首页 > 最新文献

Stress biology最新文献

英文 中文
Transcriptomic analysis of wheat reveals possible resistance mechanism mediated by Yr10 to stripe rust. 小麦转录组分析揭示了Yr10介导的抗条锈病机制。
Pub Date : 2023-10-23 DOI: 10.1007/s44154-023-00115-z
Zhongyi Wu, Gaohua Zhang, Ran Zhao, Qi Gao, Jinchen Zhao, Xiaoxu Zhu, Fangyan Wang, Zhensheng Kang, Xiaojing Wang

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a catastrophic disease that threatens global wheat yield. Yr10 is a race-specific all-stage disease resistance gene in wheat. However, the resistance mechanism of Yr10 is poorly characterized. Therefore, to elucidate the potential molecular mechanism mediated by Yr10, transcriptomic sequencing was performed at 0, 18, and 48 h post-inoculation (hpi) of compatible wheat Avocet S (AvS) and incompatible near-isogenic line (NIL) AvS + Yr10 inoculated with Pst race CYR32. Respectively, 227, 208, and 4050 differentially expressed genes (DEGs) were identified at 0, 18, and 48 hpi between incompatible and compatible interaction. The response of Yr10 to stripe rust involved various processes and activities, as indicated by the results of Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Specifically, the response included photosynthesis, defense response to fungus, metabolic processes related to salicylic acid (SA) and jasmonic acid (JA), and activities related to reactive oxygen species (ROS). Ten candidate genes were selected for qRT-PCR verification and the results showed that the transcriptomic data was reliable. Through the functional analysis of candidate genes by the virus-induced gene silencing (VIGS) system, it was found that the gene TaHPPD (4-hydroxyphenylpyruvate dioxygenase) negatively regulated the resistance of wheat to stripe rust by affecting SA signaling, pathogenesis-related (PR) gene expression, and ROS clearance. Our study provides insight into Yr10-mediated resistance in wheat.

小麦条锈病是一种严重威胁全球小麦产量的灾难性病害。Yr10是小麦的一个小种特异性全阶段抗病基因。然而,Yr10的电阻机制却没有得到很好的表征。因此,为了阐明Yr10介导的潜在分子机制,在相容小麦Avocet S(AvS)和不相容近等基因系AvS接种后0、18和48小时进行了转录组测序 + Yr10接种Pst小种CYR32。在不相容和相容相互作用之间,分别在0、18和48hpi处鉴定出227、208和4050个差异表达基因(DEG)。基因本体论(GO)富集分析和京都基因与基因组百科全书(KEGG)通路分析结果表明,Yr10对条锈病的反应涉及多种过程和活性。具体而言,反应包括光合作用、对真菌的防御反应、与水杨酸(SA)和茉莉酸(JA)相关的代谢过程,以及与活性氧(ROS)有关的活性。选择10个候选基因进行qRT-PCR验证,结果表明转录组学数据是可靠的。通过病毒诱导基因沉默(VIGS)系统对候选基因的功能分析,发现基因TaHPPD(4-羟基苯基丙酮酸双加氧酶)通过影响SA信号传导、发病机制相关(PR)基因表达和ROS清除,对小麦抗条锈病负调控。我们的研究提供了对Yr10介导的小麦抗性的深入了解。
{"title":"Transcriptomic analysis of wheat reveals possible resistance mechanism mediated by Yr10 to stripe rust.","authors":"Zhongyi Wu, Gaohua Zhang, Ran Zhao, Qi Gao, Jinchen Zhao, Xiaoxu Zhu, Fangyan Wang, Zhensheng Kang, Xiaojing Wang","doi":"10.1007/s44154-023-00115-z","DOIUrl":"10.1007/s44154-023-00115-z","url":null,"abstract":"<p><p>Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a catastrophic disease that threatens global wheat yield. Yr10 is a race-specific all-stage disease resistance gene in wheat. However, the resistance mechanism of Yr10 is poorly characterized. Therefore, to elucidate the potential molecular mechanism mediated by Yr10, transcriptomic sequencing was performed at 0, 18, and 48 h post-inoculation (hpi) of compatible wheat Avocet S (AvS) and incompatible near-isogenic line (NIL) AvS + Yr10 inoculated with Pst race CYR32. Respectively, 227, 208, and 4050 differentially expressed genes (DEGs) were identified at 0, 18, and 48 hpi between incompatible and compatible interaction. The response of Yr10 to stripe rust involved various processes and activities, as indicated by the results of Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Specifically, the response included photosynthesis, defense response to fungus, metabolic processes related to salicylic acid (SA) and jasmonic acid (JA), and activities related to reactive oxygen species (ROS). Ten candidate genes were selected for qRT-PCR verification and the results showed that the transcriptomic data was reliable. Through the functional analysis of candidate genes by the virus-induced gene silencing (VIGS) system, it was found that the gene TaHPPD (4-hydroxyphenylpyruvate dioxygenase) negatively regulated the resistance of wheat to stripe rust by affecting SA signaling, pathogenesis-related (PR) gene expression, and ROS clearance. Our study provides insight into Yr10-mediated resistance in wheat.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"44"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593697/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49694872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Short wind pulses consistently change the morphology of roots, but not of shoots, across young plants of different growth forms. 在不同生长形式的幼苗中,短风脉冲会持续改变根的形态,但不会改变芽的形态。
Pub Date : 2023-10-09 DOI: 10.1007/s44154-023-00123-z
Johannes Heinze, Luise Werger, Michael Ogden, Thilo Heinken, Rainer Hoefgen, Ewald Weber

Wind is an environmental stimulus that stresses plants of all growth forms at all life-stages by influencing the development, architecture, and morphology of roots and shoots. However, comparative studies are scarce and no study directly investigated whether shoot and root morphological traits of trees, grasses and forbs differ in their response to short wind pulses of different wind intensity. In this study, we found that across species, wind stress by short wind pulses of increasing intensity consistently changed root morphology, but did not affect shoot morphological traits, except plant height in four species. Wind effects in roots were generally weak in tree species but consistent across growth forms. Furthermore, plant height of species was correlated with changes in specific root length and average diameter.Our results indicate that short-pulse wind treatments affect root morphology more than shoot morphology across growth forms. They further suggest that wind stress possibly promotes root anchorage in young plants and that these effects might depend on plant height.

风是一种环境刺激,通过影响根和芽的发育、结构和形态,在所有生命阶段对所有生长形式的植物施加压力。然而,比较研究很少,也没有研究直接调查树木、草和杂类植物的地上部和根部形态特征对不同风强度的短风脉冲的反应是否不同。在这项研究中,我们发现,在不同物种中,强度增加的短风脉冲所产生的风应力会持续改变根系形态,但不会影响地上部形态特征,除了四个物种的株高。根中的风效应在树种中通常较弱,但在不同的生长形式中是一致的。此外,物种的株高与比根长和平均直径的变化相关。我们的研究结果表明,短脉冲风处理对不同生长形态的根系形态的影响大于对地上部形态的影响。他们进一步表明,风应力可能促进年轻植物的根系固定,这些影响可能取决于植物的高度。
{"title":"Short wind pulses consistently change the morphology of roots, but not of shoots, across young plants of different growth forms.","authors":"Johannes Heinze, Luise Werger, Michael Ogden, Thilo Heinken, Rainer Hoefgen, Ewald Weber","doi":"10.1007/s44154-023-00123-z","DOIUrl":"10.1007/s44154-023-00123-z","url":null,"abstract":"<p><p>Wind is an environmental stimulus that stresses plants of all growth forms at all life-stages by influencing the development, architecture, and morphology of roots and shoots. However, comparative studies are scarce and no study directly investigated whether shoot and root morphological traits of trees, grasses and forbs differ in their response to short wind pulses of different wind intensity. In this study, we found that across species, wind stress by short wind pulses of increasing intensity consistently changed root morphology, but did not affect shoot morphological traits, except plant height in four species. Wind effects in roots were generally weak in tree species but consistent across growth forms. Furthermore, plant height of species was correlated with changes in specific root length and average diameter.Our results indicate that short-pulse wind treatments affect root morphology more than shoot morphology across growth forms. They further suggest that wind stress possibly promotes root anchorage in young plants and that these effects might depend on plant height.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"43"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562299/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41165003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BAK-up: the receptor kinase BAK-TO-LIFE 2 enhances immunity when BAK1 is lacking. BAK-up:当BAK1缺乏时,受体激酶BAK-TO-LIFE 2增强免疫力。
Pub Date : 2023-09-25 DOI: 10.1007/s44154-023-00124-y
Vahid Fallahzadeh-Mamaghami, Hannah Weber, Birgit Kemmerling

BRI1-ASSOCIATED KINASE 1 (BAK1/SERK3) and its closest homolog BAK1-LIKE 1 (BKK1/SERK4) are leucine-rich repeat receptor kinases (LRR-RKs) belonging to the SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) family. They act as co-receptors of various other LRR-RKs and participate in multiple signaling events by complexing and transphosphorylating ligand-binding receptors. Initially identified as the brassinosteroid receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) co-receptor, BAK1 also functions in plant immunity by interacting with pattern recognition receptors. Mutations in BAK1 and BKK1 cause severely stunted growth and cell death, characterized as autoimmune cell death. Several factors play a role in this type of cell death, including RKs and components of effector-triggered immunity (ETI) signaling pathways, glycosylation factors, ER quality control components, nuclear trafficking components, ion channels, and Nod-like receptors (NLRs). The Shan lab has recently discovered a novel RK BAK-TO-LIFE 2 (BTL2) that interacts with BAK1 and triggers cell death in the absence of BAK1 and BKK1. This RK compensates for the loss of BAK1-mediated pattern-triggered immunity (PTI) by activating phytocytokine-mediated immune and cell death responses.

BRI1-相关激酶1(BAK1/SERK3)及其最接近的同源物BAK1-LIKE 1(BKK1/SERK4)是属于体细胞胚胎发生受体激酶(SERK)家族的富含亮氨酸的重复序列受体激酶(LRR-RKs)。它们充当各种其他LRR-RK的共受体,并通过络合和反磷酸化配体结合受体参与多种信号传导事件。BAK1最初被鉴定为类油菜素受体类油菜素不敏感1(BRI1)共受体,它也通过与模式识别受体相互作用而在植物免疫中发挥作用。BAK1和BKK1的突变会导致严重的生长迟缓和细胞死亡,其特征是自身免疫性细胞死亡。有几个因素在这种类型的细胞死亡中发挥作用,包括RK和效应触发免疫(ETI)信号通路的成分、糖基化因子、ER质量控制成分、核运输成分、离子通道和Nod样受体(NLRs)。Shan实验室最近发现了一种新的RK BAK-TO-LIFE 2(BTL2),它与BAK1相互作用,并在缺乏BAK1和BKK1的情况下引发细胞死亡。这种RK通过激活植物细胞因子介导的免疫和细胞死亡反应来补偿BAK1介导的模式触发免疫(PTI)的损失。
{"title":"BAK-up: the receptor kinase BAK-TO-LIFE 2 enhances immunity when BAK1 is lacking.","authors":"Vahid Fallahzadeh-Mamaghami, Hannah Weber, Birgit Kemmerling","doi":"10.1007/s44154-023-00124-y","DOIUrl":"10.1007/s44154-023-00124-y","url":null,"abstract":"<p><p>BRI1-ASSOCIATED KINASE 1 (BAK1/SERK3) and its closest homolog BAK1-LIKE 1 (BKK1/SERK4) are leucine-rich repeat receptor kinases (LRR-RKs) belonging to the SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) family. They act as co-receptors of various other LRR-RKs and participate in multiple signaling events by complexing and transphosphorylating ligand-binding receptors. Initially identified as the brassinosteroid receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) co-receptor, BAK1 also functions in plant immunity by interacting with pattern recognition receptors. Mutations in BAK1 and BKK1 cause severely stunted growth and cell death, characterized as autoimmune cell death. Several factors play a role in this type of cell death, including RKs and components of effector-triggered immunity (ETI) signaling pathways, glycosylation factors, ER quality control components, nuclear trafficking components, ion channels, and Nod-like receptors (NLRs). The Shan lab has recently discovered a novel RK BAK-TO-LIFE 2 (BTL2) that interacts with BAK1 and triggers cell death in the absence of BAK1 and BKK1. This RK compensates for the loss of BAK1-mediated pattern-triggered immunity (PTI) by activating phytocytokine-mediated immune and cell death responses.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"42"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519891/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41168027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TaNRAMP3 is essential for manganese transport in Triticum aestivum. TaNRAMP3对小麦中锰的转运至关重要。
Pub Date : 2023-09-22 DOI: 10.1007/s44154-023-00120-2
Zhangqing Wang, Yanting Zhang, Chenyu Cao, Jiaming Liu, Yuan Deng, Zhenqian Zhang, Cun Wang

Manganese (Mn) is an essential trace element for almost all living organisms. In plants, Mn deficiency, which is occurs in calcareous soils or alkaline soils, severely limiting crop yields. However, the potential mechanism of Mn transport in Triticum aestivum is still obscure. Here, we found that TaNRAMP3, a member of the naturally resistant macrophage protein (NRAMP) family in Triticum aestivum, is located in the plasma membrane of protoplasts and functions as an influx transporter for Mn in yeast (Δsmf1). The expression of TaNRAMP3 was induced under Mn-deficiency conditions. Furthermore, TaNRAMP3-RNAi plants exhibited a sensitive phenotype, while transgenic plants overexpressing TaNRAMP3 showed a tolerant phenotype. In addition, TaNRAMP3 rescued the sensitive phenotype of Arabidopsis nramp1 mutant under Mn deficiency condition. In summary, our study reveals the key role of TaNRAMP3 in Mn transport in Triticum aestivum, allowing it to adapt to Mn-deficiency stress. These findings provide new insights for the cultivation of Mn-deficiency tolerant wheat varieties.

锰是几乎所有生物所必需的微量元素。在植物中,锰缺乏症发生在石灰性土壤或碱性土壤中,严重限制了作物产量。然而,锰在小麦中转运的潜在机制仍不清楚。在这里,我们发现TaNRAMP3是小麦中天然抗性巨噬细胞蛋白(NRAMP)家族的一员,位于原生质体的质膜中,并作为酵母中Mn的内流转运蛋白(Δsmf1)。在Mn缺乏的条件下诱导TaNRAMP3的表达。此外,TaNRAMP3 RNAi植物表现出敏感表型,而过表达TaNRAMP3-的转基因植物表现出耐受表型。此外,TaNRAMP3挽救了拟南芥nramp1突变体在缺锰条件下的敏感表型。总之,我们的研究揭示了TaNRAMP3在小麦锰转运中的关键作用,使其能够适应缺锰胁迫。这些发现为培育耐锰小麦品种提供了新的思路。
{"title":"TaNRAMP3 is essential for manganese transport in Triticum aestivum.","authors":"Zhangqing Wang, Yanting Zhang, Chenyu Cao, Jiaming Liu, Yuan Deng, Zhenqian Zhang, Cun Wang","doi":"10.1007/s44154-023-00120-2","DOIUrl":"10.1007/s44154-023-00120-2","url":null,"abstract":"<p><p>Manganese (Mn) is an essential trace element for almost all living organisms. In plants, Mn deficiency, which is occurs in calcareous soils or alkaline soils, severely limiting crop yields. However, the potential mechanism of Mn transport in Triticum aestivum is still obscure. Here, we found that TaNRAMP3, a member of the naturally resistant macrophage protein (NRAMP) family in Triticum aestivum, is located in the plasma membrane of protoplasts and functions as an influx transporter for Mn in yeast (Δsmf1). The expression of TaNRAMP3 was induced under Mn-deficiency conditions. Furthermore, TaNRAMP3-RNAi plants exhibited a sensitive phenotype, while transgenic plants overexpressing TaNRAMP3 showed a tolerant phenotype. In addition, TaNRAMP3 rescued the sensitive phenotype of Arabidopsis nramp1 mutant under Mn deficiency condition. In summary, our study reveals the key role of TaNRAMP3 in Mn transport in Triticum aestivum, allowing it to adapt to Mn-deficiency stress. These findings provide new insights for the cultivation of Mn-deficiency tolerant wheat varieties.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"41"},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516799/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41175137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overwintering covered with soil or avoiding burial of wine grapes under cold stress: Chinese wine industry's past and future, challenges and opportunities. 冷胁迫下酒葡萄覆土越冬或避埋:中国葡萄酒产业的过去与未来、挑战与机遇。
Pub Date : 2023-09-15 DOI: 10.1007/s44154-023-00119-9
Ningjing Wan, Bohan Yang, Dingze Yin, Tingting Ma, Yulin Fang, Xiangyu Sun

In northwest China, where winter is extremely cold and the grapevine is vulnerable to freezing damage, the application of soil covering has promoted the vigorous development of the local grape and wine industries. However, in recent years, the negative effects of burying soil for cold protection on the environment have gradually emerged. In some viticultural regions, the phenomenon of "summer forest, winter desert" has appeared. Therefore, it is urgent for the Chinese grape industry to find a better solution to overwinter safely and environmentally friendly. This review summarizes the advantages and disadvantages of widely used solutions to overwinter such as covering vines with soil, breeding of cold-resistant grapes, cold-resistant cultivation model, physical and chemical covering materials, and protected grape facilities were reviewed. Future overwintering measures were proposed which avoid burial and grape overwintering research directions. It also provides a theoretical foundation and technical support to improve grape yield and quality in northwest China.

在中国西北地区,冬季非常寒冷,葡萄容易受到冻害,土壤覆盖的应用促进了当地葡萄和葡萄酒产业的蓬勃发展。然而,近年来,埋土防寒对环境的负面影响逐渐显现。在一些葡萄种植区,出现了“夏有森林,冬有沙漠”的现象。因此,中国葡萄产业迫切需要找到一种安全环保的越冬解决方案。本文综述了目前广泛应用的土壤覆盖葡萄、抗寒葡萄的选育、抗寒栽培模式、物理和化学覆盖材料以及保护葡萄设施等解决越冬的方法的优缺点。提出了避免埋藏和葡萄越冬的研究方向。为提高西北地区葡萄产量和品质提供理论基础和技术支持。
{"title":"Overwintering covered with soil or avoiding burial of wine grapes under cold stress: Chinese wine industry's past and future, challenges and opportunities.","authors":"Ningjing Wan, Bohan Yang, Dingze Yin, Tingting Ma, Yulin Fang, Xiangyu Sun","doi":"10.1007/s44154-023-00119-9","DOIUrl":"10.1007/s44154-023-00119-9","url":null,"abstract":"<p><p>In northwest China, where winter is extremely cold and the grapevine is vulnerable to freezing damage, the application of soil covering has promoted the vigorous development of the local grape and wine industries. However, in recent years, the negative effects of burying soil for cold protection on the environment have gradually emerged. In some viticultural regions, the phenomenon of \"summer forest, winter desert\" has appeared. Therefore, it is urgent for the Chinese grape industry to find a better solution to overwinter safely and environmentally friendly. This review summarizes the advantages and disadvantages of widely used solutions to overwinter such as covering vines with soil, breeding of cold-resistant grapes, cold-resistant cultivation model, physical and chemical covering materials, and protected grape facilities were reviewed. Future overwintering measures were proposed which avoid burial and grape overwintering research directions. It also provides a theoretical foundation and technical support to improve grape yield and quality in northwest China.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"40"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504205/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10307037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
iTRAQ-based protein profiling and functional identification of four genes involved in rice basal resistance against Magnaporthe oryzae in two contrasting rice genotypes. 基于itraq的水稻对稻瘟病基础抗性相关基因的蛋白谱分析和功能鉴定
Pub Date : 2023-09-12 DOI: 10.1007/s44154-023-00118-w
Chenchen Li, Ziqiang Chen, Yun Deng, Shuyu Jiang, Yan Su, Shaohua Yang, Yan Lin, Dagang Tian

Rice blast, caused by Magnaporthe oryzae, is one of the most destructive rice diseases. Developing blast-resistant rice cultivars represents the most economical and environmentally friend strategy for managing the disease. In our previous study, an isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative protein quantification was carried out to investigate the resistance gene Piz-t gene-mediated resistance response to infection in two contrasting rice genotypes of the Piz-t transgenic Nipponbare line (NPB-Piz-t) and its wild-type Nipponbare (NPB). Here, from the comparisons of differentially expressed proteins (DEPs) of NPB-Piz-t to the avirulent isolate KJ201 (KJ201-Piz-t)and the virulent isolate RB22 (RB22-Piz-t) with mock-treated NPB-Piz-t (Mock-Piz-t), NPB to the virulent isolate KJ201(KJ201-NPB) and RB22 (RB22-NPB) with mock-treated NPB (Mock-NPB), 1, 1, and 6 common DEPs were, respectively, identified at 24, 48 and 72 h post-inoculation (hpi) in the susceptible comparisons of RB22-Pizt/Mock-Piz-t, KJ201-NPB/Mock-NPB, and RB22-NPB/Mock-NPB, involving in gi|54,290,836 and gi|59,800,021 were identified in the resistance comparison KJ201-Piz-t/Mock-Piz-t at 48 and 72 hpi respectively. Moreover, four genes of Os01g0138900 (gi|54,290,836), Os04g0659300 (gi|59,800,021), Os09g0315700 (gi|125,563,186) or Os04g0394200 (gi|21,740,743) were knocked out or overexpressed in NPB using gene over-expression and CRISPR/Cas9 technology, and results verified that the Os01g0138900 obviously affected the rice blast resistance. Further, expression and targeted metabolomics analysis illuminated the resistance response of cysteine-containing substances as gi|59,800,021 under blast infection. These results provide new targets for basal resistance gene identification and open avenues for developing novel rice blast resistant materials.

稻瘟病是水稻最具破坏性的病害之一,由稻瘟病菌(Magnaporthe oryzae)引起。培育抗稻瘟病品种是防治稻瘟病最经济、最环保的策略。本研究采用等压标签相对绝对定量(iTRAQ)技术,比较了抗性基因pizza -t基因介导的抗侵染应答,研究了pizza -t转基因日本株系(NPB- pizza -t)和野生型日本株系(NPB)的抗性反应。本研究通过比较NPB- pizt与无毒分离物KJ201(KJ201- pizt)、毒力分离物RB22 (RB22- pizt)与模拟处理过的NPB- pizt (mock- pizt)、NPB与毒力分离物KJ201(KJ201-NPB)、RB22 (RB22-NPB)与模拟处理过的NPB (Mock-NPB)的差异表达蛋白(DEPs),分别在接种后24、48和72 h (hpi)在RB22- pizt / mock- pizt、KJ201-NPB/Mock-NPB易感对照中鉴定出1、1和6个常见DEPs。抗性比较kj201 - pizza -t/ mock - pizza -t分别在48和72 hpi时鉴定出RB22-NPB/Mock-NPB参与gi|54,290,836和gi|59,800,021。利用基因过表达和CRISPR/Cas9技术,在NPB中敲除Os01g0138900 (gi|54,290,836)、Os04g0659300 (gi|59,800,021)、Os09g0315700 (gi|125,563,186)和Os04g0394200 (gi|21,740,743) 4个基因,结果证实Os01g0138900对水稻稻瘟病抗性有明显影响。此外,表达和靶向代谢组学分析揭示了含有半胱氨酸的物质gi|59,800,021在blast感染下的耐药反应。这些结果为基础抗性基因的鉴定提供了新的靶点,为水稻抗稻瘟病新材料的开发开辟了道路。
{"title":"iTRAQ-based protein profiling and functional identification of four genes involved in rice basal resistance against Magnaporthe oryzae in two contrasting rice genotypes.","authors":"Chenchen Li, Ziqiang Chen, Yun Deng, Shuyu Jiang, Yan Su, Shaohua Yang, Yan Lin, Dagang Tian","doi":"10.1007/s44154-023-00118-w","DOIUrl":"10.1007/s44154-023-00118-w","url":null,"abstract":"<p><p>Rice blast, caused by Magnaporthe oryzae, is one of the most destructive rice diseases. Developing blast-resistant rice cultivars represents the most economical and environmentally friend strategy for managing the disease. In our previous study, an isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative protein quantification was carried out to investigate the resistance gene Piz-t gene-mediated resistance response to infection in two contrasting rice genotypes of the Piz-t transgenic Nipponbare line (NPB-Piz-t) and its wild-type Nipponbare (NPB). Here, from the comparisons of differentially expressed proteins (DEPs) of NPB-Piz-t to the avirulent isolate KJ201 (KJ201-Piz-t)and the virulent isolate RB22 (RB22-Piz-t) with mock-treated NPB-Piz-t (Mock-Piz-t), NPB to the virulent isolate KJ201(KJ201-NPB) and RB22 (RB22-NPB) with mock-treated NPB (Mock-NPB), 1, 1, and 6 common DEPs were, respectively, identified at 24, 48 and 72 h post-inoculation (hpi) in the susceptible comparisons of RB22-Pizt/Mock-Piz-t, KJ201-NPB/Mock-NPB, and RB22-NPB/Mock-NPB, involving in gi|54,290,836 and gi|59,800,021 were identified in the resistance comparison KJ201-Piz-t/Mock-Piz-t at 48 and 72 hpi respectively. Moreover, four genes of Os01g0138900 (gi|54,290,836), Os04g0659300 (gi|59,800,021), Os09g0315700 (gi|125,563,186) or Os04g0394200 (gi|21,740,743) were knocked out or overexpressed in NPB using gene over-expression and CRISPR/Cas9 technology, and results verified that the Os01g0138900 obviously affected the rice blast resistance. Further, expression and targeted metabolomics analysis illuminated the resistance response of cysteine-containing substances as gi|59,800,021 under blast infection. These results provide new targets for basal resistance gene identification and open avenues for developing novel rice blast resistant materials.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"39"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10240126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collaborative impact of bacterial exometabolites governing root microbiota formation. 细菌外代谢产物对根微生物群形成的协同影响。
Pub Date : 2023-09-07 DOI: 10.1007/s44154-023-00121-1
Hafiz Abdul Kareem, Xinwei Hao, Xihui Shen

The majority of the root microbiota formation derives from soil-dwelling microorganisms. The limited extent of thorough investigation leads to a dearth of knowledge concerning the intricate mechanisms of microbe-microbe interaction implicated in the establishment of root microbiota. Therefore, the taxonomic signatures in bacterial inhibition profiles were determined by in vitro testing of 39,204 binary interbacterial interactions. However, findings from genetic and metabolomic studies elucidated that co-functioning of the antimicrobial 2,4-d iacetylphloroglucinol (DAPG) and the iron chelator pyoverdine as exometabolites has significantly contributed to the potent inhibitory activities of the highly antagonistic Pseudomonas brassicacearum R401. Microbiota restoration with a core of Arabidopsis thaliana root commensals showed that these exometabolites possess a root niche-specific function in establishing root competence and inducing anticipated changes in root surroundings. Both biosynthetic operons are abundant in roots in natural habitats, indicating that these exometabolites co-functioning is an adaptive feature that helps Pseudomonad dominate the root microbiota.

大多数根系微生物群的形成来自土壤中的微生物。由于深入研究的程度有限,导致缺乏有关微生物与微生物相互作用的复杂机制的知识,这些机制涉及根微生物群的建立。因此,细菌抑制谱的分类特征是通过体外检测39,204个二元细菌间相互作用来确定的。然而,遗传学和代谢组学研究结果表明,抗菌物质2,4-d iacetylphloroglucinol (DAPG)和铁螯合剂pyoverdine作为外代谢产物的共同作用,显著促进了高度拮抗的brassicacearum R401的有效抑制活性。以拟南芥根共生体为核心的微生物群恢复表明,这些外代谢产物在建立根能力和诱导根环境预期变化方面具有根生态位特异性功能。这两种生物合成操纵子在自然栖息地的根中都很丰富,这表明这些外代谢产物协同作用是一种适应性特征,有助于假单胞菌控制根微生物群。
{"title":"Collaborative impact of bacterial exometabolites governing root microbiota formation.","authors":"Hafiz Abdul Kareem, Xinwei Hao, Xihui Shen","doi":"10.1007/s44154-023-00121-1","DOIUrl":"10.1007/s44154-023-00121-1","url":null,"abstract":"<p><p>The majority of the root microbiota formation derives from soil-dwelling microorganisms. The limited extent of thorough investigation leads to a dearth of knowledge concerning the intricate mechanisms of microbe-microbe interaction implicated in the establishment of root microbiota. Therefore, the taxonomic signatures in bacterial inhibition profiles were determined by in vitro testing of 39,204 binary interbacterial interactions. However, findings from genetic and metabolomic studies elucidated that co-functioning of the antimicrobial 2,4-d iacetylphloroglucinol (DAPG) and the iron chelator pyoverdine as exometabolites has significantly contributed to the potent inhibitory activities of the highly antagonistic Pseudomonas brassicacearum R401. Microbiota restoration with a core of Arabidopsis thaliana root commensals showed that these exometabolites possess a root niche-specific function in establishing root competence and inducing anticipated changes in root surroundings. Both biosynthetic operons are abundant in roots in natural habitats, indicating that these exometabolites co-functioning is an adaptive feature that helps Pseudomonad dominate the root microbiota.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"38"},"PeriodicalIF":0.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484853/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10188637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maize heat shock proteins-prospection, validation, categorization and in silico analysis of the different ZmHSP families. 玉米热休克蛋白——不同ZmHSP家族的展望、验证、分类和计算机分析
Pub Date : 2023-09-06 DOI: 10.1007/s44154-023-00104-2
Rubens Diogo-Jr, Edila Vilela de Resende Von Pinho, Renan Terassi Pinto, Lingrui Zhang, Jorge Alberto Condori-Apfata, Paula Andrade Pereira, Danielle Rezende Vilela

Among the plant molecular mechanisms capable of effectively mitigating the effects of adverse weather conditions, the heat shock proteins (HSPs), a group of chaperones with multiple functions, stand out. At a time of full progress on the omic sciences, they look very promising in the genetic engineering field, especially in order to conceive superior genotypes, potentially tolerant to abiotic stresses (AbSts). Recently, some works concerning certain families of maize HSPs (ZmHSPs) were published. However, there was still a lack of a study that, with a high degree of criteria, would fully conglomerate them. Using distinct but complementary strategies, we have prospected as many ZmHSPs candidates as possible, gathering more than a thousand accessions. After detailed data mining, we accounted for 182 validated ones, belonging to seven families, which were subcategorized into classes with potential for functional parity. In them, we identified dozens of motifs with some degree of similarity with proteins from different kingdoms, which may help explain some of their still poorly understood means of action. Through in silico and in vitro approaches, we compared their expression levels after controlled exposure to several AbSts' sources, applied at diverse tissues, on varied phenological stages. Based on gene ontology concepts, we still analyzed them from different perspectives of term enrichment. We have also searched, in model plants and close species, for potentially orthologous genes. With all these new insights, which culminated in a plentiful supplementary material, rich in tables, we aim to constitute a fertile consultation source for those maize researchers attracted by these interesting stress proteins.

在能够有效缓解恶劣天气影响的植物分子机制中,热休克蛋白(HSPs)作为一组具有多种功能的伴侣蛋白最为突出。在基因组学全面发展的今天,它们在基因工程领域非常有前景,特别是在孕育出具有抗非生物胁迫能力的优良基因型方面。近年来,一些关于玉米热休克蛋白(ZmHSPs)家族的研究成果陆续发表。然而,仍然缺乏一项具有高度标准的研究,可以充分综合它们。使用不同但互补的策略,我们已经寻找了尽可能多的ZmHSPs候选物,收集了1000多个候选物。经过详细的数据挖掘,我们计算了182个经过验证的,属于7个家族,这些家族被细分为具有功能奇偶潜力的类。在这些基因中,我们发现了几十个与来自不同领域的蛋白质具有一定程度相似性的基序,这可能有助于解释它们的一些仍然知之甚少的作用方式。通过硅和体外方法,我们比较了在不同组织、不同物候阶段受控暴露于几种AbSts来源后它们的表达水平。在基因本体概念的基础上,我们仍然从术语充实的不同角度对它们进行了分析。我们也在模式植物和近亲物种中寻找潜在的同源基因。有了所有这些新的见解,最终形成了丰富的补充材料,表格丰富,我们的目标是为那些被这些有趣的应激蛋白吸引的玉米研究人员提供丰富的咨询资源。
{"title":"Maize heat shock proteins-prospection, validation, categorization and in silico analysis of the different ZmHSP families.","authors":"Rubens Diogo-Jr, Edila Vilela de Resende Von Pinho, Renan Terassi Pinto, Lingrui Zhang, Jorge Alberto Condori-Apfata, Paula Andrade Pereira, Danielle Rezende Vilela","doi":"10.1007/s44154-023-00104-2","DOIUrl":"10.1007/s44154-023-00104-2","url":null,"abstract":"<p><p>Among the plant molecular mechanisms capable of effectively mitigating the effects of adverse weather conditions, the heat shock proteins (HSPs), a group of chaperones with multiple functions, stand out. At a time of full progress on the omic sciences, they look very promising in the genetic engineering field, especially in order to conceive superior genotypes, potentially tolerant to abiotic stresses (AbSts). Recently, some works concerning certain families of maize HSPs (ZmHSPs) were published. However, there was still a lack of a study that, with a high degree of criteria, would fully conglomerate them. Using distinct but complementary strategies, we have prospected as many ZmHSPs candidates as possible, gathering more than a thousand accessions. After detailed data mining, we accounted for 182 validated ones, belonging to seven families, which were subcategorized into classes with potential for functional parity. In them, we identified dozens of motifs with some degree of similarity with proteins from different kingdoms, which may help explain some of their still poorly understood means of action. Through in silico and in vitro approaches, we compared their expression levels after controlled exposure to several AbSts' sources, applied at diverse tissues, on varied phenological stages. Based on gene ontology concepts, we still analyzed them from different perspectives of term enrichment. We have also searched, in model plants and close species, for potentially orthologous genes. With all these new insights, which culminated in a plentiful supplementary material, rich in tables, we aim to constitute a fertile consultation source for those maize researchers attracted by these interesting stress proteins.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":" ","pages":"37"},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482818/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44505312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant immune inducer ZNC promotes rutin accumulation and enhances resistance to Botrytis cinerea in tomato. 植物免疫诱导剂ZNC促进番茄芦丁积累,增强番茄对灰霉病的抗性。
Pub Date : 2023-08-22 DOI: 10.1007/s44154-023-00106-0
Haipeng Zhao, Xiangyu Ding, Xiaomeng Chu, Haimiao Zhang, Xinyu Wang, Xinwen Zhang, Haoqi Liu, Xiaoying Zhang, Ziyi Yin, Yang Li, Xinhua Ding

Gray mold is a destructive disease caused by Botrytis cinerea, a pervasive plant pathogen, which poses a threat to both tomato growth and postharvest storage. The utilization of induced resistance presents a potential strategy for combating plant pathogenic attacks. ZNC (zhinengcong), an extract derived from the endophytic fungus Paecilomyces variotii, has been discovered to play a vital role in preventing diverse forms of bacterial infections. Nevertheless, the precise mechanism behind its ability to enhance tomato resistance to fungi remains unclear. In this study, we found that the exogenous spraying of ZNC could significantly improve the resistance of tomato plants to B. cinerea. The results of both the metabolomic analysis and high-performance liquid chromatography (HPLC) demonstrated that tomato plants responded to ZNC treatment by accumulating high levels of rutin. Additional transcriptome analysis uncovered that rutin enhances tomato resistance possible by initiating the generation of reactive oxygen species (ROS) and phosphorylation of mitogen-activated protein kinases (MPKs) related genes expression during the initial phase of invasion by B. cinerea. In addition, we also found that rutin might activate plant immunity by eliciting ethylene (ET) and jasmonic acid (JA)-mediated pathways. Therefore, plant immune inducer ZNC and rutin has bright application prospects and high utilization value to control gray mold.

灰霉病是由番茄灰霉病(Botrytis cinerea)引起的一种破坏性病害,是一种普遍存在的植物病原体,对番茄生长和采后贮藏都构成威胁。利用诱导抗性是对抗植物病原攻击的一种潜在策略。ZNC (zhinengong)是一种从内生真菌拟青霉(Paecilomyces variotii)中提取的提取物,已被发现在预防多种形式的细菌感染中发挥重要作用。然而,其增强番茄抗真菌能力的确切机制尚不清楚。在本研究中,我们发现外源喷施ZNC能显著提高番茄植株对绿僵菌的抗性。代谢组学分析和高效液相色谱分析结果表明,番茄植株对ZNC处理的反应是积累大量的芦丁。另外的转录组分析发现,芦丁增强番茄抗性可能是通过启动活性氧(ROS)的产生和丝裂原活化蛋白激酶(MPKs)相关基因表达的磷酸化。此外,我们还发现芦丁可能通过诱导乙烯(ET)和茉莉酸(JA)介导的途径激活植物免疫。因此,植物免疫诱导剂ZNC和芦丁在防治灰霉病方面具有广阔的应用前景和较高的利用价值。
{"title":"Plant immune inducer ZNC promotes rutin accumulation and enhances resistance to Botrytis cinerea in tomato.","authors":"Haipeng Zhao, Xiangyu Ding, Xiaomeng Chu, Haimiao Zhang, Xinyu Wang, Xinwen Zhang, Haoqi Liu, Xiaoying Zhang, Ziyi Yin, Yang Li, Xinhua Ding","doi":"10.1007/s44154-023-00106-0","DOIUrl":"10.1007/s44154-023-00106-0","url":null,"abstract":"<p><p>Gray mold is a destructive disease caused by Botrytis cinerea, a pervasive plant pathogen, which poses a threat to both tomato growth and postharvest storage. The utilization of induced resistance presents a potential strategy for combating plant pathogenic attacks. ZNC (zhinengcong), an extract derived from the endophytic fungus Paecilomyces variotii, has been discovered to play a vital role in preventing diverse forms of bacterial infections. Nevertheless, the precise mechanism behind its ability to enhance tomato resistance to fungi remains unclear. In this study, we found that the exogenous spraying of ZNC could significantly improve the resistance of tomato plants to B. cinerea. The results of both the metabolomic analysis and high-performance liquid chromatography (HPLC) demonstrated that tomato plants responded to ZNC treatment by accumulating high levels of rutin. Additional transcriptome analysis uncovered that rutin enhances tomato resistance possible by initiating the generation of reactive oxygen species (ROS) and phosphorylation of mitogen-activated protein kinases (MPKs) related genes expression during the initial phase of invasion by B. cinerea. In addition, we also found that rutin might activate plant immunity by eliciting ethylene (ET) and jasmonic acid (JA)-mediated pathways. Therefore, plant immune inducer ZNC and rutin has bright application prospects and high utilization value to control gray mold.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"36"},"PeriodicalIF":0.0,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444710/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10556601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interplay of transport vesicles during plant-fungal pathogen interaction. 植物与真菌病原体相互作用过程中运输囊泡的相互作用。
Pub Date : 2023-08-22 DOI: 10.1007/s44154-023-00114-0
Yakubu Saddeeq Abubakar, Idris Zubair Sadiq, Aarti Aarti, Zonghua Wang, Wenhui Zheng

Vesicle trafficking is an essential cellular process upon which many physiological processes of eukaryotic cells rely. It is usually the 'language' of communication among the components of the endomembrane system within a cell, between cells and between a cell and its external environment. Generally, cells have the potential to internalize membrane-bound vesicles from external sources by endocytosis. Plants constantly interact with both mutualistic and pathogenic microbes. A large part of this interaction involves the exchange of transport vesicles between the plant cells and the microbes. Usually, in a pathogenic interaction, the pathogen releases vesicles containing bioactive molecules that can modulate the host immunity when absorbed by the host cells. In response to this attack, the host cells similarly mobilize some vesicles containing pathogenesis-related compounds to the pathogen infection site to destroy the pathogen, prevent it from penetrating the host cell or annul its influence. In fact, vesicle trafficking is involved in nearly all the strategies of phytopathogen attack subsequent plant immune responses. However, this field of plant-pathogen interaction is still at its infancy when narrowed down to plant-fungal pathogen interaction in relation to exchange of transport vesicles. Herein, we summarized some recent and novel findings unveiling the involvement of transport vesicles as a crosstalk in plant-fungal phytopathogen interaction, discussed their significance and identified some knowledge gaps to direct future research in the field. The roles of vesicles trafficking in the development of both organisms are also established.

囊泡运输是真核细胞许多生理过程所依赖的重要细胞过程。它通常是细胞内细胞膜系统各组成部分之间、细胞之间以及细胞与外部环境之间交流的“语言”。一般来说,细胞有可能通过内吞作用将外部来源的膜结合囊泡内化。植物不断地与共生微生物和致病微生物相互作用。这种相互作用的很大一部分涉及植物细胞和微生物之间运输囊泡的交换。通常,在致病性相互作用中,病原体释放出含有生物活性分子的囊泡,这些分子被宿主细胞吸收后可以调节宿主的免疫。作为对这种攻击的反应,宿主细胞同样调动一些含有致病相关化合物的囊泡到病原体感染部位,以破坏病原体,阻止其穿透宿主细胞或消除其影响。事实上,囊泡运输几乎参与了植物病原体攻击随后的植物免疫反应的所有策略。然而,这一领域的植物-病原体相互作用仍然处于起步阶段,当缩小到植物-真菌病原体相互作用在运输囊泡交换的关系。在此,我们总结了一些揭示转运囊泡作为植物-真菌植物病原体相互作用中的串扰参与的最新和新的发现,讨论了它们的意义,并确定了一些知识空白,以指导该领域的未来研究。还确定了囊泡贩运在这两种生物的发育中的作用。
{"title":"Interplay of transport vesicles during plant-fungal pathogen interaction.","authors":"Yakubu Saddeeq Abubakar, Idris Zubair Sadiq, Aarti Aarti, Zonghua Wang, Wenhui Zheng","doi":"10.1007/s44154-023-00114-0","DOIUrl":"10.1007/s44154-023-00114-0","url":null,"abstract":"<p><p>Vesicle trafficking is an essential cellular process upon which many physiological processes of eukaryotic cells rely. It is usually the 'language' of communication among the components of the endomembrane system within a cell, between cells and between a cell and its external environment. Generally, cells have the potential to internalize membrane-bound vesicles from external sources by endocytosis. Plants constantly interact with both mutualistic and pathogenic microbes. A large part of this interaction involves the exchange of transport vesicles between the plant cells and the microbes. Usually, in a pathogenic interaction, the pathogen releases vesicles containing bioactive molecules that can modulate the host immunity when absorbed by the host cells. In response to this attack, the host cells similarly mobilize some vesicles containing pathogenesis-related compounds to the pathogen infection site to destroy the pathogen, prevent it from penetrating the host cell or annul its influence. In fact, vesicle trafficking is involved in nearly all the strategies of phytopathogen attack subsequent plant immune responses. However, this field of plant-pathogen interaction is still at its infancy when narrowed down to plant-fungal pathogen interaction in relation to exchange of transport vesicles. Herein, we summarized some recent and novel findings unveiling the involvement of transport vesicles as a crosstalk in plant-fungal phytopathogen interaction, discussed their significance and identified some knowledge gaps to direct future research in the field. The roles of vesicles trafficking in the development of both organisms are also established.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"35"},"PeriodicalIF":0.0,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10539093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Stress biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1