Pub Date : 2024-09-02DOI: 10.1088/1361-6633/ad71ee
Soyeun Kim, Gal Orenstein, Anisha G Singh, Ian R Fisher, David A Reis, Mariano Trigo
We report ultrafast reflectivity measurements of the dynamics of the order parameter of the charge density wave (CDW) in TbTe3under anisotropic strain. We observe an increase in the frequency of the amplitude mode with increasing tensile strain along thea-axis (which drives the lattice intoa > c, withaandcthe lattice constants), and similar behavior for tensile strain alongc(c > a). This suggests that both strains stabilize the corresponding CDW order and further support the near equivalence of the CDW phases oriented ina- andc-axis, in spite of the orthorhombic space group. The results were analyzed within the time-dependent Ginzburg-Landau framework, which agrees well with the reflectivity dynamics. Our study presents an ultrafast approach to assess the stability of phases and order parameter dynamics in strained systems.
我们报告了对各向异性应变下碲化镉(TbTe3)中电荷密度波(CDW)阶次参数动态的超快反射率测量结果。我们观察到振幅模式的频率随着沿 a 轴的拉伸应变的增加而增加(拉伸应变使晶格的 a>c,a 和 c 为晶格常数),沿 c 轴的拉伸应变也有类似的表现(c>a)。这表明,尽管存在正交空间群,但这两种应变都能稳定相应的 CDW 阶次,并进一步证明了在 a 轴和 c 轴方向上的 CDW 相几乎等同。应变依赖性表明,正交 a 和 c CDW 分别在相应的 a > c 和 c > a 应变下稳定。我们的研究提出了一种超快方法来评估应变系统中相的稳定性和有序参数动态。
{"title":"Emergent symmetry in TbTe<sub>3</sub>revealed by ultrafast reflectivity under anisotropic strain.","authors":"Soyeun Kim, Gal Orenstein, Anisha G Singh, Ian R Fisher, David A Reis, Mariano Trigo","doi":"10.1088/1361-6633/ad71ee","DOIUrl":"10.1088/1361-6633/ad71ee","url":null,"abstract":"<p><p>We report ultrafast reflectivity measurements of the dynamics of the order parameter of the charge density wave (CDW) in TbTe<sub>3</sub>under anisotropic strain. We observe an increase in the frequency of the amplitude mode with increasing tensile strain along the<i>a</i>-axis (which drives the lattice into<i>a</i> > <i>c</i>, with<i>a</i>and<i>c</i>the lattice constants), and similar behavior for tensile strain along<i>c</i>(<i>c</i> > <i>a</i>). This suggests that both strains stabilize the corresponding CDW order and further support the near equivalence of the CDW phases oriented in<i>a</i>- and<i>c</i>-axis, in spite of the orthorhombic space group. The results were analyzed within the time-dependent Ginzburg-Landau framework, which agrees well with the reflectivity dynamics. Our study presents an ultrafast approach to assess the stability of phases and order parameter dynamics in strained systems.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1088/1361-6633/ad6fcb
The Cms Collaboration
The production of a pair of τ leptons via photon-photon fusion,γγ→ττ, is observed for the first time in proton-proton collisions, with a significance of 5.3 standard deviations. This observation is based on a data set recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb-1. Events with a pair of τ leptons produced via photon-photon fusion are selected by requiring them to be back-to-back in the azimuthal direction and to have a minimum number of charged hadrons associated with their production vertex. The τ leptons are reconstructed in their leptonic and hadronic decay modes. The measured fiducial cross section ofγγ→ττisσobsfid=12.4-3.1+3.8fb. Constraints are set on the contributions to the anomalous magnetic moment (aτ) and electric dipole moments (dτ) of the τ lepton originating from potential effects of new physics on theγττvertex:aτ=0.0009-0.0031+0.0032and|dτ|<2.9×10-17ecm(95% confidence level), consistent with the standard model.
{"title":"Observation ofγγ→ττin proton-proton collisions and limits on the anomalous electromagnetic moments of the τ lepton.","authors":"The Cms Collaboration","doi":"10.1088/1361-6633/ad6fcb","DOIUrl":"10.1088/1361-6633/ad6fcb","url":null,"abstract":"<p><p>The production of a pair of τ leptons via photon-photon fusion,γγ→ττ, is observed for the first time in proton-proton collisions, with a significance of 5.3 standard deviations. This observation is based on a data set recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb<sup>-1</sup>. Events with a pair of τ leptons produced via photon-photon fusion are selected by requiring them to be back-to-back in the azimuthal direction and to have a minimum number of charged hadrons associated with their production vertex. The τ leptons are reconstructed in their leptonic and hadronic decay modes. The measured fiducial cross section ofγγ→ττisσobsfid=12.4-3.1+3.8fb. Constraints are set on the contributions to the anomalous magnetic moment (aτ) and electric dipole moments (dτ) of the τ lepton originating from potential effects of new physics on theγττvertex:aτ=0.0009-0.0031+0.0032and|dτ|<2.9×10-17ecm(95% confidence level), consistent with the standard model.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1088/1361-6633/ad6d88
He Gao, Guoqiang Xu, Xue Zhou, Shuihua Yang, Zhongqing Su, Cheng-Wei Qiu
Topological Anderson phases (TAPs) offer intriguing transitions from ordered to disordered systems in photonics and acoustics. However, achieving these transitions often involves cumbersome structural modifications to introduce disorders in parameters, leading to limitations in flexible tuning of topological properties and real-space control of TAPs. Here, we exploit disordered convective perturbations in a fixed heat transport system. Continuously tunable disorder-topology interactions are enabled in thermal dissipation through irregular convective lattices. In the presence of a weak convective disorder, the trivial diffusive system undergos TAP transition, characterized by the emergence of topologically protected corner modes. Further increasing the strength of convective perturbations, a second phase transition occurs converting from TAP to Anderson phase. Our work elucidates the pivotal role of disorders in topological heat transport and provides a novel recipe for manipulating thermal behaviors in diverse topological platforms.
拓扑安德森相(TAPs)在光子学和声学领域提供了从有序系统到无序系统的有趣转变。然而,实现这些转变往往需要对结构进行繁琐的修改,以引入参数紊乱,从而限制了拓扑特性的灵活调整和 TAP 的真实空间控制。在这里,我们利用固定热传输系统中的无序对流扰动。通过不规则对流晶格,在热耗散过程中实现了连续可调的无序拓扑相互作用。在存在微弱对流无序的情况下,琐碎的扩散系统会发生拓扑安德森相变,其特征是出现拓扑保护角模式。进一步增加对流扰动的强度,就会发生从 TAP 相到安德森相的第二次相变。我们的工作阐明了紊乱在拓扑热传输中的关键作用,并为在各种拓扑平台中操纵热行为提供了新的方法。
{"title":"Topological Anderson phases in heat transport.","authors":"He Gao, Guoqiang Xu, Xue Zhou, Shuihua Yang, Zhongqing Su, Cheng-Wei Qiu","doi":"10.1088/1361-6633/ad6d88","DOIUrl":"10.1088/1361-6633/ad6d88","url":null,"abstract":"<p><p>Topological Anderson phases (TAPs) offer intriguing transitions from ordered to disordered systems in photonics and acoustics. However, achieving these transitions often involves cumbersome structural modifications to introduce disorders in parameters, leading to limitations in flexible tuning of topological properties and real-space control of TAPs. Here, we exploit disordered convective perturbations in a fixed heat transport system. Continuously tunable disorder-topology interactions are enabled in thermal dissipation through irregular convective lattices. In the presence of a weak convective disorder, the trivial diffusive system undergos TAP transition, characterized by the emergence of topologically protected corner modes. Further increasing the strength of convective perturbations, a second phase transition occurs converting from TAP to Anderson phase. Our work elucidates the pivotal role of disorders in topological heat transport and provides a novel recipe for manipulating thermal behaviors in diverse topological platforms.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1088/1361-6633/ad6a80
J E Proctor, Kostya Trachenko
Physics-based first-principles pressure-volume-temperature equations of state (EOS) exist for solids and gases but not for liquids due to the long-standing fundamental problems involved in liquid theory. Current EOS models that are applicable to liquids and supercritical fluids at liquid-like density under conditions relevant to planetary interiors and industrial processes are complex empirical models with many physically meaningless adjustable parameters. Here, we develop a generally applicable physics-based (GAP) EOS for liquids including supercritical fluids at liquid-like density. The GAP equation is explicit in the internal energy, and hence links the most fundamental macroscopic static property of fluids, the pressure-volume-temperature EOS, to their key microscopic property: the molecular hopping frequency or liquid relaxation time, from which the internal energy can be obtained. We test our GAP equation against available experimental data in several different ways and find good agreement. Our GAP equation, unavoidably and similarly to solid EOS, contains a semi-empirical term giving the energy of the static sample as a function of volume only (EST(V)). Our testing includes studies along isochores, in order to examine the validity of the GAP equation independently of the validity of any function we may choose to utilize forEST(V). The only other adjustable parameter in the equation is the Grüneisen parameter for the fluid. We observe that the GAP equation is similar to the Mie-Grüneisen solid EOS in a wide range of the liquid phase diagram. This similarity is ultimately related to the condensed state of these two phases. On the other hand, the differences between the GAP equation and EOS for gases are fundamental. Finally, we identify the key gaps in the experimental data that need to be filled in to proceed further with the liquid EOS.
基于物理学的第一原理压力-体积-温度状态方程(EOS)适用于固体和气体,但不适用于液体,原因是液体理论中长期存在一些基本问题。目前适用于行星内部和工业过程相关条件下类似液体密度的液体和超临界流体的 EOS 模型都是复杂的经验模型,其中包含许多无物理意义的可调参数。在这里,我们为液体(包括类液态密度下的超临界流体)开发了一种基于物理学的通用(GAP)EOS。GAP 方程明确了内能,从而将流体最基本的宏观静态特性--压力-体积-温度 EOS,与其关键的微观特性--分子跳跃频率或液体弛豫时间联系起来,并从中获得内能。我们用几种不同的方法将我们的 GAP 方程与现有的实验数据进行了对比测试,结果发现两者非常吻合。与固体 EOS 相似,我们的 GAP 方程不可避免地包含了一个半经验项,它给出了静态样品的能量与体积的函数关系(EST(V))。我们的测试包括沿等距线进行的研究,以检验 GAP 方程的有效性,而不考虑我们可能选择用于 EST(V)的任何函数的有效性。方程中唯一可调整的参数是流体的格吕奈森参数。我们观察到,在液相图的很大范围内,GAP 方程与 Mie-Grüneisen 固体 EOS 相似。这种相似性归根结底与这两种物质的凝聚态有关。另一方面,GAP 方程与气体 EOS 之间的差异是根本性的。最后,我们指出了实验数据中需要填补的关键空白,以便进一步研究液态 EOS。
{"title":"Generally applicable physics-based equation of state for liquids.","authors":"J E Proctor, Kostya Trachenko","doi":"10.1088/1361-6633/ad6a80","DOIUrl":"10.1088/1361-6633/ad6a80","url":null,"abstract":"<p><p>Physics-based first-principles pressure-volume-temperature equations of state (EOS) exist for solids and gases but not for liquids due to the long-standing fundamental problems involved in liquid theory. Current EOS models that are applicable to liquids and supercritical fluids at liquid-like density under conditions relevant to planetary interiors and industrial processes are complex empirical models with many physically meaningless adjustable parameters. Here, we develop a generally applicable physics-based (GAP) EOS for liquids including supercritical fluids at liquid-like density. The GAP equation is explicit in the internal energy, and hence links the most fundamental macroscopic static property of fluids, the pressure-volume-temperature EOS, to their key microscopic property: the molecular hopping frequency or liquid relaxation time, from which the internal energy can be obtained. We test our GAP equation against available experimental data in several different ways and find good agreement. Our GAP equation, unavoidably and similarly to solid EOS, contains a semi-empirical term giving the energy of the static sample as a function of volume only (EST(V)). Our testing includes studies along isochores, in order to examine the validity of the GAP equation independently of the validity of any function we may choose to utilize forEST(V). The only other adjustable parameter in the equation is the Grüneisen parameter for the fluid. We observe that the GAP equation is similar to the Mie-Grüneisen solid EOS in a wide range of the liquid phase diagram. This similarity is ultimately related to the condensed state of these two phases. On the other hand, the differences between the GAP equation and EOS for gases are fundamental. Finally, we identify the key gaps in the experimental data that need to be filled in to proceed further with the liquid EOS.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1088/1361-6633/ad6805
Gregory Quiroz, Bibek Pokharel, Joseph Boen, Lina Tewala, Vinay Tripathi, Devon Williams, Lian-Ao Wu, Paraj Titum, Kevin Schultz, Daniel Lidar
Decoherence-free subspaces and subsystems (DFS) preserve quantum information by encoding it into symmetry-protected states unaffected by decoherence. An inherent DFS of a given experimental system may not exist; however, through the use of dynamical decoupling (DD), one can induce symmetries that support DFSs. Here, we provide the first experimental demonstration of DD-generated decoherence-free subsystem logical qubits. Utilizing IBM Quantum superconducting processors, we investigate two and three-qubit DFS codes comprising up to six and seven noninteracting logical qubits, respectively. Through a combination of DD and error detection, we show that DFS logical qubits can achieve up to a 23% improvement in state preservation fidelity over physical qubits subject to DD alone. This constitutes a beyond-breakeven fidelity improvement for DFS-encoded qubits. Our results showcase the potential utility of DFS codes as a pathway toward enhanced computational accuracy via logical encoding on quantum processors.
{"title":"Dynamically generated decoherence-free subspaces and subsystems on superconducting qubits.","authors":"Gregory Quiroz, Bibek Pokharel, Joseph Boen, Lina Tewala, Vinay Tripathi, Devon Williams, Lian-Ao Wu, Paraj Titum, Kevin Schultz, Daniel Lidar","doi":"10.1088/1361-6633/ad6805","DOIUrl":"10.1088/1361-6633/ad6805","url":null,"abstract":"<p><p>Decoherence-free subspaces and subsystems (DFS) preserve quantum information by encoding it into symmetry-protected states unaffected by decoherence. An inherent DFS of a given experimental system may not exist; however, through the use of dynamical decoupling (DD), one can induce symmetries that support DFSs. Here, we provide the first experimental demonstration of DD-generated decoherence-free subsystem logical qubits. Utilizing IBM Quantum superconducting processors, we investigate two and three-qubit DFS codes comprising up to six and seven noninteracting logical qubits, respectively. Through a combination of DD and error detection, we show that DFS logical qubits can achieve up to a 23% improvement in state preservation fidelity over physical qubits subject to DD alone. This constitutes a beyond-breakeven fidelity improvement for DFS-encoded qubits. Our results showcase the potential utility of DFS codes as a pathway toward enhanced computational accuracy via logical encoding on quantum processors.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.1088/1361-6633/ad627b
Carla Fernández-Rico, Roel P A Dullens
The curvature of elongated microscopic building blocks plays a crucial role on their self-assembly into orientationally ordered phases. While rod-like molecules form a handful of liquid crystal (LC) phases, curved or banana-shaped molecules show more than fifty phases, with fascinating physical properties, such as chirality or polarity. Despite the fundamental and technological importance of these so-called 'banana-shaped liquid crystals', little is known about their microscopic details at the single-molecule level. Curved colloidal liquid crystals-liquid crystals formed by curved colloidal rods-are excellent model systems to optically resolve the structure and dynamics of curved building blocks within these condensed phases. Recent advances in the synthesis of curved rod-like particles have unlocked the potential for studying-at the single-particle level-the intimate relationship between shape and phase symmetry, and even confirmed the stability of elusive LC phases. Further developments in this nascent field promise exciting findings, such as the first observation of the colloidal twist-bend nematic phase or the fabrication of functional materials with curvature-dependent properties. In this Report on Progress, we will highlight recent advances in the synthesis and assembly of curved colloidal liquid crystals and discuss the upcoming challenges and opportunities of this field.
{"title":"Liquid crystals from curved colloidal rods: waves, twists and more.","authors":"Carla Fernández-Rico, Roel P A Dullens","doi":"10.1088/1361-6633/ad627b","DOIUrl":"10.1088/1361-6633/ad627b","url":null,"abstract":"<p><p>The curvature of elongated microscopic building blocks plays a crucial role on their self-assembly into orientationally ordered phases. While rod-like molecules form a handful of liquid crystal (LC) phases, curved or banana-shaped molecules show more than fifty phases, with fascinating physical properties, such as chirality or polarity. Despite the fundamental and technological importance of these so-called 'banana-shaped liquid crystals', little is known about their microscopic details at the single-molecule level. Curved colloidal liquid crystals-liquid crystals formed by curved colloidal rods-are excellent model systems to optically resolve the structure and dynamics of curved building blocks within these condensed phases. Recent advances in the synthesis of curved rod-like particles have unlocked the potential for studying-at the single-particle level-the intimate relationship between shape and phase symmetry, and even confirmed the stability of elusive LC phases. Further developments in this nascent field promise exciting findings, such as the first observation of the colloidal twist-bend nematic phase or the fabrication of functional materials with curvature-dependent properties. In this Report on Progress, we will highlight recent advances in the synthesis and assembly of curved colloidal liquid crystals and discuss the upcoming challenges and opportunities of this field.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-09DOI: 10.1088/1361-6633/ad67ed
Saisab Bhowmik, Arindam Ghosh, U Chandni
Electronic correlations in two-dimensional materials play a crucial role in stabilising emergent phases of matter. The realisation of correlation-driven phenomena in graphene has remained a longstanding goal, primarily due to the absence of strong electron-electron interactions within its low-energy bands. In this context, magic-angle twisted bilayer graphene has recently emerged as a novel platform featuring correlated phases favoured by the low-energy flat bands of the underlying moiré superlattice. Notably, the observation of correlated insulators and superconductivity, and the interplay between these phases have garnered significant attention. A wealth of correlated phases with unprecedented tunability was discovered subsequently, including orbital ferromagnetism, Chern insulators, strange metallicity, density waves, and nematicity. However, a comprehensive understanding of these closely competing phases remains elusive. The ability to controllably twist and stack multiple graphene layers has enabled the creation of a whole new family of moiré superlattices with myriad properties. Here, we review the progress and development achieved so far, encompassing the rich phase diagrams offered by these graphene-based moiré systems. Additionally, we discuss multiple phases recently observed in non-moiré multilayer graphene systems. Finally, we outline future opportunities and challenges for the exploration of hidden phases in this new generation of moiré materials.
{"title":"Emergent phases in graphene flat bands.","authors":"Saisab Bhowmik, Arindam Ghosh, U Chandni","doi":"10.1088/1361-6633/ad67ed","DOIUrl":"10.1088/1361-6633/ad67ed","url":null,"abstract":"<p><p>Electronic correlations in two-dimensional materials play a crucial role in stabilising emergent phases of matter. The realisation of correlation-driven phenomena in graphene has remained a longstanding goal, primarily due to the absence of strong electron-electron interactions within its low-energy bands. In this context, magic-angle twisted bilayer graphene has recently emerged as a novel platform featuring correlated phases favoured by the low-energy flat bands of the underlying moiré superlattice. Notably, the observation of correlated insulators and superconductivity, and the interplay between these phases have garnered significant attention. A wealth of correlated phases with unprecedented tunability was discovered subsequently, including orbital ferromagnetism, Chern insulators, strange metallicity, density waves, and nematicity. However, a comprehensive understanding of these closely competing phases remains elusive. The ability to controllably twist and stack multiple graphene layers has enabled the creation of a whole new family of moiré superlattices with myriad properties. Here, we review the progress and development achieved so far, encompassing the rich phase diagrams offered by these graphene-based moiré systems. Additionally, we discuss multiple phases recently observed in non-moiré multilayer graphene systems. Finally, we outline future opportunities and challenges for the exploration of hidden phases in this new generation of moiré materials.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1088/1361-6633/ad616a
Daniel G Figueroa, Adrien Florio, Francisco Torrenti
We discuss the present state and planned updates ofCosmoLattice, a cutting-edge code for lattice simulations of non-linear dynamics of scalar-gauge field theories in an expanding background. We first review the current capabilities of the code, including the simulation of interacting singlet scalars and of Abelian and non-Abelian scalar-gauge theories. We also comment on new features recently implemented, such as the simulation of gravitational waves from scalar and gauge fields. Secondly, we discuss new extensions ofCosmoLatticethat we plan to release publicly. We comment on new physics modules, which include axion-gauge interactionsϕFF~, non-minimal gravitational couplingsϕ2R, creation and evolution of cosmic-defect networks, and magnetohydrodynamics. We also discuss new technical features, including evolvers for non-canonical interactions, arbitrary initial conditions, simulations in 2+1 dimensions, and higher-accuracy spatial derivatives.
{"title":"Present and future ofCosmoLattice.","authors":"Daniel G Figueroa, Adrien Florio, Francisco Torrenti","doi":"10.1088/1361-6633/ad616a","DOIUrl":"10.1088/1361-6633/ad616a","url":null,"abstract":"<p><p>We discuss the present state and planned updates ofCosmoLattice, a cutting-edge code for lattice simulations of non-linear dynamics of scalar-gauge field theories in an expanding background. We first review the current capabilities of the code, including the simulation of interacting singlet scalars and of Abelian and non-Abelian scalar-gauge theories. We also comment on new features recently implemented, such as the simulation of gravitational waves from scalar and gauge fields. Secondly, we discuss new extensions ofCosmoLatticethat we plan to release publicly. We comment on new physics modules, which include axion-gauge interactionsϕFF~, non-minimal gravitational couplingsϕ2R, creation and evolution of cosmic-defect networks, and magnetohydrodynamics. We also discuss new technical features, including evolvers for non-canonical interactions, arbitrary initial conditions, simulations in 2+1 dimensions, and higher-accuracy spatial derivatives.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum illumination (QI) and quantum radar have emerged as potentially groundbreaking technologies, leveraging the principles of quantum mechanics to revolutionise the field of remote sensing and target detection. The protocol, particularly in the context of quantum radar, has been subject to a great deal of aspirational conjecture as well as criticism with respect to its realistic potential. In this review, we present a broad overview of the field of quantum target detection focusing on QI and its potential as an underlying scheme for a quantum radar operating at microwave frequencies. We provide context for the field by considering its historical development and fundamental principles. Our aim is to provide a balanced discussion on the state of theoretical and experimental progress towards realising a working QI-based quantum radar, and draw conclusions about its current outlook and future directions.
{"title":"Quantum illumination and quantum radar: a brief overview.","authors":"Athena Karsa, Alasdair Fletcher, Gaetana Spedalieri, Stefano Pirandola","doi":"10.1088/1361-6633/ad6279","DOIUrl":"https://doi.org/10.1088/1361-6633/ad6279","url":null,"abstract":"<p><p>Quantum illumination (QI) and quantum radar have emerged as potentially groundbreaking technologies, leveraging the principles of quantum mechanics to revolutionise the field of remote sensing and target detection. The protocol, particularly in the context of quantum radar, has been subject to a great deal of aspirational conjecture as well as criticism with respect to its realistic potential. In this review, we present a broad overview of the field of quantum target detection focusing on QI and its potential as an underlying scheme for a quantum radar operating at microwave frequencies. We provide context for the field by considering its historical development and fundamental principles. Our aim is to provide a balanced discussion on the state of theoretical and experimental progress towards realising a working QI-based quantum radar, and draw conclusions about its current outlook and future directions.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":"87 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1088/1361-6633/ad5c99
Aohua Cheng, Yunhui Xu, Pei Sun, Yang Tian
Modern theories of phase transitions and scale invariance are rooted in path integral formulation and renormalization groups (RGs). Despite the applicability of these approaches in simple systems with only pairwise interactions, they are less effective in complex systems with undecomposable high-order interactions (i.e. interactions among arbitrary sets of units). To precisely characterize the universality of high-order interacting systems, we propose a simplex path integral and a simplex RG (SRG) as the generalizations of classic approaches to arbitrary high-order and heterogeneous interactions. We first formalize the trajectories of units governed by high-order interactions to define path integrals on corresponding simplices based on a high-order propagator. Then, we develop a method to integrate out short-range high-order interactions in the momentum space, accompanied by a coarse graining procedure functioning on the simplex structure generated by high-order interactions. The proposed SRG, equipped with a divide-and-conquer framework, can deal with the absence of ergodicity arising from the sparse distribution of high-order interactions and can renormalize a system with intertwined high-order interactions at thep-order according to its properties at theq-order (p⩽q). The associated scaling relation and its corollaries provide support to differentiate among scale-invariant, weakly scale-invariant, and scale-dependent systems across different orders. We validate our theory in multi-order scale-invariance verification, topological invariance discovery, organizational structure identification, and information bottleneck analysis. These experiments demonstrate the capability of our theory to identify intrinsic statistical and topological properties of high-order interacting systems during system reduction.
现代相变和尺度不变性理论植根于路径积分公式和重正化群(RGs)。尽管这些方法适用于只有成对相互作用的简单系统,但在具有不可分解的高阶相互作用(即任意单元集之间的相互作用)的复杂系统中却不那么有效。为了精确描述高阶相互作用系统的普遍性,我们提出了单纯形路径积分和单纯形 RG (SRG),作为经典方法对任意高阶和异质相互作用的概括。我们首先将高阶相互作用单元的轨迹形式化,以高阶传播者为基础,定义相应简元上的路径积分。然后,我们开发了一种在动量空间整合出短程高阶相互作用的方法,并在高阶相互作用产生的简约结构上采用粗粒化程序。所提出的 SRG 配备了一个分而治之的框架,可以处理因高阶相互作用稀疏分布而导致的遍历性缺失问题,并能根据高阶相互作用在 q 阶(p⩽q)的特性,在 p 阶对具有相互交织的高阶相互作用的系统进行重正化。相关的标度关系及其推论为区分不同阶的标度不变系统、弱标度不变系统和标度依赖系统提供了支持。我们在多阶尺度不变性验证、拓扑不变性发现、组织结构识别和信息瓶颈分析中验证了我们的理论。这些实验证明了我们的理论在系统还原过程中识别高阶交互系统内在统计和拓扑特性的能力。
{"title":"A simplex path integral and a simplex renormalization group for high-order interactions<sup />.","authors":"Aohua Cheng, Yunhui Xu, Pei Sun, Yang Tian","doi":"10.1088/1361-6633/ad5c99","DOIUrl":"https://doi.org/10.1088/1361-6633/ad5c99","url":null,"abstract":"<p><p>Modern theories of phase transitions and scale invariance are rooted in path integral formulation and renormalization groups (RGs). Despite the applicability of these approaches in simple systems with only pairwise interactions, they are less effective in complex systems with undecomposable high-order interactions (i.e. interactions among arbitrary sets of units). To precisely characterize the universality of high-order interacting systems, we propose a simplex path integral and a simplex RG (SRG) as the generalizations of classic approaches to arbitrary high-order and heterogeneous interactions. We first formalize the trajectories of units governed by high-order interactions to define path integrals on corresponding simplices based on a high-order propagator. Then, we develop a method to integrate out short-range high-order interactions in the momentum space, accompanied by a coarse graining procedure functioning on the simplex structure generated by high-order interactions. The proposed SRG, equipped with a divide-and-conquer framework, can deal with the absence of ergodicity arising from the sparse distribution of high-order interactions and can renormalize a system with intertwined high-order interactions at the<i>p</i>-order according to its properties at the<i>q</i>-order (p⩽q). The associated scaling relation and its corollaries provide support to differentiate among scale-invariant, weakly scale-invariant, and scale-dependent systems across different orders. We validate our theory in multi-order scale-invariance verification, topological invariance discovery, organizational structure identification, and information bottleneck analysis. These experiments demonstrate the capability of our theory to identify intrinsic statistical and topological properties of high-order interacting systems during system reduction.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":"87 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}