首页 > 最新文献

Advances in High Energy Physics最新文献

英文 中文
Study of B s ⟶ ϕ B s的研究
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2021-11-09 DOI: 10.1155/2021/3840623
Su-Ping Jin, Zhen-Jun Xiao
<jats:p>In this paper, we studied systematically the semileptonic decays <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <msub> <mrow> <mi>B</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>⟶</mo> <mi>ϕ</mi> <msup> <mrow> <mi>l</mi> </mrow> <mrow> <mo>+</mo> </mrow> </msup> <msup> <mrow> <mi>l</mi> </mrow> <mrow> <mo>−</mo> </mrow> </msup> </math> </jats:inline-formula> with <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3"> <msup> <mrow> <mi>l</mi> </mrow> <mrow> <mo>−</mo> </mrow> </msup> <mo>=</mo> <mfenced open="(" close=")"> <mrow> <msup> <mrow> <mi>e</mi> </mrow> <mrow> <mo>−</mo> </mrow> </msup> <mo>,</mo> <msup> <mrow> <mi>μ</mi> </mrow> <mrow> <mo>−</mo> </mrow> </msup> <mo>,</mo> <msup> <mrow> <mi>τ</mi> </mrow> <mrow> <mo>−</mo> </mrow> </msup> </mrow> </mfenced> </math> </jats:inline-formula> by using the perturbative QCD (PQCD) and the “PQCD+Lattice” factorization approach, respectively. We first eval
在本文中,我们系统地研究了半光子衰减B s+ l−with l−= e−,μ−,τ−分别采用微扰QCD (PQCD)和“PQCD+晶格”分解方法。我们首先评估了所有相关的外形因素F i q2在低q2区域使用PQCD方法,并且我们还将高q2区域的可用晶格QCD结果作为额外输入,以改进的外推F i q 2从低q2区域到端点qMax 2。 然后,我们计算了分支比率和许多其他物理观察结果,F l φ,S 3 4 7,和A 5,6,8,9和干净角观测值p1
{"title":"Study of \u0000 \u0000 \u0000 B\u0000 \u0000 \u0000 s\u0000 \u0000 \u0000 ⟶\u0000 ϕ\u0000 \u0000 ","authors":"Su-Ping Jin, Zhen-Jun Xiao","doi":"10.1155/2021/3840623","DOIUrl":"https://doi.org/10.1155/2021/3840623","url":null,"abstract":"&lt;jats:p&gt;In this paper, we studied systematically the semileptonic decays &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;⟶&lt;/mo&gt;\u0000 &lt;mi&gt;ϕ&lt;/mi&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;l&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;l&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt; with &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;l&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mfenced open=\"(\" close=\")\"&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;μ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;τ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mfenced&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt; by using the perturbative QCD (PQCD) and the “PQCD+Lattice” factorization approach, respectively. We first eval","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43997116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Nonsymmetric Flavor Transition Matrix and the Apparent P Violation 非对称风味转变矩阵与表观P违逆
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2021-10-29 DOI: 10.1155/2022/6949022
Shu-Jun Rong, Dingan Xu
The leptonic mixing parameters of high precision and the next-generation neutrino telescopes make it possible to test new physics in the flavor transition of the high-energy astrophysical neutrinos (HAN). We introduce a nonsymmetric matrix to modify the predictions of the standard flavor transition matrix. It is constructed with the mixing matrix in vacuum and that at the source of the HAN. The mismatch of the mixing matrices results in the new expectation of the flavor ratio of the HAN at Earth. It also leads to a secondary effect called the apparent P violation (APV). The quantitative analyses of the new effects are performed with a moderate setup of the parameters at the source of the HAN. The correlations between the mixing parameters and the new predictions are shown. From the correlations, the dominant parameters determining the new-physics effects are identified.
高精度的轻子混合参数和下一代中微子望远镜使高能天体物理中微子(HAN)风味跃迁的新物理测试成为可能。我们引入了一个非对称矩阵来修正标准风味转移矩阵的预测。它是由真空中的混合矩阵和HAN源处的混合矩阵构成的。混合矩阵的不匹配导致了对地球上HAN的风味比的新期望。它还会导致一种次要效应,称为表观P违逆(APV)。对新效应进行了定量分析,并在HAN源处设置了适当的参数。给出了混合参数与新预测结果之间的相关性。从相关关系中,确定了决定新物理效应的主要参数。
{"title":"The Nonsymmetric Flavor Transition Matrix and the Apparent P Violation","authors":"Shu-Jun Rong, Dingan Xu","doi":"10.1155/2022/6949022","DOIUrl":"https://doi.org/10.1155/2022/6949022","url":null,"abstract":"The leptonic mixing parameters of high precision and the next-generation neutrino telescopes make it possible to test new physics in the flavor transition of the high-energy astrophysical neutrinos (HAN). We introduce a nonsymmetric matrix to modify the predictions of the standard flavor transition matrix. It is constructed with the mixing matrix in vacuum and that at the source of the HAN. The mismatch of the mixing matrices results in the new expectation of the flavor ratio of the HAN at Earth. It also leads to a secondary effect called the apparent P violation (APV). The quantitative analyses of the new effects are performed with a moderate setup of the parameters at the source of the HAN. The correlations between the mixing parameters and the new predictions are shown. From the correlations, the dominant parameters determining the new-physics effects are identified.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46865100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Growth of a Renormalized Operator as a Probe of Chaos 作为混沌探针的重正则化算子的增长
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2021-10-28 DOI: 10.1155/2022/9216427
Xing Huang, Binchao Zhang
We propose that the size of an operator evolved under holographic renormalization group flow shall grow linearly with the scale and interpret this behavior as a manifestation of the saturation of the chaos bound. To test this conjecture, we study the operator growth in two different toy models. The first one is a MERA-like tensor network built from a random unitary circuit with the operator size defined using the integrated out-of-time-ordered correlator (OTOC). The second model is an error-correcting code of perfect tensors, and the operator size is computed using the number of single-site physical operators that realize the logical operator. In both cases, we observe linear growth.
我们提出在全息重整化群流下演化的算子的大小应随尺度线性增长,并将这种行为解释为混沌界饱和的表现。为了验证这一猜想,我们研究了两个不同玩具模型中的算子增长。第一个是由随机酉电路构建的类mera张量网络,其算子大小使用集成的非时序相关器(OTOC)定义。第二个模型是完全张量的纠错码,利用实现逻辑算子的单点物理算子的个数计算算子的大小。在这两种情况下,我们都观察到线性增长。
{"title":"Growth of a Renormalized Operator as a Probe of Chaos","authors":"Xing Huang, Binchao Zhang","doi":"10.1155/2022/9216427","DOIUrl":"https://doi.org/10.1155/2022/9216427","url":null,"abstract":"We propose that the size of an operator evolved under holographic renormalization group flow shall grow linearly with the scale and interpret this behavior as a manifestation of the saturation of the chaos bound. To test this conjecture, we study the operator growth in two different toy models. The first one is a MERA-like tensor network built from a random unitary circuit with the operator size defined using the integrated out-of-time-ordered correlator (OTOC). The second model is an error-correcting code of perfect tensors, and the operator size is computed using the number of single-site physical operators that realize the logical operator. In both cases, we observe linear growth.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44475306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Search for the Charmed Baryonium and Dibaryon Structures via the QCD Sum Rules 用QCD求和规则寻找魅力重子和二重子结构
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2021-10-27 DOI: 10.1155/2022/6224597
Xiu-Wu Wang, Zhi-Gang wang
<jats:p>In the present work, we construct eight six-quark currents to study the <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <msub> <mrow> <mi>Σ</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> <msub> <mrow> <mover accent="true"> <mi>Σ</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </math> </jats:inline-formula> baryonium and <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <msub> <mrow> <mi>Σ</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> <msub> <mrow> <mi>Σ</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </math> </jats:inline-formula> dibaryon states via the QCD sum rules. For either <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3"> <msub> <mrow> <mi>Σ</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> <msub> <mrow> <mover accent="true"> <mi>Σ</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </math> </jats:inline-formula> baryonium or <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4"> <msub> <mrow> <mi>Σ</mi> </mrow> <mrow> <mi>c</mi>
在本工作中,我们构造了八个六夸克流来研究∑c∑c重子和∑通过QCD和的c∑c二核态规则。对于∑c∑?c钡鎓或∑c∑c二核态,我们构造了四个电流,其中J P=1−,1+,0+和0−。除了当前的1+∑c,我们找到了其他七个的Borel窗口。
{"title":"Search for the Charmed Baryonium and Dibaryon Structures via the QCD Sum Rules","authors":"Xiu-Wu Wang, Zhi-Gang wang","doi":"10.1155/2022/6224597","DOIUrl":"https://doi.org/10.1155/2022/6224597","url":null,"abstract":"&lt;jats:p&gt;In the present work, we construct eight six-quark currents to study the &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Σ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mover accent=\"true\"&gt;\u0000 &lt;mi&gt;Σ&lt;/mi&gt;\u0000 &lt;mo stretchy=\"true\"&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt; baryonium and &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Σ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Σ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt; dibaryon states via the QCD sum rules. For either &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Σ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mover accent=\"true\"&gt;\u0000 &lt;mi&gt;Σ&lt;/mi&gt;\u0000 &lt;mo stretchy=\"true\"&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt; baryonium or &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Σ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 ","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42252378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Quark-Antiquark Effective Potential in Symplectic Quantum Mechanics 辛量子力学中的夸克-反夸克有效势
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2021-10-23 DOI: 10.1155/2022/3409776
R. Luz, G. Petronilo, Ademir de Santana, C. Costa, R. Amorim, R. Paiva
In this paper, we study within the structure of Symplectic Quantum Mechanics a bidimensional nonrelativistic strong interaction system which represent the bound state of heavy quark-antiquark, where we consider a Cornell potential which consists of Coulomb-type plus linear potentials. First, we solve the Schrödinger equation in the phase space with the linear potential. The solution (ground state) is obtained and analyzed by means of the Wigner function related to Airy function for the c c ¯ meson. In the second case, to treat the Schrödinger-like equation in the phase space, a procedure based on the Bohlin transformation is presented and applied to the Cornell potential. In this case, the system is separated into two parts, one analogous to the oscillator and the other we treat using perturbation method. Then, we quantized the Hamiltonian with the aid of stars operators in the phase space representation so that we can determine through the algebraic method the eigenfunctions of the undisturbed Hamiltonian (oscillator solution), and the other part of the Hamiltonian was the perturbation method. The eigenfunctions found (undisturbed plus disturbed) are associated with the Wigner function via Weyl product using the representation theory of Galilei group in the phase space. The Wigner function is analyzed, and the nonclassicality of ground state and first excited state is studied by the nonclassicality indicator or negativity parameter of the Wigner function for this system. In some aspects, we observe that the Wigner function offers an easier way to visualize the nonclassic nature of meson system than the wavefunction does phase space.
本文在辛量子力学的结构中研究了一个表示重夸克反夸克束缚态的二维非相对论强相互作用系统,其中我们考虑了由库仑型加线性势组成的康奈尔势。首先,我们在具有线性势的相空间中求解薛定谔方程。通过与c介子的Airy函数相关的Wigner函数获得并分析了解(基态)。在第二种情况下,为了处理相空间中的类薛定谔方程,提出了一种基于Bohlin变换的程序,并将其应用于Cornell势。在这种情况下,系统被分为两部分,一部分类似于振荡器,另一部分我们使用微扰方法处理。然后,我们在相空间表示中借助恒星算子对哈密顿量进行量化,以便通过代数方法确定未扰动哈密顿量(振子解)的本征函数,而哈密顿量的另一部分是微扰方法。利用Galilei群在相空间中的表示理论,通过Weyl乘积将发现的本征函数(未扰动加扰动)与Wigner函数相关联。分析了Wigner函数,并利用该系统的Wigner方程的非经典指标或负参数研究了基态和第一激发态的非经典性。在某些方面,我们观察到Wigner函数比波函数提供了一种更容易的方式来可视化介子系统的非经典性质。
{"title":"Quark-Antiquark Effective Potential in Symplectic Quantum Mechanics","authors":"R. Luz, G. Petronilo, Ademir de Santana, C. Costa, R. Amorim, R. Paiva","doi":"10.1155/2022/3409776","DOIUrl":"https://doi.org/10.1155/2022/3409776","url":null,"abstract":"In this paper, we study within the structure of Symplectic Quantum Mechanics a bidimensional nonrelativistic strong interaction system which represent the bound state of heavy quark-antiquark, where we consider a Cornell potential which consists of Coulomb-type plus linear potentials. First, we solve the Schrödinger equation in the phase space with the linear potential. The solution (ground state) is obtained and analyzed by means of the Wigner function related to Airy function for the \u0000 \u0000 c\u0000 \u0000 \u0000 c\u0000 \u0000 \u0000 ¯\u0000 \u0000 \u0000 \u0000 meson. In the second case, to treat the Schrödinger-like equation in the phase space, a procedure based on the Bohlin transformation is presented and applied to the Cornell potential. In this case, the system is separated into two parts, one analogous to the oscillator and the other we treat using perturbation method. Then, we quantized the Hamiltonian with the aid of stars operators in the phase space representation so that we can determine through the algebraic method the eigenfunctions of the undisturbed Hamiltonian (oscillator solution), and the other part of the Hamiltonian was the perturbation method. The eigenfunctions found (undisturbed plus disturbed) are associated with the Wigner function via Weyl product using the representation theory of Galilei group in the phase space. The Wigner function is analyzed, and the nonclassicality of ground state and first excited state is studied by the nonclassicality indicator or negativity parameter of the Wigner function for this system. In some aspects, we observe that the Wigner function offers an easier way to visualize the nonclassic nature of meson system than the wavefunction does phase space.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42307100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Investigation of Baryons in the Hypercentral Quark Model 超中心夸克模型中重子的研究
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2021-10-21 DOI: 10.1155/2021/7713697
N. Tazimi, P. Sadeghi Alavijeh
In the present study, we consider baryons as three-body bound systems according to the hypercentral constituent quark model in configuration space and solve the three-body Klein-Gordon equation. Then, we analyze perturbative spin-dependent and isospin-dependent interaction effects. To find the analytical solution, we use screened potential and calculate the eigenfunctions and eigenvalues of some baryons. We consider exclusive semileptonic decays of bottom and charm baryons and apply the differential decay width with the Isgur-Wise function and arrive at the rates for some semileptonic baryon decays. The results prove more enhanced compared to recent works and comply well with the experimental data.
在本研究中,我们根据超中心组成夸克模型在组态空间中将重子视为三体束缚系统,并求解了三体Klein-Gordon方程。然后,我们分析了微扰自旋依赖和同位自旋依赖的相互作用效应。为了找到解析解,我们利用屏蔽势,计算了一些重子的本征函数和本征值。我们考虑底重子和粲重子的独占半光子衰变,并应用Isgur-Wise函数的微分衰变宽度,得到了某些半光子衰变的速率。结果表明,与以往的研究相比,该方法得到了较好的改进,与实验数据吻合较好。
{"title":"Investigation of Baryons in the Hypercentral Quark Model","authors":"N. Tazimi, P. Sadeghi Alavijeh","doi":"10.1155/2021/7713697","DOIUrl":"https://doi.org/10.1155/2021/7713697","url":null,"abstract":"In the present study, we consider baryons as three-body bound systems according to the hypercentral constituent quark model in configuration space and solve the three-body Klein-Gordon equation. Then, we analyze perturbative spin-dependent and isospin-dependent interaction effects. To find the analytical solution, we use screened potential and calculate the eigenfunctions and eigenvalues of some baryons. We consider exclusive semileptonic decays of bottom and charm baryons and apply the differential decay width with the Isgur-Wise function and arrive at the rates for some semileptonic baryon decays. The results prove more enhanced compared to recent works and comply well with the experimental data.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64766273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximate Solutions, Thermal Properties, and Superstatistics Solutions to Schrödinger Equation 薛定谔方程的近似解、热性质和超统计解
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2021-10-16 DOI: 10.1155/2022/5178247
I. Okon, C. Onate, E. Omugbe, U. Okorie, A. Antia, M. Onyeaju, Wen-Li Chen, J. Araújo
In this work, we apply the parametric Nikiforov-Uvarov method to obtain eigensolutions and total normalized wave function of Schrödinger equation expressed in terms of Jacobi polynomial using Coulomb plus Screened Exponential Hyperbolic Potential (CPSEHP), where we obtained the probability density plots for the proposed potential for various orbital angular quantum number, as well as some special cases (Hellmann and Yukawa potential). The proposed potential is best suitable for smaller values of the screening parameter α . The resulting energy eigenvalue is presented in a close form and extended to study thermal properties and superstatistics expressed in terms of partition function Z and other thermodynamic properties such as vibrational mean energy U , vibrational specific heat capacity C , vibrational entropy S , and vibrational free energy F . Using the resulting energy equation and with the help of Matlab software, the numerical bound state solutions were obtained for various values of the screening parameter ( α ) as well as different expectation values via Hellmann-Feynman Theorem (HFT). The trend of the partition function and other thermodynamic properties obtained for both thermal properties and superstatistics were in excellent agreement with the existing literatures. Due to the analytical mathematical complexities, the superstatistics and thermal properties were evaluated using Mathematica 10.0 version software. The proposed potential model reduces to Hellmann potential, Yukawa potential, Screened Hyperbolic potential, and Coulomb potential as special cases.
本文采用参数化Nikiforov-Uvarov方法,利用库仑加筛选指数双曲势(CPSEHP)得到了以Jacobi多项式表示的Schrödinger方程的本征解和总归一化波函数,得到了不同轨道角量子数下所提出的势的概率密度图,以及一些特殊情况(Hellmann势和Yukawa势)。所提出的电位最适合较小的筛选参数α。得到的能量特征值以闭合形式表示,并扩展到研究用配分函数Z表示的热学性质和超统计量以及其他热力学性质,如振动平均能U、振动比热容C、振动熵S和振动自由能F。利用所得的能量方程,借助Matlab软件,根据海尔曼-费曼定理(Hellmann-Feynman Theorem, HFT),得到了不同筛选参数(α)值和不同期望值的数值界态解。热物性和超统计量的配分函数和其他热力学性质的变化趋势与已有文献非常吻合。由于分析数学的复杂性,使用Mathematica 10.0版本软件对超统计量和热性能进行了评估。作为特殊情况,提出的势模型可简化为Hellmann势、Yukawa势、屏蔽双曲势和库仑势。
{"title":"Approximate Solutions, Thermal Properties, and Superstatistics Solutions to Schrödinger Equation","authors":"I. Okon, C. Onate, E. Omugbe, U. Okorie, A. Antia, M. Onyeaju, Wen-Li Chen, J. Araújo","doi":"10.1155/2022/5178247","DOIUrl":"https://doi.org/10.1155/2022/5178247","url":null,"abstract":"In this work, we apply the parametric Nikiforov-Uvarov method to obtain eigensolutions and total normalized wave function of Schrödinger equation expressed in terms of Jacobi polynomial using Coulomb plus Screened Exponential Hyperbolic Potential (CPSEHP), where we obtained the probability density plots for the proposed potential for various orbital angular quantum number, as well as some special cases (Hellmann and Yukawa potential). The proposed potential is best suitable for smaller values of the screening parameter \u0000 \u0000 α\u0000 \u0000 . The resulting energy eigenvalue is presented in a close form and extended to study thermal properties and superstatistics expressed in terms of partition function \u0000 \u0000 \u0000 \u0000 Z\u0000 \u0000 \u0000 \u0000 and other thermodynamic properties such as vibrational mean energy \u0000 \u0000 \u0000 \u0000 U\u0000 \u0000 \u0000 \u0000 , vibrational specific heat capacity \u0000 \u0000 \u0000 \u0000 C\u0000 \u0000 \u0000 \u0000 , vibrational entropy \u0000 \u0000 \u0000 \u0000 S\u0000 \u0000 \u0000 \u0000 , and vibrational free energy \u0000 \u0000 \u0000 \u0000 F\u0000 \u0000 \u0000 \u0000 . Using the resulting energy equation and with the help of Matlab software, the numerical bound state solutions were obtained for various values of the screening parameter (\u0000 \u0000 α\u0000 \u0000 ) as well as different expectation values via Hellmann-Feynman Theorem (HFT). The trend of the partition function and other thermodynamic properties obtained for both thermal properties and superstatistics were in excellent agreement with the existing literatures. Due to the analytical mathematical complexities, the superstatistics and thermal properties were evaluated using Mathematica 10.0 version software. The proposed potential model reduces to Hellmann potential, Yukawa potential, Screened Hyperbolic potential, and Coulomb potential as special cases.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41751167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Probing Triple Higgs Self-Coupling and Effect of Beam Polarization in Lepton Colliders 探测三重希格斯自耦合及轻子对撞机光束偏振效应
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2021-10-08 DOI: 10.1155/2022/9735729
I. Ahmed, Ujala Nawaz, T. Khurshid, S. Qazi
<jats:p>One of the main objectives of almost all future (lepton) colliders is to measure the self-coupling of triple Higgs in the Standard Model. By elongating the Standard Model’s scalar sector, using incipient Higgs doublet along with a quadratic (Higgs) potential can reveal many incipient features of the model and the possibility of the emergence of additional Higgs self-couplings. The self-coupling of the Higgs boson helps in reconstructing the scalar potential. The main objective of this paper is to extract Higgs self-coupling by numerically analyzing several scattering processes governed by two Higgs doublet models (2HDM). These scattering processes include various possible combinations of final states in the triple Higgs sector. The determination of production cross-section of scattering processes is carried out using two different scenarios, one with and other without polarization of incoming beam, and is extended to a center of mass energy up to <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <msqrt> <mrow> <mi>s</mi> </mrow> </msqrt> <mo>=</mo> <mn>3</mn> <mtext>TeV</mtext> </math> </jats:inline-formula>. The computation is carried out in type-1 2HDM. Here, we consider the case of exact alignment limit (<jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <msub> <mrow> <mi>s</mi> </mrow> <mrow> <mi>β</mi> <mi>α</mi> </mrow> </msub> </math> </jats:inline-formula>=1) and masses of extra Higgs states are equal, that is, <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3"> <msub> <mrow> <mi>m</mi> </mrow> <mrow> <mi>H</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mi>m</mi> </mrow> <mrow> <msup> <mrow> <mi>H</mi> </mrow> <mrow> <mn>0</mn> </mrow> </m
几乎所有未来(轻子)对撞机的主要目标之一是测量标准模型中三重希格斯粒子的自耦合。通过延长标准模型的标量扇区,使用初始希格斯双重态和二次(希格斯)势可以揭示模型的许多初始特征以及出现额外希格斯自耦合的可能性。希格斯玻色子的自耦合有助于重建标量势。本文的主要目的是通过数值分析由两个希格斯双重态模型(2HDM)控制的几个散射过程来提取希格斯自耦合。这些散射过程包括三重希格斯扇区中最终态的各种可能组合。在入射光束有极化和无极化两种不同情况下,对散射过程的产生截面进行了确定,并将其扩展到质能中心高达s = 3 TeV。计算是在1型2HDM中进行的。这里,我们考虑精确对准极限(s β α =1)和额外希格斯态质量相等的情况,即:m H = m H0 = m A0 = m H± .这种选择使倾斜参数最小化。研究了每个过程最终状态的衰减,以估计在1 a b−1和3的综合光度下的事件数A b−1。
{"title":"Probing Triple Higgs Self-Coupling and Effect of Beam Polarization in Lepton Colliders","authors":"I. Ahmed, Ujala Nawaz, T. Khurshid, S. Qazi","doi":"10.1155/2022/9735729","DOIUrl":"https://doi.org/10.1155/2022/9735729","url":null,"abstract":"&lt;jats:p&gt;One of the main objectives of almost all future (lepton) colliders is to measure the self-coupling of triple Higgs in the Standard Model. By elongating the Standard Model’s scalar sector, using incipient Higgs doublet along with a quadratic (Higgs) potential can reveal many incipient features of the model and the possibility of the emergence of additional Higgs self-couplings. The self-coupling of the Higgs boson helps in reconstructing the scalar potential. The main objective of this paper is to extract Higgs self-coupling by numerically analyzing several scattering processes governed by two Higgs doublet models (2HDM). These scattering processes include various possible combinations of final states in the triple Higgs sector. The determination of production cross-section of scattering processes is carried out using two different scenarios, one with and other without polarization of incoming beam, and is extended to a center of mass energy up to &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"&gt;\u0000 &lt;msqrt&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msqrt&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mtext&gt;TeV&lt;/mtext&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt;. The computation is carried out in type-1 2HDM. Here, we consider the case of exact alignment limit (&lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;β&lt;/mi&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt;=1) and masses of extra Higgs states are equal, that is, &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/m","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46341391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Short Theoretical Review of Charmonium Production Charmonium生产理论综述
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2021-09-09 DOI: 10.1155/2022/7475923
An-Ping Chen, Yanmei Ma, H. Zhang
In this paper, we review the current status of the phenomenological study of quarkonium production in high-energy collisions. After a brief introduction of several important models and effective field theories for quarkonium production, we discuss the comparisons between theoretical predictions and experimental measurements.
本文综述了高能碰撞中夸克产生的现象学研究现状。在简要介绍了夸克产生的几个重要模型和有效场论之后,我们讨论了理论预测和实验测量之间的比较。
{"title":"A Short Theoretical Review of Charmonium Production","authors":"An-Ping Chen, Yanmei Ma, H. Zhang","doi":"10.1155/2022/7475923","DOIUrl":"https://doi.org/10.1155/2022/7475923","url":null,"abstract":"In this paper, we review the current status of the phenomenological study of quarkonium production in high-energy collisions. After a brief introduction of several important models and effective field theories for quarkonium production, we discuss the comparisons between theoretical predictions and experimental measurements.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44941391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Current-Component Independent Transition Form Factors for Semileptonic and Rare D ⟶ π K Decays in the Light-Front Quark Model 光前夸克模型中半光子和稀有D π K衰变的电流分量独立跃迁形式因子
IF 1.7 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS Pub Date : 2021-08-24 DOI: 10.1155/2021/4277321
H. Choi
<jats:p>We investigate the exclusive semileptonic and rare <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <mi>D</mi> <mo>⟶</mo> <mi>π</mi> <mfenced open="(" close=")"> <mrow> <mi>K</mi> </mrow> </mfenced> </math> </jats:inline-formula> decays within the standard model together with the light-front quark model (LFQM) constrained by the variational principle for the QCD-motivated effective Hamiltonian. The form factors are obtained in the <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3"> <msup> <mrow> <mi>q</mi> </mrow> <mrow> <mo>+</mo> </mrow> </msup> <mo>=</mo> <mn>0</mn> </math> </jats:inline-formula> frame and then analytically continue to the physical timelike region. Together with our recent analysis of the current-component independent form factors <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4"> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mo>±</mo> </mrow> </msub> <mfenced open="(" close=")"> <mrow> <msup> <mrow> <mi>q</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> </mrow> </mfenced> </math> </jats:inline-formula> for the semileptonic decays, we present the current-component independent tensor form factor <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5"> <msub> <mrow> <mi>f</mi> </mrow> <mrow> <mi>T</mi> </mrow> </msub> <mfenced open="(" close=")"> <mrow> <msup> <mrow>
我们研究了标准模型内的排他半子和稀有的D π K衰变,以及受变分原理约束的光前夸克模型(LFQM)。在q + = 0帧中获得形状因子,然后解析继续到物理类时区域。加上我们最近对电流分量无关形状因子f±q的分析2为半光子衰变;我们提出了电流分量无关张量形式因子ftq2为稀有衰变,使强子矩阵元素的完备集调节半光子和稀有D π K在LFQM中衰减。 张量形式因子ftq2是从两个独立的集合jt中得到的⊥,J t +−张量电流J T u v。就像我们最近对f−q的分析一样2 ,我们证明了ftq由两组不同的电流分量得到的2在q +的价区给出了相同的结果= 0框架,不涉及显式零模态和瞬时贡献。零模和瞬时模的含义
{"title":"Current-Component Independent Transition Form Factors for Semileptonic and Rare \u0000 D\u0000 ⟶\u0000 π\u0000 \u0000 \u0000 K\u0000 \u0000 \u0000 Decays in the Light-Front Quark Model","authors":"H. Choi","doi":"10.1155/2021/4277321","DOIUrl":"https://doi.org/10.1155/2021/4277321","url":null,"abstract":"&lt;jats:p&gt;We investigate the exclusive semileptonic and rare &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mo&gt;⟶&lt;/mo&gt;\u0000 &lt;mi&gt;π&lt;/mi&gt;\u0000 &lt;mfenced open=\"(\" close=\")\"&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mfenced&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt; decays within the standard model together with the light-front quark model (LFQM) constrained by the variational principle for the QCD-motivated effective Hamiltonian. The form factors are obtained in the &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt; frame and then analytically continue to the physical timelike region. Together with our recent analysis of the current-component independent form factors &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;±&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mfenced open=\"(\" close=\")\"&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mfenced&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt; for the semileptonic decays, we present the current-component independent tensor form factor &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\"&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mfenced open=\"(\" close=\")\"&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 ","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42769980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Advances in High Energy Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1