首页 > 最新文献

Advances in High Energy Physics最新文献

英文 中文
Phase Transition and Entropic Force in Reissner-Nordström-de Sitter Spacetime Reissner-Nordström-de-Sitter时空中的相变和熵
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2022-04-12 DOI: 10.1155/2022/7376502
Yang Zhang, Yu-bo Ma, Yun-zhi Du, Huai-fan Li, Li-chun Zhang
In this paper, thermodynamic properties of the Reissner-Nordström-de Sitter (RN-dS) black hole have been studied on the basis of the correlation between the black hole and cosmological horizons. It is found that the RN-dS black hole experiences a phase transition, when its state parameters satisfy certain conditions. From the analysis of the interaction between two horizons in RN-dS spacetime, we get the numerical solution of the interaction between two horizons. It makes us to realize the force between the black hole and cosmological horizons, which can be regarded as a candidate to explain our accelerating expansion universe. That provides a new window to explore the physical mechanism of the cosmic accelerating expansion.
本文基于黑洞与宇宙学视界的相关性,研究了Reissner-Nordström-de Sitter (RN-dS)黑洞的热力学性质。研究发现,当状态参数满足一定条件时,RN-dS黑洞发生相变。通过对RN-dS时空中两个视界之间相互作用的分析,得到了两个视界之间相互作用的数值解。它使我们认识到黑洞和宇宙视界之间的力,这可以被视为解释我们加速膨胀的宇宙的候选。这为探索宇宙加速膨胀的物理机制提供了一个新的窗口。
{"title":"Phase Transition and Entropic Force in Reissner-Nordström-de Sitter Spacetime","authors":"Yang Zhang, Yu-bo Ma, Yun-zhi Du, Huai-fan Li, Li-chun Zhang","doi":"10.1155/2022/7376502","DOIUrl":"https://doi.org/10.1155/2022/7376502","url":null,"abstract":"In this paper, thermodynamic properties of the Reissner-Nordström-de Sitter (RN-dS) black hole have been studied on the basis of the correlation between the black hole and cosmological horizons. It is found that the RN-dS black hole experiences a phase transition, when its state parameters satisfy certain conditions. From the analysis of the interaction between two horizons in RN-dS spacetime, we get the numerical solution of the interaction between two horizons. It makes us to realize the force between the black hole and cosmological horizons, which can be regarded as a candidate to explain our accelerating expansion universe. That provides a new window to explore the physical mechanism of the cosmic accelerating expansion.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48710590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Electron Number Density and Coherence Length of Boson-Fermion Pair in HTSC HTSC中玻色子-费米对的电子数密度和相干长度
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2022-03-29 DOI: 10.1155/2022/8198401
A. Mukubwa
A Bose-Einstein Condensate (BEC) of a nonzero momentum Cooper pair constitutes a composite boson or simply a boson. Previously, it has been shown that the quantum coherence of the two-component BEC (boson and fermion condensates) is controlled by plasmons where < 1 % of plasmon energy mediates the charge pairing but most of the plasmon energy is used to overcome the modes that compete against superconductivity such as phonons, charge density waves, antiferromagnetism, and damping effects. The dependence of plasmon frequency on the material of a superconductor reveals that modes within a specific range of frequency enhance superconductivity and therefore affect the critical temperature of a particular superconducting material. Against this background, we study the effect on doping on boson-fermion pairing energy and hence the critical temperature. While most hole doping agents are atoms lighter than copper, many of the electron doping agents are materials heavier than copper. This property defines the doping effect on the plasma frequency. Heavier dopants lower the critical temperature while lighter dopants increase the critical temperature of a superconductor. The number density of electrons is also found to be proportional to the square of critical temperature T c while the size of a boson-fermion pair condensate (BFPC) is proportional to T c − 2 / 3 . The size of a BFPC particle is less than boson-fermion (BF) coherence length by almost an order.
非零动量库珀对的玻色-爱因斯坦凝聚(BEC)构成复合玻色子或简单的玻色子。以前,已经证明双组分BEC(玻色子和费米子凝聚体)的量子相干性是由等离子体控制的,其中等离子体能量的1%以下介导电荷对,但大部分等离子体能量用于克服与超导性竞争的模式,如声子、电荷密度波、反铁磁性和阻尼效应。等离子体频率对超导体材料的依赖揭示了特定频率范围内的模式增强了超导性,从而影响了特定超导材料的临界温度。在此背景下,我们研究了掺杂对玻色子-费米子对能和临界温度的影响。虽然大多数空穴掺杂剂是比铜轻的原子,但许多电子掺杂剂是比铜重的材料。这一性质决定了掺杂对等离子体频率的影响。较重的掺杂剂降低了超导体的临界温度,而较轻的掺杂剂提高了超导体的临界温度。电子数密度也与临界温度tc的平方成正比,而玻色子-费米子对凝聚体(BFPC)的大小与tc−2 / 3成正比。BFPC粒子的大小比玻色子-费米子(BF)相干长度小近一个数量级。
{"title":"Electron Number Density and Coherence Length of Boson-Fermion Pair in HTSC","authors":"A. Mukubwa","doi":"10.1155/2022/8198401","DOIUrl":"https://doi.org/10.1155/2022/8198401","url":null,"abstract":"A Bose-Einstein Condensate (BEC) of a nonzero momentum Cooper pair constitutes a composite boson or simply a boson. Previously, it has been shown that the quantum coherence of the two-component BEC (boson and fermion condensates) is controlled by plasmons where \u0000 \u0000 <\u0000 1\u0000 %\u0000 \u0000 of plasmon energy mediates the charge pairing but most of the plasmon energy is used to overcome the modes that compete against superconductivity such as phonons, charge density waves, antiferromagnetism, and damping effects. The dependence of plasmon frequency on the material of a superconductor reveals that modes within a specific range of frequency enhance superconductivity and therefore affect the critical temperature of a particular superconducting material. Against this background, we study the effect on doping on boson-fermion pairing energy and hence the critical temperature. While most hole doping agents are atoms lighter than copper, many of the electron doping agents are materials heavier than copper. This property defines the doping effect on the plasma frequency. Heavier dopants lower the critical temperature while lighter dopants increase the critical temperature of a superconductor. The number density of electrons is also found to be proportional to the square of critical temperature \u0000 \u0000 \u0000 \u0000 \u0000 \u0000 T\u0000 \u0000 \u0000 c\u0000 \u0000 \u0000 \u0000 \u0000 \u0000 while the size of a boson-fermion pair condensate (BFPC) is proportional to \u0000 \u0000 \u0000 \u0000 T\u0000 \u0000 \u0000 c\u0000 \u0000 \u0000 −\u0000 2\u0000 /\u0000 3\u0000 \u0000 \u0000 \u0000 . The size of a BFPC particle is less than boson-fermion (BF) coherence length by almost an order.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48147899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Inflationary Universe from Anomaly-Free FR 由无异常F R得到的膨胀宇宙
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2022-03-29 DOI: 10.1155/2022/9056096
A. Beesham, K. Bamba
By adding a three-dimensional manifold to an eleven-dimensional manifold in supergravity, we obtain the action of FR -gravity and find that it is anomaly-free. We calculate the scale factor of the inflationary universe in this model and observe that it is related to the slow-roll parameters. The tensor-scalar ratio Rtensorscalar is in good agreement with experimental data.
通过在超重力中把一个三维流形加到一个十一维流形上,我们得到了F-重力的作用,并发现它是无异常的。我们在这个模型中计算了膨胀宇宙的比例因子,并观察到它与慢滚参数有关。张量标量比R张量−标量与实验数据吻合较好。
{"title":"Inflationary Universe from Anomaly-Free <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\u0000 <mi>F</mi>\u0000 <mfenced open=\"(\" close=\")\">\u0000 <mrow>\u0000 <mi>R</mi>\u0000 </mrow>\u0000 ","authors":"A. Beesham, K. Bamba","doi":"10.1155/2022/9056096","DOIUrl":"https://doi.org/10.1155/2022/9056096","url":null,"abstract":"<jats:p>By adding a three-dimensional manifold to an eleven-dimensional manifold in supergravity, we obtain the action of <jats:inline-formula>\u0000 <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\u0000 <mi>F</mi>\u0000 <mfenced open=\"(\" close=\")\">\u0000 <mrow>\u0000 <mi>R</mi>\u0000 </mrow>\u0000 </mfenced>\u0000 </math>\u0000 </jats:inline-formula>-gravity and find that it is anomaly-free. We calculate the scale factor of the inflationary universe in this model and observe that it is related to the slow-roll parameters. The tensor-scalar ratio <jats:inline-formula>\u0000 <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\u0000 <mfenced open=\"(\" close=\")\">\u0000 <mrow>\u0000 <msub>\u0000 <mrow>\u0000 <mi>R</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mtext>tensor</mtext>\u0000 <mo>−</mo>\u0000 <mtext>scalar</mtext>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 </mfenced>\u0000 </math>\u0000 </jats:inline-formula> is in good agreement with experimental data.</jats:p>","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49323080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Baryonic B Meson Decays 重子B介子衰变
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2022-03-11 DOI: 10.1155/2022/4343824
Xiaotao Huang, Yu-Kuo Hsiao, Jike Wang, Liang Sun
<jats:p>We review the two- and three-body baryonic <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <mi>B</mi> </math> </jats:inline-formula> decays with the dibaryon (<jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3"> <mi mathvariant="bold">B</mi> <mover accent="true"> <mrow> <mi mathvariant="bold">B</mi> <mo>′</mo> </mrow> <mo stretchy="true">¯</mo> </mover> </math> </jats:inline-formula>) as the final states. Accordingly, we summarize the experimental data of the branching fractions, angular asymmetries, and <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4"> <mtext>CP</mtext> </math> </jats:inline-formula> asymmetries. Using the <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5"> <mi>W</mi> </math> </jats:inline-formula>-boson annihilation (exchange) mechanism, the branching fractions of <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M6"> <mi>B</mi> <mo>⟶</mo> <mi mathvariant="bold">B</mi> <mover accent="true"> <mrow> <mi mathvariant="bold">B</mi> <mo>′</mo> </mrow> <mo stretchy="true">¯</mo> </mover> </math> </jats:inline-formula> are shown to be interpretable. In the approach of perturbative QCD counting rules, we study the three-body decay channels. In particular, we review the <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7"> <mtext>CP</mtext> </math> </jats:inline-formula> asymmetries of <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M8"> <mi>B</mi> <mo>⟶</mo> <mi mathvariant="bold">B</mi> <mover accent="true"> <mrow> <mi mathvariant="bold">B</mi> <mo>′</mo> </mrow> <mo stretchy="true">¯</mo> </mover> <mi>M</mi>
我们回顾了二体和三体重子B的衰变,最终态是双重子B′¯。因此,我们总结了分支分数、角不对称和CP不对称的实验数据。利用W -玻色子湮灭(交换)机制,B的分支分数是可以解释的。在微扰QCD计数规则的方法中,我们研究了三体衰变通道。特别地,我们回顾了B / B B′¯M的CP不对称性,它们有望通过LHCb和Belle II实验来测量。最后,我们注意到解释B−B - p的理论挑战P¯ρ−andB B−p¯μ−ν¯μ .
{"title":"Baryonic <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\u0000 <mi>B</mi>\u0000 </math> Meson Decays","authors":"Xiaotao Huang, Yu-Kuo Hsiao, Jike Wang, Liang Sun","doi":"10.1155/2022/4343824","DOIUrl":"https://doi.org/10.1155/2022/4343824","url":null,"abstract":"&lt;jats:p&gt;We review the two- and three-body baryonic &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt; decays with the dibaryon (&lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"&gt;\u0000 &lt;mi mathvariant=\"bold\"&gt;B&lt;/mi&gt;\u0000 &lt;mover accent=\"true\"&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi mathvariant=\"bold\"&gt;B&lt;/mi&gt;\u0000 &lt;mo&gt;′&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo stretchy=\"true\"&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt;) as the final states. Accordingly, we summarize the experimental data of the branching fractions, angular asymmetries, and &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"&gt;\u0000 &lt;mtext&gt;CP&lt;/mtext&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt; asymmetries. Using the &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\"&gt;\u0000 &lt;mi&gt;W&lt;/mi&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt;-boson annihilation (exchange) mechanism, the branching fractions of &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\"&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mo&gt;⟶&lt;/mo&gt;\u0000 &lt;mi mathvariant=\"bold\"&gt;B&lt;/mi&gt;\u0000 &lt;mover accent=\"true\"&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi mathvariant=\"bold\"&gt;B&lt;/mi&gt;\u0000 &lt;mo&gt;′&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo stretchy=\"true\"&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt; are shown to be interpretable. In the approach of perturbative QCD counting rules, we study the three-body decay channels. In particular, we review the &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\"&gt;\u0000 &lt;mtext&gt;CP&lt;/mtext&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt; asymmetries of &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\"&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mo&gt;⟶&lt;/mo&gt;\u0000 &lt;mi mathvariant=\"bold\"&gt;B&lt;/mi&gt;\u0000 &lt;mover accent=\"true\"&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi mathvariant=\"bold\"&gt;B&lt;/mi&gt;\u0000 &lt;mo&gt;′&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo stretchy=\"true\"&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 ","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43149609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Phenomenology of Trimaximal Mixing with One Texture Equality 具有一个纹理等式的三极大混合现象学
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2022-02-26 DOI: 10.1155/2022/4952562
S. Dev, Desh Raj
<jats:p>We study neutrino mass matrices with one texture equality and the neutrino mixing matrix having either its first (<jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <mtext>T</mtext> <msub> <mrow> <mtext>M</mtext> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </math> </jats:inline-formula>) or second (<jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <mtext>T</mtext> <msub> <mrow> <mtext>M</mtext> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </math> </jats:inline-formula>) column identical to that of the tribimaximal mixing matrix. We found that out of total fifteen possible neutrino mass matrices with one texture equality, only six textures are compatible with <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3"> <mtext>T</mtext> <msub> <mrow> <mtext>M</mtext> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </math> </jats:inline-formula> mixing and six textures are compatible with <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4"> <mtext>T</mtext> <msub> <mrow> <mtext>M</mtext> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </math> </jats:inline-formula> mixing in the light of the current neutrino oscillation data. These textures have interesting implications for the presently unknown parameters such as the neutrino mass scale, effective Majorana neutrino mass, effective neutrino mass, the atmospheric mixing, and the Dirac- and Majorana-type CP violating phases. We, also, present the <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5"> <msub> <mrow> <mi>S</mi> </mrow> <mrow>
我们研究了具有一个织构等式的中微子质量矩阵和具有第一(t1)或第二(T)的中微子混合矩阵m2)列与三极大混合矩阵的列相同。我们发现,在总共15个可能的中微子质量矩阵中,有一个质地相等,只有六种纹理与t1混合兼容,六种纹理与T兼容在当前中微子振荡数据的光照下进行m2混合。这些结构对目前未知的参数,如中微子质量尺度、有效马约拉纳中微子质量、有效中微子质量、大气混合以及狄拉克和马约拉纳型CP违背相有有趣的意义。我们也提出了其中一些织构的s3群动机。
{"title":"Phenomenology of Trimaximal Mixing with One Texture Equality","authors":"S. Dev, Desh Raj","doi":"10.1155/2022/4952562","DOIUrl":"https://doi.org/10.1155/2022/4952562","url":null,"abstract":"&lt;jats:p&gt;We study neutrino mass matrices with one texture equality and the neutrino mixing matrix having either its first (&lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"&gt;\u0000 &lt;mtext&gt;T&lt;/mtext&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;M&lt;/mtext&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt;) or second (&lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"&gt;\u0000 &lt;mtext&gt;T&lt;/mtext&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;M&lt;/mtext&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt;) column identical to that of the tribimaximal mixing matrix. We found that out of total fifteen possible neutrino mass matrices with one texture equality, only six textures are compatible with &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"&gt;\u0000 &lt;mtext&gt;T&lt;/mtext&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;M&lt;/mtext&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt; mixing and six textures are compatible with &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"&gt;\u0000 &lt;mtext&gt;T&lt;/mtext&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;M&lt;/mtext&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt; mixing in the light of the current neutrino oscillation data. These textures have interesting implications for the presently unknown parameters such as the neutrino mass scale, effective Majorana neutrino mass, effective neutrino mass, the atmospheric mixing, and the Dirac- and Majorana-type CP violating phases. We, also, present the &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\"&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 ","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41480361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Vanishing Poynting Observers and Electromagnetic Field Classification in Kerr and Kerr-Newman Spacetimes Kerr和Kerr- newman时空中消失的坡印亭观测者和电磁场分类
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2022-02-23 DOI: 10.1155/2022/1066886
H. Vargas-Rodríguez, H. Rosu, M. G. Medina–Guevara, A. Gallegos, M. A. Muñiz-Torres
We consider electromagnetic fields having an angular momentum density in a locally nonrotating reference frame in Schwarzschild, Kerr, and Kerr-Newman spacetimes. The nature of such fields is assessed with two families of observers, the locally nonrotating ones and those of vanishing Poynting flux. The velocity fields of the vanishing-Poynting observers in the locally nonrotating reference frames are determined using the 3 + 1 decomposition formalism. From a methodological point of view and considering a classification of the electromagnetic field based on its invariants, it is convenient to separate the consideration of the vanishing-Poynting observers into two cases corresponding to the pure and nonpure fields; additionally, if there are regions where the field rotates with the speed of light (light surfaces), it becomes necessary to split these observers into two subfamilies. We present several examples of relevance in astrophysics and general relativity, such as pure rotating dipolar-like magnetic fields and the electromagnetic field of the Kerr-Newman solution. For the latter example, we see that vanishing-Poynting observers also measure a vanishing super-Poynting vector, confirming recent results in the literature. Finally, for all nonnull electromagnetic fields, we present the 4-velocity fields of vanishing Poynting observers in an arbitrary spacetime.
我们考虑在Schwarzschild, Kerr和Kerr- newman时空的局部非旋转参考系中具有角动量密度的电磁场。这类场的性质用两类观测器来评估,一类是局部不旋转的观测器,另一类是消失波印廷通量的观测器。用3 + 1分解的形式确定了局部不旋转参考系中消失-坡印亭观测点的速度场。从方法论的观点来看,考虑到电磁场的不变量分类,将消隐波印亭观测器的考虑分为对应于纯场和非纯场的两种情况是方便的;此外,如果存在以光速旋转的区域(光表面),则有必要将这些观察者分成两个亚族。我们提出了几个与天体物理学和广义相对论相关的例子,如纯旋转类偶极磁场和克尔-纽曼解的电磁场。对于后一个例子,我们看到消失的波印廷观察者也测量了消失的超级波印廷向量,证实了最近文献中的结果。最后,对于所有非零电磁场,我们给出了任意时空中消失的坡印亭观测者的四速度场。
{"title":"Vanishing Poynting Observers and Electromagnetic Field Classification in Kerr and Kerr-Newman Spacetimes","authors":"H. Vargas-Rodríguez, H. Rosu, M. G. Medina–Guevara, A. Gallegos, M. A. Muñiz-Torres","doi":"10.1155/2022/1066886","DOIUrl":"https://doi.org/10.1155/2022/1066886","url":null,"abstract":"We consider electromagnetic fields having an angular momentum density in a locally nonrotating reference frame in Schwarzschild, Kerr, and Kerr-Newman spacetimes. The nature of such fields is assessed with two families of observers, the locally nonrotating ones and those of vanishing Poynting flux. The velocity fields of the vanishing-Poynting observers in the locally nonrotating reference frames are determined using the \u0000 \u0000 3\u0000 +\u0000 1\u0000 \u0000 decomposition formalism. From a methodological point of view and considering a classification of the electromagnetic field based on its invariants, it is convenient to separate the consideration of the vanishing-Poynting observers into two cases corresponding to the pure and nonpure fields; additionally, if there are regions where the field rotates with the speed of light (light surfaces), it becomes necessary to split these observers into two subfamilies. We present several examples of relevance in astrophysics and general relativity, such as pure rotating dipolar-like magnetic fields and the electromagnetic field of the Kerr-Newman solution. For the latter example, we see that vanishing-Poynting observers also measure a vanishing super-Poynting vector, confirming recent results in the literature. Finally, for all nonnull electromagnetic fields, we present the 4-velocity fields of vanishing Poynting observers in an arbitrary spacetime.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41789060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hunting for Direct CP Violation in 寻找直接违反CP
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2022-02-23 DOI: 10.1155/2022/3136459
Sheng-Tao Li, Gang Lü
In perturbative QCD approach, based on the first order of isospin symmetry breaking, we study the direct <svg height="8.98583pt" style="vertical-align:-0.2324905pt" version="1.1" viewbox="-0.0498162 -8.75334 16.1235 8.98583" width="16.1235pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g><g transform="matrix(.013,0,0,-0.013,8.645,0)"></path></g></svg> violation in the decay of <span><svg height="18.3992pt" style="vertical-align:-3.943601pt" version="1.1" viewbox="-0.0498162 -14.4556 34.598 18.3992" width="34.598pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><rect height="0.65243" width="7.84228" x="0" y="-11.1958"></rect><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-67"></use></g><g transform="matrix(.0091,0,0,-0.0091,7.842,-8.606)"><use xlink:href="#g50-49"></use></g><g transform="matrix(.0091,0,0,-0.0091,7.842,3.784)"><use xlink:href="#g50-116"></use></g><g transform="matrix(.013,0,0,-0.013,16.421,0)"><use xlink:href="#g117-149"></use></g><g transform="matrix(.013,0,0,-0.013,22.196,0)"><use xlink:href="#g117-148"></use></g></svg><span></span><svg height="18.3992pt" style="vertical-align:-3.943601pt" version="1.1" viewbox="38.2581838 -14.4556 66.455 18.3992" width="66.455pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,38.308,0)"></path></g><g transform="matrix(.013,0,0,-0.013,45.318,0)"></path></g><g transform="matrix(.013,0,0,-0.013,49.816,0)"></path></g><g transform="matrix(.013,0,0,-0.013,58.111,0)"></path></g><g transform="matrix(.013,0,0,-0.013,62.609,0)"><use xlink:href="#g113-76"></use></g><g transform="matrix(.0091,0,0,-0.0091,72.426,-5.741)"><use xlink:href="#g50-43"></use></g><g transform="matrix(.0091,0,0,-0.0091,77.986,-5.741)"><use xlink:href="#g50-49"></use></g><g transform="matrix(.013,0,0,-0.013,86.585,0)"><use xlink:href="#g117-149"></use></g><g transform="matrix(.013,0,0,-0.013,92.361,0)"><use xlink:href="#g117-148"></use></g></svg><span></span><span><svg height="18.3992pt" style="vertical-align:-3.943601pt" version="1.1" viewbox="108.4231838 -14.4556 48.181 18.3992" width="48.181pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,108.473,0)"><use xlink:href="#g113-238"></use></g><g transform="matrix(.0091,0,0,-0.0091,116.157,-5.741)"><use xlink:href="#g54-36"></use></g><g transform="matrix(.013,0,0,-0.013,122.236,0)"><use xlink:href="#g113-238"></use></g><g transform="matrix(.0091,0,0,-0.0091,129.92,-5.741)"><use xlink:href="#g54-33"></use></g><g transform="matrix(.013,0,0,-0.013,135.999,0)"><use xlink:href="#g113-76"></use></g><g transform="matrix(.0091,0,0,-0.0091,145.816,-5.741)"><use xlink:href="#g50-43"></use></g><g transform="matrix(.0091,0,0,-0.0091,151.376,-5.741)"><use xlink:href="#g50-49"></use></g></svg>.</span></span> An interesting mechanis
在微扰QCD方法中,基于同位旋对称性破缺的一阶,我们研究了衰变中的直接违背。应用了一种有趣的机制来扩大违反不对称性,涉及和之间的电荷对称破缺。我们发现,当不变质量对在共振附近时,混合机制的违和很大。的衰变过程中,可以达到最大破坏。此外,考虑混合,我们计算了分支比。我们还讨论了在大型强子对撞机上观测到预测的违和不对称性的可能性。
{"title":"Hunting for Direct CP Violation in","authors":"Sheng-Tao Li, Gang Lü","doi":"10.1155/2022/3136459","DOIUrl":"https://doi.org/10.1155/2022/3136459","url":null,"abstract":"In perturbative QCD approach, based on the first order of isospin symmetry breaking, we study the direct &lt;svg height=\"8.98583pt\" style=\"vertical-align:-0.2324905pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.75334 16.1235 8.98583\" width=\"16.1235pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,8.645,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt; violation in the decay of &lt;span&gt;&lt;svg height=\"18.3992pt\" style=\"vertical-align:-3.943601pt\" version=\"1.1\" viewbox=\"-0.0498162 -14.4556 34.598 18.3992\" width=\"34.598pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;rect height=\"0.65243\" width=\"7.84228\" x=\"0\" y=\"-11.1958\"&gt;&lt;/rect&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-67\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,7.842,-8.606)\"&gt;&lt;use xlink:href=\"#g50-49\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,7.842,3.784)\"&gt;&lt;use xlink:href=\"#g50-116\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,16.421,0)\"&gt;&lt;use xlink:href=\"#g117-149\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,22.196,0)\"&gt;&lt;use xlink:href=\"#g117-148\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;svg height=\"18.3992pt\" style=\"vertical-align:-3.943601pt\" version=\"1.1\" viewbox=\"38.2581838 -14.4556 66.455 18.3992\" width=\"66.455pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,38.308,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,45.318,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,49.816,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,58.111,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,62.609,0)\"&gt;&lt;use xlink:href=\"#g113-76\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,72.426,-5.741)\"&gt;&lt;use xlink:href=\"#g50-43\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,77.986,-5.741)\"&gt;&lt;use xlink:href=\"#g50-49\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,86.585,0)\"&gt;&lt;use xlink:href=\"#g117-149\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,92.361,0)\"&gt;&lt;use xlink:href=\"#g117-148\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;span&gt;&lt;svg height=\"18.3992pt\" style=\"vertical-align:-3.943601pt\" version=\"1.1\" viewbox=\"108.4231838 -14.4556 48.181 18.3992\" width=\"48.181pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,108.473,0)\"&gt;&lt;use xlink:href=\"#g113-238\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,116.157,-5.741)\"&gt;&lt;use xlink:href=\"#g54-36\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,122.236,0)\"&gt;&lt;use xlink:href=\"#g113-238\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,129.92,-5.741)\"&gt;&lt;use xlink:href=\"#g54-33\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,135.999,0)\"&gt;&lt;use xlink:href=\"#g113-76\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,145.816,-5.741)\"&gt;&lt;use xlink:href=\"#g50-43\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,151.376,-5.741)\"&gt;&lt;use xlink:href=\"#g50-49\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;.&lt;/span&gt;&lt;/span&gt; An interesting mechanis","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"290 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138520540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Charmless Quasi-Two-Body Decays in Perturbative QCD Approach: Taking as Examples 微扰QCD方法中的无粲准二体衰变:以实例为例
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2022-02-22 DOI: 10.1155/2022/5287693
Wen-Feng Liu, Zhi-Tian Zou, Ying Li
Three-body <svg height="8.68572pt" style="vertical-align:-0.0498209pt" version="1.1" viewbox="-0.0498162 -8.6359 7.94191 8.68572" width="7.94191pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-67"></use></g></svg> decays not only significantly broaden the study of <svg height="8.68572pt" style="vertical-align:-0.0498209pt" version="1.1" viewbox="-0.0498162 -8.6359 7.94191 8.68572" width="7.94191pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-67"></use></g></svg> meson decay mechanisms but also provide information of resonant particles. Because of complicate dynamics, it is very hard for us to study the whole phase space in a specific approach. In this review, we take <span><svg height="13.0648pt" style="vertical-align:-2.268101pt" version="1.1" viewbox="-0.0498162 -10.7967 29.623 13.0648" width="29.623pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"><use xlink:href="#g113-67"></use></g><g transform="matrix(.013,0,0,-0.013,11.445,0)"><use xlink:href="#g117-149"></use></g><g transform="matrix(.013,0,0,-0.013,17.221,0)"><use xlink:href="#g117-148"></use></g></svg><span></span><svg height="13.0648pt" style="vertical-align:-2.268101pt" version="1.1" viewbox="33.2821838 -10.7967 48.397 13.0648" width="48.397pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,33.332,0)"><use xlink:href="#g113-76"></use></g><g transform="matrix(.013,0,0,-0.013,43.149,0)"><use xlink:href="#g113-41"></use></g><g transform="matrix(.013,0,0,-0.013,47.647,0)"><use xlink:href="#g198-19"></use></g><g transform="matrix(.013,0,0,-0.013,63.551,0)"><use xlink:href="#g117-149"></use></g><g transform="matrix(.013,0,0,-0.013,69.327,0)"><use xlink:href="#g117-148"></use></g></svg><span></span><svg height="13.0648pt" style="vertical-align:-2.268101pt" version="1.1" viewbox="81.7561838 -10.7967 36.603 13.0648" width="36.603pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,81.806,0)"><use xlink:href="#g113-42"></use></g><g transform="matrix(.013,0,0,-0.013,86.304,0)"><use xlink:href="#g113-76"></use></g><g transform="matrix(.0091,0,0,-0.0091,96.122,-5.741)"><use xlink:href="#g54-36"></use></g><g transform="matrix(.013,0,0,-0.013,102.201,0)"><use xlink:href="#g113-76"></use></g><g transform="matrix(.0091,0,0,-0.0091,112.018,-5.741)"><use xlink:href="#g54-33"></use></g></svg></span> decays as examples and show the application of the perturbative QCD (PQCD) approach in studying the quasi-two-body <svg height="8.68572pt" style="vertical-align:-0.0498209pt" version="1.1" viewbox="-0.0498162 -8.6359 7.94191 8.68572" width="7.94191pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www
三体衰变不仅大大拓宽了介子衰变机制的研究,而且提供了共振粒子的信息。由于动力学的复杂性,我们很难用一种特定的方法来研究整个相空间。本文以衰变为例,介绍了微扰QCD (PQCD)方法在准二体衰变中的应用。在准二体衰变中,两个粒子以大能量共线运动,其中一个粒子反冲。为了描述两个共线粒子的动力学,引入了具有不同波的卡子对的、、和-波函数。通过保持横向动量,PQCD方法可以计算出所有可能的图,包括硬旁观者图和湮灭图。大多数结果与目前BaBar, Belle和LHCb实验的测量结果一致。此外,在窄宽度近似下,我们可以提取涉及共振态的两体衰变的分支分数,并预测相应的准两体衰变的分支分数。所有的预测都将在正在进行的LHCb和Belle-II实验中得到验证。
{"title":"Charmless Quasi-Two-Body Decays in Perturbative QCD Approach: Taking as Examples","authors":"Wen-Feng Liu, Zhi-Tian Zou, Ying Li","doi":"10.1155/2022/5287693","DOIUrl":"https://doi.org/10.1155/2022/5287693","url":null,"abstract":"Three-body &lt;svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 7.94191 8.68572\" width=\"7.94191pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-67\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt; decays not only significantly broaden the study of &lt;svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 7.94191 8.68572\" width=\"7.94191pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-67\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt; meson decay mechanisms but also provide information of resonant particles. Because of complicate dynamics, it is very hard for us to study the whole phase space in a specific approach. In this review, we take &lt;span&gt;&lt;svg height=\"13.0648pt\" style=\"vertical-align:-2.268101pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.7967 29.623 13.0648\" width=\"29.623pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-67\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,11.445,0)\"&gt;&lt;use xlink:href=\"#g117-149\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,17.221,0)\"&gt;&lt;use xlink:href=\"#g117-148\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;svg height=\"13.0648pt\" style=\"vertical-align:-2.268101pt\" version=\"1.1\" viewbox=\"33.2821838 -10.7967 48.397 13.0648\" width=\"48.397pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,33.332,0)\"&gt;&lt;use xlink:href=\"#g113-76\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,43.149,0)\"&gt;&lt;use xlink:href=\"#g113-41\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,47.647,0)\"&gt;&lt;use xlink:href=\"#g198-19\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,63.551,0)\"&gt;&lt;use xlink:href=\"#g117-149\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,69.327,0)\"&gt;&lt;use xlink:href=\"#g117-148\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;svg height=\"13.0648pt\" style=\"vertical-align:-2.268101pt\" version=\"1.1\" viewbox=\"81.7561838 -10.7967 36.603 13.0648\" width=\"36.603pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,81.806,0)\"&gt;&lt;use xlink:href=\"#g113-42\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,86.304,0)\"&gt;&lt;use xlink:href=\"#g113-76\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,96.122,-5.741)\"&gt;&lt;use xlink:href=\"#g54-36\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,102.201,0)\"&gt;&lt;use xlink:href=\"#g113-76\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,112.018,-5.741)\"&gt;&lt;use xlink:href=\"#g54-33\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;/span&gt; decays as examples and show the application of the perturbative QCD (PQCD) approach in studying the quasi-two-body &lt;svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 7.94191 8.68572\" width=\"7.94191pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"15 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138542840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calculated Event Rates for Axion Detection via Atomic and Nuclear Processes 通过原子和核过程检测轴子的计算事件率
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2022-02-22 DOI: 10.1155/2022/7373365
John D. Vergados, Paraskevi C. Divari, Hiroyasu Ejiri
The possibility of detection of 5.5 MeV and 14.4 keV solar axions by observing axion-induced nuclear and atomic transitions is investigated. The presence of nuclear transitions between spin orbit partners can be manifested by the subsequent deexcitation via gamma ray emissions. The transition rates can also be studied in the context of radiative axion absorption by a nucleus. The elementary interaction is obtained in the context of the axion-quark couplings predicted by existing axion models. Then, these couplings will be transformed to the nucleon level utilizing reasonable existing models, which lead to effective transition operators. Using these operators, we calculate the needed nuclear matrix elements employing wave functions obtained in the context of the nuclear shell model. With these ingredients, we discuss possibilities of experimental observation of the axion-induced nuclear gamma rays. In the second part, we will examine the axion-induced production of X-rays (axion-photon conversion) or ionization from deeply bound electron orbits. In this case, the axion electron coupling is predicted by existing axion models; no renormalization is needed. The experimental signal is the observation of directly produced electrons and/or the emission of hard X-rays and Auger electrons, following the deexcitation of the final atom. Critical discussion is made on the experimental feasibility of detecting the solar axions by using multiton scale NaI detectors.
研究了通过观测轴子诱导的核跃迁和原子跃迁来探测5.5 MeV和14.4 keV太阳轴子的可能性。自旋轨道伙伴之间的核跃迁的存在可以通过随后的伽玛射线发射来证明。跃迁速率也可以在原子核辐射轴子吸收的情况下进行研究。基本相互作用是在现有轴子模型预测的轴子-夸克耦合的背景下得到的。然后,利用合理的现有模型将这些耦合转换到核子水平,从而得到有效的跃迁算子。利用这些算符,我们利用在核壳模型中得到的波函数计算出所需的核矩阵元素。在此基础上,讨论了轴子诱导核伽马射线实验观测的可能性。在第二部分中,我们将研究从深度束缚电子轨道产生的轴-光子转换或电离。在这种情况下,用现有的轴子模型来预测轴子-电子耦合;不需要重整。实验信号是观察到的直接产生的电子和/或发射的硬x射线和俄歇电子,在最后的原子去激发。重点讨论了用多吨尺度NaI探测器探测太阳轴子的实验可行性。
{"title":"Calculated Event Rates for Axion Detection via Atomic and Nuclear Processes","authors":"John D. Vergados, Paraskevi C. Divari, Hiroyasu Ejiri","doi":"10.1155/2022/7373365","DOIUrl":"https://doi.org/10.1155/2022/7373365","url":null,"abstract":"The possibility of detection of 5.5 MeV and 14.4 keV solar axions by observing axion-induced nuclear and atomic transitions is investigated. The presence of nuclear transitions between spin orbit partners can be manifested by the subsequent deexcitation via gamma ray emissions. The transition rates can also be studied in the context of radiative axion absorption by a nucleus. The elementary interaction is obtained in the context of the axion-quark couplings predicted by existing axion models. Then, these couplings will be transformed to the nucleon level utilizing reasonable existing models, which lead to effective transition operators. Using these operators, we calculate the needed nuclear matrix elements employing wave functions obtained in the context of the nuclear shell model. With these ingredients, we discuss possibilities of experimental observation of the axion-induced nuclear gamma rays. In the second part, we will examine the axion-induced production of X-rays (axion-photon conversion) or ionization from deeply bound electron orbits. In this case, the axion electron coupling is predicted by existing axion models; no renormalization is needed. The experimental signal is the observation of directly produced electrons and/or the emission of hard X-rays and Auger electrons, following the deexcitation of the final atom. Critical discussion is made on the experimental feasibility of detecting the solar axions by using multiton scale NaI detectors.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"34 7","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138520535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
B ⟶ P , V Form Factors with the B -Meson Light-Cone Sum Rules B⟶ 具有B-介子光锥和规则的P,V形因子
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2022-02-22 DOI: 10.1155/2022/2755821
Yue Shen, Yan-Bing Wei
In this review, we discuss the calculation of the B ⟶ P , V form factors within the framework of the light-cone sum rules with the light-cone distribution amplitudes of the B -meson. A detailed introduction to the definition, scale evolution, and phenomenological models of the B -meson distribution amplitudes is presented. We show two equivalent approaches of calculating the next-to-leading order QCD corrections to the sum rules for the form factors, i.e., the method of regions and the step-by-step matching in the soft-collinear effective theory. The power suppressed corrections to the B ⟶ P , V form factors especially the contributions from the higher-twist B -meson distribution amplitudes are displayed. We also present numerical results of the form factors including both the QCD and the power corrections, and phenomenological applications of the predicted form factors such as the determination of the CKM matrix element V u b .
在这篇综述中,我们讨论了B介子的光锥分布振幅和光锥和规则框架内的B、P、V形因子的计算。详细介绍了B介子分布振幅的定义、尺度演化和现象学模型。我们给出了计算形状因子和规则的次领先阶QCD修正的两种等效方法,即软共线有效理论中的区域法和逐步匹配法。显示了对B、P、V形状因子的功率抑制修正,特别是高捻B介子分布幅度的贡献。我们还给出了形状因子的数值结果,包括QCD和功率校正,以及预测形状因子的现象学应用,如CKM矩阵元素V u b的确定。
{"title":"B\u0000 ⟶\u0000 P\u0000 ,\u0000 V\u0000 Form Factors with the \u0000 B\u0000 -Meson Light-Cone Sum Rules","authors":"Yue Shen, Yan-Bing Wei","doi":"10.1155/2022/2755821","DOIUrl":"https://doi.org/10.1155/2022/2755821","url":null,"abstract":"In this review, we discuss the calculation of the \u0000 \u0000 B\u0000 ⟶\u0000 P\u0000 ,\u0000 V\u0000 \u0000 form factors within the framework of the light-cone sum rules with the light-cone distribution amplitudes of the \u0000 \u0000 B\u0000 \u0000 -meson. A detailed introduction to the definition, scale evolution, and phenomenological models of the \u0000 \u0000 B\u0000 \u0000 -meson distribution amplitudes is presented. We show two equivalent approaches of calculating the next-to-leading order QCD corrections to the sum rules for the form factors, i.e., the method of regions and the step-by-step matching in the soft-collinear effective theory. The power suppressed corrections to the \u0000 \u0000 B\u0000 ⟶\u0000 P\u0000 ,\u0000 V\u0000 \u0000 form factors especially the contributions from the higher-twist \u0000 \u0000 B\u0000 \u0000 -meson distribution amplitudes are displayed. We also present numerical results of the form factors including both the QCD and the power corrections, and phenomenological applications of the predicted form factors such as the determination of the CKM matrix element \u0000 \u0000 \u0000 \u0000 \u0000 \u0000 V\u0000 \u0000 \u0000 u\u0000 b\u0000 \u0000 \u0000 \u0000 \u0000 \u0000 .","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43684631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Advances in High Energy Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1