Highly active and robust electrocatalysts for methanol oxidation reaction (MOR) are of great significance to the commercial availability of alkaline direct methanol fuel cells (ADMFC). Pd-based nanostructures have received considerable attention in ADMFCs among non-platinum catalysts due to their high activity and tolerance against CO poisoning, which is strongly determined by their composition and structure. Herein, a one-spot hydrothermal method to synthesize Cu-doped Pd7Te3 ultrathin nanowires was proposed. The density functional theory calculations show that the Cu doping simultaneously facilitates the desorption of CO* and adsorption of OH, which refreshes the active sites quickly and thus enhances the electroactivity for MOR. Benefiting from their ultrathin architecture and the modified bonding and anti-bonding d states of Pd, Cu-doped Pd7Te3 nanowires show about twofold and threefold mass activity promotion and enhanced durability for MOR when compared to the pure Pd7Te3 nanowires and commercial Pd/C catalysts. This work not only provides a simple one-step synthesis strategy for Pd-based nanowire catalysts, but also helps to inspire the catalyst design in ADMFC.