Due to the instability and irregular of national electric power suppled to residence sector in Iraq for long term history, attracted researchers interest to strive for solutions, and associated challenge dry and very hot summer season in Iraq on air conditioning application, A test room full size prototype was constructed in Baghdad, its size 33.5m3, the room is built from very good thermal insulation Autoclave Aerated Concrete AAC with white panted Concrete roof, test room is exposed to solar radiation during entire day, thermal energy shifted by time using thermal energy storage TES containing PCM, PCM is soft paraffin its phase inversion temperature (29 to 27)°C, thermal energy was shifted from night timing by cooling down TES (Discharging PCM) to peak time 11:00 am to 02:00 pm, the testes were carried out over entire summer season April to October, the results showed thermal energy can shift to by any quantity and time based on mass of PCM and enthalpy, electrical energy saved at peak time 52.5% of total power spent over season 2.7KW/day, Only 27% of electric energy utilized to discharge PCM during night, about 43% of heat lose is sourced from exposed roof, melting and solidification of PCM temperature must be within indoor comfort range 23 to 28 ˚C to release or absorb the latent heat 41kJ/kg.
{"title":"Thermal Energy Shifting Using Thermal Energy Storage with Solar Assisted System for Space Cooling Application","authors":"A. Hasan, N. A. Jassim","doi":"10.29194/njes.23030216","DOIUrl":"https://doi.org/10.29194/njes.23030216","url":null,"abstract":"Due to the instability and irregular of national electric power suppled to residence sector in Iraq for long term history, attracted researchers interest to strive for solutions, and associated challenge dry and very hot summer season in Iraq on air conditioning application, A test room full size prototype was constructed in Baghdad, its size 33.5m3, the room is built from very good thermal insulation Autoclave Aerated Concrete AAC with white panted Concrete roof, test room is exposed to solar radiation during entire day, thermal energy shifted by time using thermal energy storage TES containing PCM, PCM is soft paraffin its phase inversion temperature (29 to 27)°C, thermal energy was shifted from night timing by cooling down TES (Discharging PCM) to peak time 11:00 am to 02:00 pm, the testes were carried out over entire summer season April to October, the results showed thermal energy can shift to by any quantity and time based on mass of PCM and enthalpy, electrical energy saved at peak time 52.5% of total power spent over season 2.7KW/day, Only 27% of electric energy utilized to discharge PCM during night, about 43% of heat lose is sourced from exposed roof, melting and solidification of PCM temperature must be within indoor comfort range 23 to 28 ˚C to release or absorb the latent heat 41kJ/kg.","PeriodicalId":7470,"journal":{"name":"Al-Nahrain Journal for Engineering Sciences","volume":"18 1","pages":"216-224"},"PeriodicalIF":0.0,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84954783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recently, considering polymer composite in manufacturing of mechanical parts can be caused a fatigue failure due to the very long time of exposure to cyclic loading and may at environmental temperatures higher than their glass transition temperature; therefore, in this paper, a comprehensive investigation for bending fatigue behavior at room and elevated temperatures equal to 60 °C, 70°C, and 80 °C will be done. Rotating bending test machine was manufactured for this purpose supplied with a connected furnace to perform fatigue tests at elevated temperatures. The obtained results appeared that the increase in applied stress and temperature caused a clear reduction in fatigue life; also the addition of carbon nanotubes enhanced the fatigue life at different temperatures by 183%, 205%, 218%, and 240%, respectively while the addition of short carbon fibers improved fatigue life by 324%, 351%, 387%, and 415%, respectively. As well as, Polyamide 6,6/carbon fiber composite appeared fatigue limit at temperatures equal to 20°C and 60°C and stresses approximately equal to 55 MPa and 38 MPa respectively.
{"title":"Effect of Elevated Temperature on Bending Fatigue Behavior for Neat and Reinforced Polyamide 6,6","authors":"O. S. Abdullah, S. S. Hassan, A. Al-Khazraji","doi":"10.29194/njes.23030232","DOIUrl":"https://doi.org/10.29194/njes.23030232","url":null,"abstract":"Recently, considering polymer composite in manufacturing of mechanical parts can be caused a fatigue failure due to the very long time of exposure to cyclic loading and may at environmental temperatures higher than their glass transition temperature; therefore, in this paper, a comprehensive investigation for bending fatigue behavior at room and elevated temperatures equal to 60 °C, 70°C, and 80 °C will be done. Rotating bending test machine was manufactured for this purpose supplied with a connected furnace to perform fatigue tests at elevated temperatures. The obtained results appeared that the increase in applied stress and temperature caused a clear reduction in fatigue life; also the addition of carbon nanotubes enhanced the fatigue life at different temperatures by 183%, 205%, 218%, and 240%, respectively while the addition of short carbon fibers improved fatigue life by 324%, 351%, 387%, and 415%, respectively. As well as, Polyamide 6,6/carbon fiber composite appeared fatigue limit at temperatures equal to 20°C and 60°C and stresses approximately equal to 55 MPa and 38 MPa respectively.","PeriodicalId":7470,"journal":{"name":"Al-Nahrain Journal for Engineering Sciences","volume":"44 1","pages":"232-237"},"PeriodicalIF":0.0,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73824133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bio-cement built on microbial induced carbonate precipitation MICP, be able to consolidate the loose grains and can applied for soil reinforcement. In this study, the performing of an ureolytic Sporosarcina Pasteurii for sand stabilization was estimated. The S. Pasteurii Could effectively consolidates sand particles through urea hydrolysis and the successive production of calcite. The bio improved sands had relative great compressive strength after 60 days exposure to bacterial cells injections cycles. The compressive strength of bio stabilized sands was reliant on the utilized cell concentrations and density of urea and CaCl2. High bacteria cell masses decreased the compressive strength. The optimal density of cell, was OD600 0.5, when cost and performance were taken into account. The study shows that bio cementation of sand built on microbial induced carbonate precipitation (MICP) has ability for the reduction of sand permeability through pore clogging with precipitated carbonate.
{"title":"Bio-Cementation of Sandy Soil through Bacterial Processing to Precipitate Carbonate","authors":"Layth K. Shannoon, M. A. Ibrahim","doi":"10.29194/njes.23030225","DOIUrl":"https://doi.org/10.29194/njes.23030225","url":null,"abstract":"Bio-cement built on microbial induced carbonate precipitation MICP, be able to consolidate the loose grains and can applied for soil reinforcement. In this study, the performing of an ureolytic Sporosarcina Pasteurii for sand stabilization was estimated. The S. Pasteurii Could effectively consolidates sand particles through urea hydrolysis and the successive production of calcite. The bio improved sands had relative great compressive strength after 60 days exposure to bacterial cells injections cycles. The compressive strength of bio stabilized sands was reliant on the utilized cell concentrations and density of urea and CaCl2. High bacteria cell masses decreased the compressive strength. The optimal density of cell, was OD600 0.5, when cost and performance were taken into account. The study shows that bio cementation of sand built on microbial induced carbonate precipitation (MICP) has ability for the reduction of sand permeability through pore clogging with precipitated carbonate.","PeriodicalId":7470,"journal":{"name":"Al-Nahrain Journal for Engineering Sciences","volume":"56 1","pages":"225-231"},"PeriodicalIF":0.0,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85491423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ayad Naeem Sadoon, A. Kadhum, Amjad Barzan Abdulghafour
The transportation cost problem of solid waste presents the biggest part of the budget allocated by municipalities for SWM. So, there is no comprehensive plan to address transport routes optimization problems in SWM that including the transfer of solid waste from transfer stations to final landfill sites. Therefore, the aim of the study finding a scientific method to solve the transportation problem of solid waste transport suitable Baghdad city that tries to find feasible solutions that ensure reducing total transport costs and leads to an effective solid waste management system. In this research, a new methodology has been developed to select the optimal transport routs of SWM in Baghdad city which involves determining the best-supposed scenario. the proposed methodology includes integration of Global Positioning System (GPS) technologies with Network Analysis model (NA). Therefore, this work provides an advanced framework of decision-makers for analysis and simulation of the optimal transport routs problem related to SWM. Applying these modeling tools to select the scenario that can provide economic benefits by minimizing travel time, travel distance and reduction of total transportation costs. The Results of work implementation show that all solutions that include current state S1 and suggested scenarios have been evaluated. The scenarios generated include (S2, S3) by applying the proposed technique for analyzed and identified the optimal routes. The solutions of scenario S2, specified with two landfill sites while scenarios S3 specified with four landfill sites. Finally, this work shows the Scenario S3 is the best scenario of the solution, that include applied GPS and Network Analysis for four landfill sites.
{"title":"Development of Solid Waste Management Plan to Solve the Transport Routes Problem in Baghdad City","authors":"Ayad Naeem Sadoon, A. Kadhum, Amjad Barzan Abdulghafour","doi":"10.29194/njes.23020159","DOIUrl":"https://doi.org/10.29194/njes.23020159","url":null,"abstract":"The transportation cost problem of solid waste presents the biggest part of the budget allocated by municipalities for SWM. So, there is no comprehensive plan to address transport routes optimization problems in SWM that including the transfer of solid waste from transfer stations to final landfill sites. Therefore, the aim of the study finding a scientific method to solve the transportation problem of solid waste transport suitable Baghdad city that tries to find feasible solutions that ensure reducing total transport costs and leads to an effective solid waste management system. In this research, a new methodology has been developed to select the optimal transport routs of SWM in Baghdad city which involves determining the best-supposed scenario. the proposed methodology includes integration of Global Positioning System (GPS) technologies with Network Analysis model (NA). Therefore, this work provides an advanced framework of decision-makers for analysis and simulation of the optimal transport routs problem related to SWM. Applying these modeling tools to select the scenario that can provide economic benefits by minimizing travel time, travel distance and reduction of total transportation costs. The Results of work implementation show that all solutions that include current state S1 and suggested scenarios have been evaluated. The scenarios generated include (S2, S3) by applying the proposed technique for analyzed and identified the optimal routes. The solutions of scenario S2, specified with two landfill sites while scenarios S3 specified with four landfill sites. Finally, this work shows the Scenario S3 is the best scenario of the solution, that include applied GPS and Network Analysis for four landfill sites.","PeriodicalId":7470,"journal":{"name":"Al-Nahrain Journal for Engineering Sciences","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76954977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Experiments were conducted to study the effect of quenching medium carbon steel in water-based MWCNTs nanofluids at 0.05 % wt. concentration quenchant, a large cylindrical sample with 46 mm diameter and 40 mm length made from medium carbon steel used with three K-type thermocouples with a diameter of 1.5 mm inserted in three locations for sample (center of the sample, mid-point between center and surface and 1 mm from the surface). A time-temperature reading data system was used to read temperature history during cooling stage.The same experiments were simulated using ANSYS Workbench with Thermal Transient Version 19, the cooling curves at three locations for the cylindrical steel sample calculated during quenching in MWCNTs nanofluids. Quench factor analysis was used to predict the hardness results from the calculated and measured cooling curves, and these results compared with the hardness test results conducted in the significant sample from the center to the surface. The results show excellent compatibility when compared between the hardness results from cooling curves, and it also shows a good agreement with the results of the hardness test, especially at the sample surface.
实验研究了在0.05% wt浓度的水基MWCNTs纳米流体中淬火中碳钢的效果,采用直径46 mm、长40 mm的中碳钢大圆柱形试样,并在试样的三个位置(试样中心、中心与表面之间的中点和距离表面1 mm)插入三个直径为1.5 mm的k型热电偶。采用时间-温度读数数据系统读取冷却阶段的温度历史。利用ANSYS Workbench与Thermal Transient Version 19进行了相同的实验模拟,计算了圆柱钢试样在MWCNTs纳米流体中淬火时三个位置的冷却曲线。采用淬火因子分析方法对计算和测量的冷却曲线进行了硬度预测,并与从中心到表面的显著样品的硬度测试结果进行了比较。结果表明,该方法与冷却曲线测得的硬度值具有较好的相容性,与硬度测试结果吻合较好,特别是在试样表面。
{"title":"Simulation and Experimental Investigation Quenching Behavior of Medium Carbon Steel in Water Based Multi Wall Carbon Nanotube Nanofluids","authors":"A. Eissa, H. S. Hasan","doi":"10.29194/njes.23020137","DOIUrl":"https://doi.org/10.29194/njes.23020137","url":null,"abstract":"Experiments were conducted to study the effect of quenching medium carbon steel in water-based MWCNTs nanofluids at 0.05 % wt. concentration quenchant, a large cylindrical sample with 46 mm diameter and 40 mm length made from medium carbon steel used with three K-type thermocouples with a diameter of 1.5 mm inserted in three locations for sample (center of the sample, mid-point between center and surface and 1 mm from the surface). A time-temperature reading data system was used to read temperature history during cooling stage.The same experiments were simulated using ANSYS Workbench with Thermal Transient Version 19, the cooling curves at three locations for the cylindrical steel sample calculated during quenching in MWCNTs nanofluids. Quench factor analysis was used to predict the hardness results from the calculated and measured cooling curves, and these results compared with the hardness test results conducted in the significant sample from the center to the surface. The results show excellent compatibility when compared between the hardness results from cooling curves, and it also shows a good agreement with the results of the hardness test, especially at the sample surface.","PeriodicalId":7470,"journal":{"name":"Al-Nahrain Journal for Engineering Sciences","volume":"20 1","pages":"137-143"},"PeriodicalIF":0.0,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73980749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, the H-infinity Sliding Mode Control (HSMC) is designed to produce a new dynamic output feedback controller for trajectory tracking of the nonlinear human swing leg system. The human swing leg system represents the support of human leg or the humanoid robot leg which is usually modeled as a double pendulum. The thigh and shank of a human leg is represented by two pendulum links and the hip joint will connect the upper body to the thigh and the knee joint will connect the thigh to the shank. The external torques (servo motors) are applied at the hip and knee joints to move the muscles of thigh and shank. The results show that the HSMC can robustly stabilize the system and achieve a desirable time response specification better than if only H-infinity or SMC is used. This controller achieves the following specifications: sec, for hip joint and sec, for knee joint.
{"title":"H-infinity Sliding Mode Controller Design for a Human Swing Leg System","authors":"H. Ali, Azhar J. Abdulridha","doi":"10.29194/njes.23020117","DOIUrl":"https://doi.org/10.29194/njes.23020117","url":null,"abstract":"In this paper, the H-infinity Sliding Mode Control (HSMC) is designed to produce a new dynamic output feedback controller for trajectory tracking of the nonlinear human swing leg system. The human swing leg system represents the support of human leg or the humanoid robot leg which is usually modeled as a double pendulum. The thigh and shank of a human leg is represented by two pendulum links and the hip joint will connect the upper body to the thigh and the knee joint will connect the thigh to the shank. The external torques (servo motors) are applied at the hip and knee joints to move the muscles of thigh and shank. The results show that the HSMC can robustly stabilize the system and achieve a desirable time response specification better than if only H-infinity or SMC is used. This controller achieves the following specifications: sec, for hip joint and sec, for knee joint.","PeriodicalId":7470,"journal":{"name":"Al-Nahrain Journal for Engineering Sciences","volume":"10 1","pages":"117-126"},"PeriodicalIF":0.0,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77871382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Computed tomography (CT) imaging is an important diagnostic tool. CT imaging facilitates the internal rendering of a scanned object by measuring the attenuation of beams of X-ray radiation. CT employs a mathematical technique of image reconstruction; those techniques are classified as; analytical and iterative. The iterative reconstruction (IR) methods have been proven to be superior over the analytical methods, but due to their prolonged reconstruction time, those methods are excluded from routine use in clinical applications. In this paper the reconstruction time of an IR algorithm is minimized through the employment of an adaptive region growing segmentation method that focuses the image reconstruction process on a specified region, thus ignoring unwanted pixels that increase the computation time. This method is tested on the iterative algebraic reconstruction technique (ART) algorithm. Some phantom images are used in this paper to demonstrate the effects of the segmentation process. The simulation results are executed using MATLAB (version R2018b) programming language, and a computer system with the following specifications: CPU core i7 (2.40 GHz) for processing. Simulation results indicate that this method will reduce the reconstruction time of the iterative algorithms, and will enhance the quality of the reconstructed image.
{"title":"Increasing the Performance of the Iterative Computed Tomography Image Reconstruction Algorithms","authors":"Shimaa Abdulsalam Khazal, Mohammed H. Ali","doi":"10.29194/njes.23020194","DOIUrl":"https://doi.org/10.29194/njes.23020194","url":null,"abstract":"Computed tomography (CT) imaging is an important diagnostic tool. CT imaging facilitates the internal rendering of a scanned object by measuring the attenuation of beams of X-ray radiation. CT employs a mathematical technique of image reconstruction; those techniques are classified as; analytical and iterative. The iterative reconstruction (IR) methods have been proven to be superior over the analytical methods, but due to their prolonged reconstruction time, those methods are excluded from routine use in clinical applications. In this paper the reconstruction time of an IR algorithm is minimized through the employment of an adaptive region growing segmentation method that focuses the image reconstruction process on a specified region, thus ignoring unwanted pixels that increase the computation time. This method is tested on the iterative algebraic reconstruction technique (ART) algorithm. Some phantom images are used in this paper to demonstrate the effects of the segmentation process. The simulation results are executed using MATLAB (version R2018b) programming language, and a computer system with the following specifications: CPU core i7 (2.40 GHz) for processing. Simulation results indicate that this method will reduce the reconstruction time of the iterative algorithms, and will enhance the quality of the reconstructed image.","PeriodicalId":7470,"journal":{"name":"Al-Nahrain Journal for Engineering Sciences","volume":"1 1","pages":"194-203"},"PeriodicalIF":0.0,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78860324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper focused on evaluating the effect of aggregate gradation and polymer modification on indirect tensile strength (ITS) and the static stiffness for hot asphalt mixtures. In particular, data from ITS tests have been processed to obtain stiffness measurements through the application of Hondros theory. The results showed that fine mixtures had a better tensile strength by 26.3% than the coarse mixtures. The effect of compaction also was examined, the results showed that samples compacted with the Superpave gyratory compactor (SGC) had an enhancement in ITS by 36.58 and 23.1% in comparison with Marshall and roller compactor respectively. Polymer modifiers were used to estimate their effect on tensile strength, adding 4, 6, and 8% of Styrene-Butadiene-Styrene (SBS), which can rise the ITS by 3.2,6.14 and 13.3% of the non-modified asphalt mixture. Furthermore, using 4, 6, and 8 percent of SBS could increase static stiffness by 53.9, 209.6, and 302.4% respectively for roller compacted fine mixes and 58, 220, and 379.3% for SGC compacted mixes. Furthermore, SBS raised the stiffness modulus by 52.3, 188, and 295% for Marshall compacted mixes. Using hybrid modifier can improve the stiffness of the asphalt mixture. However, The results indicate that using 1, 2 and 3% polyvinyl chloride (PVC) can magnify the stiffness of mixtures by 41.2, 199.8% and 262.6 for roller compacted mixtures and 133.4, 212.1 and 354% for SGC compacted mixtures, whereas there is a stringent increasing by 133.4, 189.2 and 354% for Marshall compacted mixes. Otherwise, polymer-modification can decrease the fracturing index for coarse and fine mixtures.
{"title":"Effect of Hybrid Modification and Type of Compaction on the Cracking Properties of Asphalt Concrete","authors":"Mohammed A. Abed, A. Abed","doi":"10.29194/njes.23020106","DOIUrl":"https://doi.org/10.29194/njes.23020106","url":null,"abstract":"This paper focused on evaluating the effect of aggregate gradation and polymer modification on indirect tensile strength (ITS) and the static stiffness for hot asphalt mixtures. In particular, data from ITS tests have been processed to obtain stiffness measurements through the application of Hondros theory. The results showed that fine mixtures had a better tensile strength by 26.3% than the coarse mixtures. The effect of compaction also was examined, the results showed that samples compacted with the Superpave gyratory compactor (SGC) had an enhancement in ITS by 36.58 and 23.1% in comparison with Marshall and roller compactor respectively. Polymer modifiers were used to estimate their effect on tensile strength, adding 4, 6, and 8% of Styrene-Butadiene-Styrene (SBS), which can rise the ITS by 3.2,6.14 and 13.3% of the non-modified asphalt mixture. Furthermore, using 4, 6, and 8 percent of SBS could increase static stiffness by 53.9, 209.6, and 302.4% respectively for roller compacted fine mixes and 58, 220, and 379.3% for SGC compacted mixes. Furthermore, SBS raised the stiffness modulus by 52.3, 188, and 295% for Marshall compacted mixes. Using hybrid modifier can improve the stiffness of the asphalt mixture. However, The results indicate that using 1, 2 and 3% polyvinyl chloride (PVC) can magnify the stiffness of mixtures by 41.2, 199.8% and 262.6 for roller compacted mixtures and 133.4, 212.1 and 354% for SGC compacted mixtures, whereas there is a stringent increasing by 133.4, 189.2 and 354% for Marshall compacted mixes. Otherwise, polymer-modification can decrease the fracturing index for coarse and fine mixtures.","PeriodicalId":7470,"journal":{"name":"Al-Nahrain Journal for Engineering Sciences","volume":"21 1","pages":"106-116"},"PeriodicalIF":0.0,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87791809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this research, we investigate the nonlinear vibration of functionally graded carbon nanotubes (FG-CNTs) for simply supported sandwich cylindrical panels. The sandwich consisting of three layers formed of (FG-CNTs) and isotropic material as (CNT, ALMINUME, CNT). Mechanical properties of the sandwich media are acquired according to a refined rule of blend approach. The governing equations were derived using a first-order deformation theory (FOSDT). Four kinds of carbon nanotubes of sandwich cylindrical panels were analyzed. The volume fraction of CNTs is varied. The properties of nonlinear responses and free vibration are studied. The numerical approach employs the fourth-order Runge-Kutta and Galerkine procedure. Which conducted for the dynamic analysis of the panels to present the natural frequencies and non-linear dynamic response expression. The results show that; the natural frequencies and the nonlinear vibration amplitude decrease with the volume fraction and thickness ratio increase. The nonlinear vibration amplitude response increases when increasing the excitation force. The initial imperfection and the elastic foundation have a minor impact on the nonlinear vibration response of the panel. The Pasternak Foundation has a larger impact than the Winkler foundation. The structure formed of FG-CNT present an excellent choice for high-performance of engineering applications.
{"title":"Nonlinear Vibration Analysis of Functionally Graded Carbon Nanotubes Sandwich Cylindrical Panels","authors":"Senaa S. Hafidh, Hama M. Hasan, F. Mohammed","doi":"10.29194/njes.23020127","DOIUrl":"https://doi.org/10.29194/njes.23020127","url":null,"abstract":"In this research, we investigate the nonlinear vibration of functionally graded carbon nanotubes (FG-CNTs) for simply supported sandwich cylindrical panels. The sandwich consisting of three layers formed of (FG-CNTs) and isotropic material as (CNT, ALMINUME, CNT). Mechanical properties of the sandwich media are acquired according to a refined rule of blend approach. The governing equations were derived using a first-order deformation theory (FOSDT). Four kinds of carbon nanotubes of sandwich cylindrical panels were analyzed. The volume fraction of CNTs is varied. The properties of nonlinear responses and free vibration are studied. The numerical approach employs the fourth-order Runge-Kutta and Galerkine procedure. Which conducted for the dynamic analysis of the panels to present the natural frequencies and non-linear dynamic response expression. The results show that; the natural frequencies and the nonlinear vibration amplitude decrease with the volume fraction and thickness ratio increase. The nonlinear vibration amplitude response increases when increasing the excitation force. The initial imperfection and the elastic foundation have a minor impact on the nonlinear vibration response of the panel. The Pasternak Foundation has a larger impact than the Winkler foundation. The structure formed of FG-CNT present an excellent choice for high-performance of engineering applications.","PeriodicalId":7470,"journal":{"name":"Al-Nahrain Journal for Engineering Sciences","volume":"42 1","pages":"127-136"},"PeriodicalIF":0.0,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87192872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a dual wide-band band pass filter (DWB-BPF) by using two parallel, symmetrical micro-strip lines loaded by a centered resonator, consisting of a T- and a triangle-shaped geometry, attached at the lower and upper ends, respectively. The filter reveals good performance and both the passbands can be independently controlled by adjusting specific parts of the filter. The proposed BPF is simulated by using CST microwave studio package and the simulated result is verified experimentally with good agreement between the two results. The fabricated prototype BPF demonstrates two passbands located at 2.3 GHz and 6.35 GHz center frequencies with 39% and 23.6% of 3-dB fractional bandwidth (FBW), respectively and a good insertion and return losses. The designed BPF can be targeted for wireless local area network (WLAN), WIFI and satellite communication systems.
{"title":"Design of A Dual-Wide Band BPF Utilizing Parallel Coupled Microstrip Lines and A Centered Arrow-Shaped Resonator","authors":"Ahmed Lateef Khudaraham, D. Naji","doi":"10.29194/njes.23020153","DOIUrl":"https://doi.org/10.29194/njes.23020153","url":null,"abstract":"This paper presents a dual wide-band band pass filter (DWB-BPF) by using two parallel, symmetrical micro-strip lines loaded by a centered resonator, consisting of a T- and a triangle-shaped geometry, attached at the lower and upper ends, respectively. The filter reveals good performance and both the passbands can be independently controlled by adjusting specific parts of the filter. The proposed BPF is simulated by using CST microwave studio package and the simulated result is verified experimentally with good agreement between the two results. The fabricated prototype BPF demonstrates two passbands located at 2.3 GHz and 6.35 GHz center frequencies with 39% and 23.6% of 3-dB fractional bandwidth (FBW), respectively and a good insertion and return losses. The designed BPF can be targeted for wireless local area network (WLAN), WIFI and satellite communication systems.","PeriodicalId":7470,"journal":{"name":"Al-Nahrain Journal for Engineering Sciences","volume":"28 1","pages":"153-158"},"PeriodicalIF":0.0,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76467856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}