models of the system are developed such that a particle filter can accurately estimate not only the location of the robot on the surface of the heart, but also the pose of the heart in the world coordinate frame as well as the current physiological phase of the heart. The presented framework is then demonstrated in simulation on a dynamic 3-D model of the human heart and a robot motion model which accurately mimics the behavior of the HeartLander robot.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2012 ","pages":"3792-3797"},"PeriodicalIF":0.0,"publicationDate":"2013-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IROS.2012.6386009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32104227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper introduces a gaze contingent controlled robotic arm for laparoscopic surgery, based on gaze gestures. The method offers a natural and seamless communication channel between the surgeon and the robotic laparoscope. It offers several advantages in terms of reducing on-screen clutter and efficiently conveying visual intention. The proposed hands-free system enables the surgeon to be part of the robot control feedback loop, allowing user-friendly camera panning and zooming. The proposed platform avoids the limitations of using dwell-time camera control in previous gaze contingent camera control methods. The system represents a true hands-free setup without the need of obtrusive sensors mounted on the surgeon or the use of a foot pedal. Hidden Markov Models (HMMs) were used for real-time gaze gesture recognition. This method was evaluated with a cohort of 11 subjects by using the proposed system to complete a modified upper gastrointestinal staging laparoscopy and biopsy task on a phantom box trainer, with results demonstrating the potential clinical value of the proposed system.
{"title":"Gaze Contingent Cartesian Control of a Robotic Arm for Laparoscopic Surgery.","authors":"Kenko Fujii, Antonino Salerno, Kumuthan Sriskandarajah, Ka-Wai Kwok, Kunal Shetty, Guang-Zhong Yang","doi":"10.1109/iros.2013.6696867","DOIUrl":"https://doi.org/10.1109/iros.2013.6696867","url":null,"abstract":"<p><p>This paper introduces a gaze contingent controlled robotic arm for laparoscopic surgery, based on gaze gestures. The method offers a natural and seamless communication channel between the surgeon and the robotic laparoscope. It offers several advantages in terms of reducing on-screen clutter and efficiently conveying visual intention. The proposed hands-free system enables the surgeon to be part of the robot control feedback loop, allowing user-friendly camera panning and zooming. The proposed platform avoids the limitations of using dwell-time camera control in previous gaze contingent camera control methods. The system represents a true hands-free setup without the need of obtrusive sensors mounted on the surgeon or the use of a foot pedal. Hidden Markov Models (HMMs) were used for real-time gaze gesture recognition. This method was evaluated with a cohort of 11 subjects by using the proposed system to complete a modified upper gastrointestinal staging laparoscopy and biopsy task on a phantom box trainer, with results demonstrating the potential clinical value of the proposed system.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2013 ","pages":"3582-3589"},"PeriodicalIF":0.0,"publicationDate":"2013-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/iros.2013.6696867","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32277879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-11-07DOI: 10.1109/IROS.2013.6696717
Christopher J Payne, Ka-Wai Kwok, Guang-Zhong Yang
This paper presents an ungrounded, hand-held surgical device that incorporates active constraints and force-feedback. Optical tracking of the device and embedded actuation allow for real-time motion compensation of a surgical tool as an active constraint is encountered. The active constraints can be made soft, so that the surgical tool tip motion is scaled, or rigid, so as to altogether prevent the penetration of the active constraint. Force-feedback is also provided to the operator so as to indicate penetration of the active constraint boundary by the surgical tool. The device has been evaluated in detailed bench tests to quantify its motion scaling and force-feedback capabilities. The combined effects of force-feedback and motion compensation are demonstrated during palpation of an active constraint with rigid and soft boundaries. A user study evaluated the combined effect of motion compensation and force-feedback in preventing penetration of a rigid active constraint. The results have shown the potential of the device operating in an ungrounded setup that incorporates active constraints with force-feedback.
{"title":"An Ungrounded Hand-Held Surgical Device Incorporating Active Constraints with Force-Feedback.","authors":"Christopher J Payne, Ka-Wai Kwok, Guang-Zhong Yang","doi":"10.1109/IROS.2013.6696717","DOIUrl":"10.1109/IROS.2013.6696717","url":null,"abstract":"<p><p>This paper presents an ungrounded, hand-held surgical device that incorporates active constraints and force-feedback. Optical tracking of the device and embedded actuation allow for real-time motion compensation of a surgical tool as an active constraint is encountered. The active constraints can be made soft, so that the surgical tool tip motion is scaled, or rigid, so as to altogether prevent the penetration of the active constraint. Force-feedback is also provided to the operator so as to indicate penetration of the active constraint boundary by the surgical tool. The device has been evaluated in detailed bench tests to quantify its motion scaling and force-feedback capabilities. The combined effects of force-feedback and motion compensation are demonstrated during palpation of an active constraint with rigid and soft boundaries. A user study evaluated the combined effect of motion compensation and force-feedback in preventing penetration of a rigid active constraint. The results have shown the potential of the device operating in an ungrounded setup that incorporates active constraints with force-feedback.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2013 ","pages":"2559-2565"},"PeriodicalIF":0.0,"publicationDate":"2013-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987169/pdf/emss-57908.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32273113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-11-01Epub Date: 2014-01-06DOI: 10.1109/IROS.2013.6696371
Samuel T Clanton, Robert G Rasmussen, Zohny Zohny, Meel Velliste
In brain-machine interface (BMI) prosthetic systems, recordings of brain activity are used to control external devices such as computers or robots. BMI systems that have shown the highest fidelity of control use neural signals recorded directly from microelectrodes in the brain to control upper-limb prostheses. These have progressed from allowing control of 2 and 3 dimensional movement of a cursor on a computer screen [1], [2] to control of robot arms in first four [3], [4] and more recently seven degrees-of-freedom (DoF) (Fig. 1) [5], [6]. These types of systems require methods to train users to control large numbers of DoF simultaneously. In this paper we present a new method for shared-control guidance. This method of "Positive-Span" Virtual Fixturing extends the concept of Virtual Fixtures to guide both translational and rotational DoF of a brain-controlled robot hand toward whole sets of robot poses that would allow an object to be grasped. This system was used to successfully train monkeys to operate the 7-DoF BMI [5], leading directly to the simplified system of "ortho-impedance" used to guide human subject BMI control in a similar experiment [6].
{"title":"Generalized Virtual Fixtures for Shared-Control Grasping in Brain-Machine Interfaces.","authors":"Samuel T Clanton, Robert G Rasmussen, Zohny Zohny, Meel Velliste","doi":"10.1109/IROS.2013.6696371","DOIUrl":"https://doi.org/10.1109/IROS.2013.6696371","url":null,"abstract":"In brain-machine interface (BMI) prosthetic systems, recordings of brain activity are used to control external devices such as computers or robots. BMI systems that have shown the highest fidelity of control use neural signals recorded directly from microelectrodes in the brain to control upper-limb prostheses. These have progressed from allowing control of 2 and 3 dimensional movement of a cursor on a computer screen [1], [2] to control of robot arms in first four [3], [4] and more recently seven degrees-of-freedom (DoF) (Fig. 1) [5], [6]. These types of systems require methods to train users to control large numbers of DoF simultaneously. In this paper we present a new method for shared-control guidance. This method of \"Positive-Span\" Virtual Fixturing extends the concept of Virtual Fixtures to guide both translational and rotational DoF of a brain-controlled robot hand toward whole sets of robot poses that would allow an object to be grasped. This system was used to successfully train monkeys to operate the 7-DoF BMI [5], leading directly to the simplified system of \"ortho-impedance\" used to guide human subject BMI control in a similar experiment [6].","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2013 ","pages":"323-328"},"PeriodicalIF":0.0,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IROS.2013.6696371","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25590865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-01-01DOI: 10.1109/IROS.2013.6696942
Weijian Shang, Hao Su, Gang Li, Gregory S Fischer
This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N.
{"title":"Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback.","authors":"Weijian Shang, Hao Su, Gang Li, Gregory S Fischer","doi":"10.1109/IROS.2013.6696942","DOIUrl":"https://doi.org/10.1109/IROS.2013.6696942","url":null,"abstract":"<p><p>This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2013 ","pages":"4092-4098"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IROS.2013.6696942","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32588361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-12-31DOI: 10.1109/IROS.2012.6386095
Tetsuya Horiuchi, E Erdem Tuna, Ken Masamune, M Cenk Cavuşoğlu
In robotic assisted beating heart surgery, the goal is to develop a robotic system that can actively cancel heart motion by closely following a point of interest (POI) on the heart surface, a process called Active Relative Motion Canceling (ARMC). In order to track and cancel POI motion precisely, control algorithms require good quality heart motion data. In this paper, a novel method is described which uses a particle filter to estimate the three-dimensional location of POI on heart surface by using measurements obtained from sonomicrometry along with an accelerometer. The new method employs a differential probability approach to increase the accuracy of the particle filter. The performance of the proposed method is evaluated by simulations.
{"title":"Heart motion measurement with three dimensional sonomicrometry and acceleration sensing.","authors":"Tetsuya Horiuchi, E Erdem Tuna, Ken Masamune, M Cenk Cavuşoğlu","doi":"10.1109/IROS.2012.6386095","DOIUrl":"https://doi.org/10.1109/IROS.2012.6386095","url":null,"abstract":"<p><p>In robotic assisted beating heart surgery, the goal is to develop a robotic system that can actively cancel heart motion by closely following a point of interest (POI) on the heart surface, a process called Active Relative Motion Canceling (ARMC). In order to track and cancel POI motion precisely, control algorithms require good quality heart motion data. In this paper, a novel method is described which uses a particle filter to estimate the three-dimensional location of POI on heart surface by using measurements obtained from sonomicrometry along with an accelerometer. The new method employs a differential probability approach to increase the accuracy of the particle filter. The performance of the proposed method is evaluated by simulations.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2012 ","pages":"4143-4149"},"PeriodicalIF":0.0,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IROS.2012.6386095","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32104226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-12-20DOI: 10.1109/IROS.2012.6385715
Berk Gonenc, Marcin A Balicki, James Handa, Peter Gehlbach, Cameron N Riviere, Russell H Taylor, Iulian Iordachita
Highly accurate positioning is fundamental to the performance of vitreoretinal microsurgery. Of vitreoretinal procedures, membrane peeling is among the most prone to complications since extremely delicate manipulation of retinal tissue is required. Associated tool-to-tissue interaction forces are usually below the threshold of human perception, and the surgical tools are moved very slowly, within the 0.1-0.5 mm/s range. During the procedure, unintentional tool motion and excessive forces can easily give rise to vision loss or irreversible damage to the retina. A successful surgery includes two key features: controlled tremor-free tool motion and control of applied force. In this study, we present the potential benefits of a micro-force sensing robot in vitreoretinal surgery. Our main contribution is implementing fiber Bragg grating based force sensing in an active tremor canceling handheld micromanipulator, known as Micron, to measure tool-to-tissue interaction forces in real time. Implemented auditory sensory substitution assists in reducing and limiting forces. In order to test the functionality and performance, the force sensing Micron was evaluated in peeling experiments with adhesive bandages and with the inner shell membrane from chicken eggs. Our findings show that the combination of active tremor canceling together with auditory sensory substitution is the most promising aid that keeps peeling forces below 7 mN with a significant reduction in 2-20 Hz oscillations.
{"title":"Evaluation of a Micro-Force Sensing Handheld Robot for Vitreoretinal Surgery.","authors":"Berk Gonenc, Marcin A Balicki, James Handa, Peter Gehlbach, Cameron N Riviere, Russell H Taylor, Iulian Iordachita","doi":"10.1109/IROS.2012.6385715","DOIUrl":"https://doi.org/10.1109/IROS.2012.6385715","url":null,"abstract":"<p><p>Highly accurate positioning is fundamental to the performance of vitreoretinal microsurgery. Of vitreoretinal procedures, membrane peeling is among the most prone to complications since extremely delicate manipulation of retinal tissue is required. Associated tool-to-tissue interaction forces are usually below the threshold of human perception, and the surgical tools are moved very slowly, within the 0.1-0.5 mm/s range. During the procedure, unintentional tool motion and excessive forces can easily give rise to vision loss or irreversible damage to the retina. A successful surgery includes two key features: controlled tremor-free tool motion and control of applied force. In this study, we present the potential benefits of a micro-force sensing robot in vitreoretinal surgery. Our main contribution is implementing fiber Bragg grating based force sensing in an active tremor canceling handheld micromanipulator, known as Micron, to measure tool-to-tissue interaction forces in real time. Implemented auditory sensory substitution assists in reducing and limiting forces. In order to test the functionality and performance, the force sensing Micron was evaluated in peeling experiments with adhesive bandages and with the inner shell membrane from chicken eggs. Our findings show that the combination of active tremor canceling together with auditory sensory substitution is the most promising aid that keeps peeling forces below 7 mN with a significant reduction in 2-20 Hz oscillations.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2012 ","pages":"4125-4130"},"PeriodicalIF":0.0,"publicationDate":"2012-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IROS.2012.6385715","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31303324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-10-12DOI: 10.1109/IROS.2012.6385535
Win Tun Latt, Tou Pin Chang, Aimee Di Marco, Philip Pratt, Ka-Wai Kwok, James Clark, Guang-Zhong Yang
Probe-based confocal laser endomicroscopy (pCLE) provides high resolution imaging of tissue in vivo. Maintaining a steady contact between target tissue and pCLE probe tip is important for image consistency. In this paper, a new prototype hand-held instrument for in vivo pCLE during Minimally Invasive Surgery (MIS) is presented. The proposed instrument incorporates adaptive force sensing and actuation, allowing improved image consistency and force control, thus minimizing tissue deformation and induced micro-structural variations. The performance and accuracy of the contact force control are evaluated in detailed laboratory settings and in vivo validation of the device during transanal microsurgery in a live porcine model further demonstrates the potential clinical value of the device.
{"title":"A Hand-held Instrument for in vivo Probe-based Confocal Laser Endomicroscopy during Minimally Invasive Surgery.","authors":"Win Tun Latt, Tou Pin Chang, Aimee Di Marco, Philip Pratt, Ka-Wai Kwok, James Clark, Guang-Zhong Yang","doi":"10.1109/IROS.2012.6385535","DOIUrl":"https://doi.org/10.1109/IROS.2012.6385535","url":null,"abstract":"<p><p>Probe-based confocal laser endomicroscopy (pCLE) provides high resolution imaging of tissue in vivo. Maintaining a steady contact between target tissue and pCLE probe tip is important for image consistency. In this paper, a new prototype hand-held instrument for in vivo pCLE during Minimally Invasive Surgery (MIS) is presented. The proposed instrument incorporates adaptive force sensing and actuation, allowing improved image consistency and force control, thus minimizing tissue deformation and induced micro-structural variations. The performance and accuracy of the contact force control are evaluated in detailed laboratory settings and in vivo validation of the device during transanal microsurgery in a live porcine model further demonstrates the potential clinical value of the device.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2012 ","pages":"1982-1987"},"PeriodicalIF":0.0,"publicationDate":"2012-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IROS.2012.6385535","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32277877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems