Pub Date : 2024-12-10DOI: 10.1088/1361-6633/ad99fd
Wei Li, Yi Peng, Tim Still, A G Yodh, Yilong Han
Large shear deformations can induce structural changes within crystals, yet the microscopic kinetics underlying these transformations are difficult for experimental observation and theoretical understanding. Here, we drive shear-induced structural transitions from square (◻) lattices to triangular (△) lattices in thin-film colloidal crystals and directly observe the accompanying kinetics with single-particle resolution inside the bulk crystal. When the oscillatory shear strain amplitude0.1⩽γm<0.4,△-lattice nuclei are surrounded by a liquid layer throughout their growth due to localized shear strain at the interface. Such virtual melting at crystalline interface has been predicted in theory and simulation, but have not been observed in experiment. The mean liquid layer thickness is proportional to the shear which can be explained by the Lindemann melting criterion. This provides an alternative explanation on virtual melting.
{"title":"Nucleation kinetics and virtual melting in shear-induced structural transitions.","authors":"Wei Li, Yi Peng, Tim Still, A G Yodh, Yilong Han","doi":"10.1088/1361-6633/ad99fd","DOIUrl":"10.1088/1361-6633/ad99fd","url":null,"abstract":"<p><p>Large shear deformations can induce structural changes within crystals, yet the microscopic kinetics underlying these transformations are difficult for experimental observation and theoretical understanding. Here, we drive shear-induced structural transitions from square (◻) lattices to triangular (△) lattices in thin-film colloidal crystals and directly observe the accompanying kinetics with single-particle resolution inside the bulk crystal. When the oscillatory shear strain amplitude0.1⩽γm<0.4,△-lattice nuclei are surrounded by a liquid layer throughout their growth due to localized shear strain at the interface. Such virtual melting at crystalline interface has been predicted in theory and simulation, but have not been observed in experiment. The mean liquid layer thickness is proportional to the shear which can be explained by the Lindemann melting criterion. This provides an alternative explanation on virtual melting.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-09DOI: 10.1088/1361-6633/ad9052
Bin Zhang, Reuven Ianconescu, Aharon Friedman, Jacob Scheuer, Mikhail Tokman, Yiming Pan, Avraham Gover
It has been shown that the spontaneous emission rate of photons by free electrons, unlike stimulated emission, is independent of the shape or modulation of the quantum electron wavefunction (QEW). Nevertheless, here we show that the quantum state of the emitted photons is non-classical and does depend on the QEW shape. This non-classicality originates from the shape dependent off-diagonal terms of the photon density matrix. This is manifested in the Wigner distribution function and would be observable experimentally through homodyne detection techniques as a squeezing effect. Considering a scheme of electrons interaction with a single microcavity mode, we present a QED formulation of spontaneous emission by multiple modulated QEWs through a build-up process. Our findings indicate that in the case of a density modulated QEWs beam, the phase of the off-diagonal terms of the photon state emitted by the modulated QEWs is the harbinger of bunched beam superradiance, where the spontaneous emission is proportional toNe2. This observation offers a potential for enhancement of other quantum electron interactions with quantum systems by a modulated QEWs beam carrying coherence and quantum properties of the modulation.
{"title":"Spontaneous photon emission by shaped quantum electron wavepackets and the QED origin of bunched electron beam superradiance.","authors":"Bin Zhang, Reuven Ianconescu, Aharon Friedman, Jacob Scheuer, Mikhail Tokman, Yiming Pan, Avraham Gover","doi":"10.1088/1361-6633/ad9052","DOIUrl":"10.1088/1361-6633/ad9052","url":null,"abstract":"<p><p>It has been shown that the spontaneous emission rate of photons by free electrons, unlike stimulated emission, is independent of the shape or modulation of the quantum electron wavefunction (QEW). Nevertheless, here we show that the quantum state of the emitted photons is non-classical and does depend on the QEW shape. This non-classicality originates from the shape dependent off-diagonal terms of the photon density matrix. This is manifested in the Wigner distribution function and would be observable experimentally through homodyne detection techniques as a squeezing effect. Considering a scheme of electrons interaction with a single microcavity mode, we present a QED formulation of spontaneous emission by multiple modulated QEWs through a build-up process. Our findings indicate that in the case of a density modulated QEWs beam, the phase of the off-diagonal terms of the photon state emitted by the modulated QEWs is the harbinger of bunched beam superradiance, where the spontaneous emission is proportional toNe2. This observation offers a potential for enhancement of other quantum electron interactions with quantum systems by a modulated QEWs beam carrying coherence and quantum properties of the modulation.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-05DOI: 10.1088/1361-6633/ad91c4
Alexandru Maries, Yangquiting Li, Chandralekha Singh
Physics, as a discipline, has long struggled with pervasive stereotypes and biases about who is capable and can excel in it. Physics also ranks among the least diverse among all science, technology, engineering, and mathematics (STEM) disciplines, often cultivating and fostering learning environments that lack inclusivity and equity. Moreover, stereotypes about brilliance, inequitable physics learning environments and the overall physics culture not only impact the experiences and outcomes of students who major in physics, but also those from other STEM disciplines who must take physics courses. Here we undertake a narrative review, delving into research concerning diversity, equity, and inclusion within undergraduate physics education. We concentrate on the experiences of women and persons excluded due to their ethnicity or race in physics, aiming to shed light on the alarming current situation. The review begins with a few concrete examples of exclusionary experiences that research shows are common for women in physics and can reduce their interest or motivation to pursue a physics major. Then, we provide our conceptualization of equity in physics learning environments and describe the frameworks informing the perspective taken in the review. We then discuss issues related to inequities in physics learning environments, including but not limited to inequities in academic performance, participation, and persistence in physics, as well as psychological factors such as physics self-efficacy, perceived recognition, social belonging, mindset beliefs, and others. We also review research on factors commonly associated with the lack of diversity, equity, and inclusion in physics including the lack of role models, stereotypes associating physics with brilliance, and the overall prototypical culture of physics. We emphasize that addressing these systemic issues in physics requires a holistic approach. We conclude with a list of recommendations for physics departments and instructors on how they can play an important role in transforming the physics culture and making the learning environments equitable and inclusive so that all students can engage in learning physics and enjoy it while feeling supported.
{"title":"Challenges faced by women and persons excluded because of their ethnicity and race in physics learning environments: review of the literature and recommendations for departments and instructors.","authors":"Alexandru Maries, Yangquiting Li, Chandralekha Singh","doi":"10.1088/1361-6633/ad91c4","DOIUrl":"10.1088/1361-6633/ad91c4","url":null,"abstract":"<p><p>Physics, as a discipline, has long struggled with pervasive stereotypes and biases about who is capable and can excel in it. Physics also ranks among the least diverse among all science, technology, engineering, and mathematics (STEM) disciplines, often cultivating and fostering learning environments that lack inclusivity and equity. Moreover, stereotypes about brilliance, inequitable physics learning environments and the overall physics culture not only impact the experiences and outcomes of students who major in physics, but also those from other STEM disciplines who must take physics courses. Here we undertake a narrative review, delving into research concerning diversity, equity, and inclusion within undergraduate physics education. We concentrate on the experiences of women and persons excluded due to their ethnicity or race in physics, aiming to shed light on the alarming current situation. The review begins with a few concrete examples of exclusionary experiences that research shows are common for women in physics and can reduce their interest or motivation to pursue a physics major. Then, we provide our conceptualization of equity in physics learning environments and describe the frameworks informing the perspective taken in the review. We then discuss issues related to inequities in physics learning environments, including but not limited to inequities in academic performance, participation, and persistence in physics, as well as psychological factors such as physics self-efficacy, perceived recognition, social belonging, mindset beliefs, and others. We also review research on factors commonly associated with the lack of diversity, equity, and inclusion in physics including the lack of role models, stereotypes associating physics with brilliance, and the overall prototypical culture of physics. We emphasize that addressing these systemic issues in physics requires a holistic approach. We conclude with a list of recommendations for physics departments and instructors on how they can play an important role in transforming the physics culture and making the learning environments equitable and inclusive so that all students can engage in learning physics and enjoy it while feeling supported.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum key distribution (QKD) is a swiftly advancing field with the great potential to be ubiquitously adopted in quantum communication applications, attributed to its unique capability to offer ultimate end-to-end theoretical security. However, when transitioning QKD from theory to practice, environmental noise presents a significant impediment, often undermining the real-time efficacy of secure key rates. To uphold the operation of QKD systems, a myriad of protocols and experimental designs have been proposed to counteract the effects of noises. Even with real-time variations, the primary component of environmental noise can be modeled as a unitary evolution or background noise, which can be compensated or reduced with various noise-reducing schemes. This review provides an overview of design strategies for reducing noises in practical QKD systems under various circumstances. These strategies are evaluated based on their principles and suitability in real-world applications. Through this review, we aim to provide readers with a clear understanding of the logic behind these noise-reducing QKD designs, facilitating a smoother start of research and engineering in this field.
{"title":"Noise-reducing quantum key distribution.","authors":"Haoran Zhang, Wei Li, Ruihua He, Yan Zhang, Feihu Xu, Weibo Gao","doi":"10.1088/1361-6633/ad9505","DOIUrl":"10.1088/1361-6633/ad9505","url":null,"abstract":"<p><p>Quantum key distribution (QKD) is a swiftly advancing field with the great potential to be ubiquitously adopted in quantum communication applications, attributed to its unique capability to offer ultimate end-to-end theoretical security. However, when transitioning QKD from theory to practice, environmental noise presents a significant impediment, often undermining the real-time efficacy of secure key rates. To uphold the operation of QKD systems, a myriad of protocols and experimental designs have been proposed to counteract the effects of noises. Even with real-time variations, the primary component of environmental noise can be modeled as a unitary evolution or background noise, which can be compensated or reduced with various noise-reducing schemes. This review provides an overview of design strategies for reducing noises in practical QKD systems under various circumstances. These strategies are evaluated based on their principles and suitability in real-world applications. Through this review, we aim to provide readers with a clear understanding of the logic behind these noise-reducing QKD designs, facilitating a smoother start of research and engineering in this field.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1088/1361-6633/ad910b
Martin Hentschinski, Dmitri E Kharzeev, Krzysztof Kutak, Zhoudunming Tu
Entanglement entropy has emerged as a novel tool for probing nonperturbative quantum chromodynamics (QCD) phenomena, such as color confinement in protons. While recent studies have demonstrated its significant capability in describing hadron production in deep inelastic scatterings, the QCD evolution of entanglement entropy remains unexplored. In this work, we investigate the differential rapidity-dependent entanglement entropy within the proton and its connection to final-state hadrons, aiming to elucidate its QCD evolution. Our analysis reveals a strong agreement between the rapidity dependence of von Neumann entropy, obtained from QCD evolution equations, and the corresponding experimental data on hadron entropy. These findings provide compelling evidence for the emergence of a maximally entangled state, offering new insights into the nonperturbative structure of protons.
{"title":"QCD evolution of entanglement entropy.","authors":"Martin Hentschinski, Dmitri E Kharzeev, Krzysztof Kutak, Zhoudunming Tu","doi":"10.1088/1361-6633/ad910b","DOIUrl":"10.1088/1361-6633/ad910b","url":null,"abstract":"<p><p>Entanglement entropy has emerged as a novel tool for probing nonperturbative quantum chromodynamics (QCD) phenomena, such as color confinement in protons. While recent studies have demonstrated its significant capability in describing hadron production in deep inelastic scatterings, the QCD evolution of entanglement entropy remains unexplored. In this work, we investigate the differential rapidity-dependent entanglement entropy within the proton and its connection to final-state hadrons, aiming to elucidate its QCD evolution. Our analysis reveals a strong agreement between the rapidity dependence of von Neumann entropy, obtained from QCD evolution equations, and the corresponding experimental data on hadron entropy. These findings provide compelling evidence for the emergence of a maximally entangled state, offering new insights into the nonperturbative structure of protons.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1088/1361-6633/ad8f43
Antonio Italiano, Ernesto Amato, Daniele Pistone, Lucrezia Auditore
An in-depth analysis of the decay process forβ-emitting radionuclides highlights, for some of them, the existence of high-order effects usually not taken into account in literature as considered negligible in terms of energy and yield, and referred to as Internal Bremsstrahlung (IB). This set ofβ-radionuclides presents, besides theirβspectrum, a continuousγemission due to the Coulomb field braking action on the emitted electron following the decaying nucleus. In this work, we review the theoretical and experimental studies on the IB process focusing on its actual importance for the pureβemitters. It emerges that there is no satisfactory model able to reproduce the experimental IB distribution for most of the investigated beta emitters and the several measurements are sometimes at odds with each other. Moreover, as recently demonstrated, the IB process can give a relevant contribution to the physics of beta emitters thus requiring its inclusion in the physics of the beta decay. A discussion on the importance of considering IB process in both applicative fields such as nuclear medicine, industrial applications, and research or calibration laboratories, and in other relevant fields of particle physics or astrophysics, such as the research on dark matter or neutrino mass, is presented.
{"title":"On the internal bremsstrahlung accompanying<i>β</i>-decay and its potential relevance in the application of radioactive sources.","authors":"Antonio Italiano, Ernesto Amato, Daniele Pistone, Lucrezia Auditore","doi":"10.1088/1361-6633/ad8f43","DOIUrl":"10.1088/1361-6633/ad8f43","url":null,"abstract":"<p><p>An in-depth analysis of the decay process for<i>β</i>-emitting radionuclides highlights, for some of them, the existence of high-order effects usually not taken into account in literature as considered negligible in terms of energy and yield, and referred to as Internal Bremsstrahlung (IB). This set of<i>β</i>-radionuclides presents, besides their<i>β</i>spectrum, a continuous<i>γ</i>emission due to the Coulomb field braking action on the emitted electron following the decaying nucleus. In this work, we review the theoretical and experimental studies on the IB process focusing on its actual importance for the pure<i>β</i>emitters. It emerges that there is no satisfactory model able to reproduce the experimental IB distribution for most of the investigated beta emitters and the several measurements are sometimes at odds with each other. Moreover, as recently demonstrated, the IB process can give a relevant contribution to the physics of beta emitters thus requiring its inclusion in the physics of the beta decay. A discussion on the importance of considering IB process in both applicative fields such as nuclear medicine, industrial applications, and research or calibration laboratories, and in other relevant fields of particle physics or astrophysics, such as the research on dark matter or neutrino mass, is presented.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1088/1361-6633/ad91de
Chen-Long Li, Hua-Lei Yin, Zeng-Bing Chen
A full-fledged quantum network relies on the formation of entangled links between remote location with the help of quantum repeaters. The famous Duan-Lukin-Cirac-Zoller quantum repeater protocol is based on long distance single-photon interference (SPI), which not only requires high phase stability but also cannot generate maximally entangled state. Here, we propose a quantum repeater protocol using the idea of post-matching, which retains the same efficiency as the SPI protocol, reduces the phase-stability requirement and can generate maximally entangled state in principle. We also outline an implementation of our scheme based on the Kerr nonlinear resonator. Numerical simulations show that our protocol has its superiority by comparing with existing protocols under a generic noise model and show the feasibility of building a large-scale quantum communication network with our scheme. We believe our work represents a crucial step towards the construction of a fully-connected quantum network.
{"title":"Asynchronous quantum repeater using multiple quantum memory.","authors":"Chen-Long Li, Hua-Lei Yin, Zeng-Bing Chen","doi":"10.1088/1361-6633/ad91de","DOIUrl":"10.1088/1361-6633/ad91de","url":null,"abstract":"<p><p>A full-fledged quantum network relies on the formation of entangled links between remote location with the help of quantum repeaters. The famous Duan-Lukin-Cirac-Zoller quantum repeater protocol is based on long distance single-photon interference (SPI), which not only requires high phase stability but also cannot generate maximally entangled state. Here, we propose a quantum repeater protocol using the idea of post-matching, which retains the same efficiency as the SPI protocol, reduces the phase-stability requirement and can generate maximally entangled state in principle. We also outline an implementation of our scheme based on the Kerr nonlinear resonator. Numerical simulations show that our protocol has its superiority by comparing with existing protocols under a generic noise model and show the feasibility of building a large-scale quantum communication network with our scheme. We believe our work represents a crucial step towards the construction of a fully-connected quantum network.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1088/1361-6633/ad91df
Jacopo Baglioni, Alessandro Martinelli, Peihao Sun, Francesco Dallari, Fabian Westermeier, Michael Sprung, Gerhard Grübel, Giulio Monaco
The yield point marks the beginning of plastic deformation for a solid subjected to sufficient stress, but it can alternatively be reached by x-ray irradiation. We characterize this latter route in terms of thermodynamics, structure and dynamics for a series of GeSe3chalcogenide glasses with different amount of disorder. We show that a sufficiently long irradiation at room temperature results in a stationary and unique yielding state, independent of the initial state of the glass. The glass at yield is more disordered and has higher enthalpy than the annealed glass, but its properties are not extreme: they rather match those of a glass instantaneously quenched from a temperature 20% higher than the glass-transition temperature. This is a well-known, key temperature for glass-forming liquids which marks the location of a dynamical transition, and it is remarkable that different glasses upon irradiation head all there.
屈服点标志着受到足够应力的固体开始发生塑性变形,但也可以通过 X 射线辐照达到屈服点。我们从热力学、结构和动力学的角度,对一系列具有不同无序度的 GeSe3 Chalcogenide 玻璃进行了描述。我们的研究表明,在室温下进行足够长的辐照,会产生与玻璃初始状态无关的稳定而独特的屈服状态。屈服状态下的玻璃比退火状态下的玻璃更无序、焓值更高,但其性质并不极端:它们与从比玻璃转变温度高 20% 的温度瞬时淬火的玻璃相匹配。这是一个众所周知的玻璃形成液体的关键温度
,它标志着一个动力学转变的位置,不同的玻璃在经过
辐照后都会达到这个温度,这一点非常了不起。
{"title":"Uniqueness of glasses prepared via x-ray induced yielding.","authors":"Jacopo Baglioni, Alessandro Martinelli, Peihao Sun, Francesco Dallari, Fabian Westermeier, Michael Sprung, Gerhard Grübel, Giulio Monaco","doi":"10.1088/1361-6633/ad91df","DOIUrl":"10.1088/1361-6633/ad91df","url":null,"abstract":"<p><p>The yield point marks the beginning of plastic deformation for a solid subjected to sufficient stress, but it can alternatively be reached by x-ray irradiation. We characterize this latter route in terms of thermodynamics, structure and dynamics for a series of GeSe<sub>3</sub>chalcogenide glasses with different amount of disorder. We show that a sufficiently long irradiation at room temperature results in a stationary and unique yielding state, independent of the initial state of the glass. The glass at yield is more disordered and has higher enthalpy than the annealed glass, but its properties are not extreme: they rather match those of a glass instantaneously quenched from a temperature 20% higher than the glass-transition temperature. This is a well-known, key temperature for glass-forming liquids which marks the location of a dynamical transition, and it is remarkable that different glasses upon irradiation head all there.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1088/1361-6633/ad92a7
V Fernandez-Gonzalez, M G Clerc, G González-Cortés, P I Hidalgo, J Vergara
Self-organizing triangular lattices of topological vortices have been observed in type-II superconductors, Bose-Einstein condensates, and chiral magnets under external forcing. Liquid crystals exhibit vortex self-organization in dissipative media. In this study, we experimentally investigate the formation of vortex clusters, analogous to Abrikosov lattices, in temperature-driven chiral liquid crystal droplets. Based on a Ginzburg-Landau-like equation, we derive the interaction laws underlying the formation of these Abrikosov clusters of chiral domains. The origin of these is elucidated due to the competition between the repulsive interaction and the spatial effect of the confinement within the droplet. Our results advance the theoretical understanding of localized vortex self-organization in liquid crystals and open up possibilities for controlling the clustering of these topological defects.
在 II 型超导体、玻色-爱因斯坦凝聚体和手性磁体中观察到了拓扑涡旋的自组织三角形晶格。液晶在耗散介质中表现出涡旋自组织。在本研究中,我们通过实验研究了在温度驱动的手性液晶液滴中形成类似于阿布里科索夫晶格的涡旋簇。基于类似金兹堡-朗道方程,我们推导出了这些手性域阿布里科索夫簇形成的相互作用规律。由于斥力相互作用与液滴内部约束的空间效应之间存在竞争,我们阐明了这些簇的起源。我们的研究结果推进了对液晶中局部涡旋自组织的理论理解,并为控制这些拓扑缺陷的聚集提供了可能性。
{"title":"Abrikosov clusters in chiral liquid crystal droplets.","authors":"V Fernandez-Gonzalez, M G Clerc, G González-Cortés, P I Hidalgo, J Vergara","doi":"10.1088/1361-6633/ad92a7","DOIUrl":"10.1088/1361-6633/ad92a7","url":null,"abstract":"<p><p>Self-organizing triangular lattices of topological vortices have been observed in type-II superconductors, Bose-Einstein condensates, and chiral magnets under external forcing. Liquid crystals exhibit vortex self-organization in dissipative media. In this study, we experimentally investigate the formation of vortex clusters, analogous to Abrikosov lattices, in temperature-driven chiral liquid crystal droplets. Based on a Ginzburg-Landau-like equation, we derive the interaction laws underlying the formation of these Abrikosov clusters of chiral domains. The origin of these is elucidated due to the competition between the repulsive interaction and the spatial effect of the confinement within the droplet. Our results advance the theoretical understanding of localized vortex self-organization in liquid crystals and open up possibilities for controlling the clustering of these topological defects.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1088/1361-6633/acc7b7
Lei Tan, Volker Heine, Gong Li, Martin T Dove
We review a set of ideas concerning the flexibility of network materials, broadly defined as structures in which atoms form small polyhedral units that are connected at corners. One clear example is represented by the family of silica polymorphs, with structures composed of corner-linked SiO4tetrahedra. The rigid unit mode (RUM) is defined as any normal mode in which the structural polyhedra can translate and/or rotate without distortion, and since forces associated with changing the size and shape of the polyhedra are much stronger than those associated with rotations of two polyhedra around a shared vertex, the RUMs might be expected to have low frequencies compared to all other phonon modes. In this paper we discuss the flexibility of network structures, and how RUMs can arise in such structures, both in principle and in a number of specific examples of real systems. We also discuss applications of the RUM model, particularly for our understanding of phenomena such as displacive phase transitions and negative thermal expansion in network materials.
我们回顾了有关网络材料灵活性的一系列观点,网络材料的广义定义是由原子组成的小多面体单元在角上连接的结构。一个明显的例子是二氧化硅多晶体家族,其结构由角连接的 SiO4 四面体组成。刚性单元模式(RUM)被定义为结构多面体可以在不变形的情况下平移和/或旋转的任何法向模式,由于与改变多面体的大小和形状相关的力要比两个多面体围绕一个共享顶点旋转相关的力大得多,因此与所有其他声子模式相比,RUM 的频率可能较低。在本文中,我们将讨论网络结构的灵活性,以及 RUM 如何在这种结构中产生,包括原理和实际系统中的一些具体实例。我们还讨论了 RUM 模型的应用,尤其是在理解网络材料中的位移相变和负热膨胀等现象方面。
{"title":"The rigid unit mode model: review of ideas and applications.","authors":"Lei Tan, Volker Heine, Gong Li, Martin T Dove","doi":"10.1088/1361-6633/acc7b7","DOIUrl":"10.1088/1361-6633/acc7b7","url":null,"abstract":"<p><p>We review a set of ideas concerning the flexibility of network materials, broadly defined as structures in which atoms form small polyhedral units that are connected at corners. One clear example is represented by the family of silica polymorphs, with structures composed of corner-linked SiO<sub>4</sub>tetrahedra. The rigid unit mode (RUM) is defined as any normal mode in which the structural polyhedra can translate and/or rotate without distortion, and since forces associated with changing the size and shape of the polyhedra are much stronger than those associated with rotations of two polyhedra around a shared vertex, the RUMs might be expected to have low frequencies compared to all other phonon modes. In this paper we discuss the flexibility of network structures, and how RUMs can arise in such structures, both in principle and in a number of specific examples of real systems. We also discuss applications of the RUM model, particularly for our understanding of phenomena such as displacive phase transitions and negative thermal expansion in network materials.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9547110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}