首页 > 最新文献

Rare Metals最新文献

英文 中文
Impact of annealing on structural and corrosion resistance properties of Ti20Zr20Hf20Be20Ni20 high-entropy metallic glass 退火对 Ti20Zr20Hf20Be20Ni20 高熵金属玻璃的结构和耐腐蚀性能的影响
IF 8.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-10 DOI: 10.1007/s12598-024-02952-x
Ke-Ran Li, Pan Gong, Dong-Liang Wang, Cheng Zhang, Hu Huang, Muhammad Yasir, Mao Zhang, Xin-Yun Wang

This study comprehensively investigates the effects of annealing on the structural, electrochemical properties and passivation film characteristics of Ti20Zr20Hf20Be20Ni20 (at%) high-entropy metallic glass (HE-MG). Subjected to various annealing temperatures, the samples were analyzed in a 3.5 wt% NaCl solution to evaluate changes in their microstructure and assess their corrosion resistance. Findings reveal that the HE-MG undergoes multistage crystallization, displaying an amorphous matrix integrated with face centered cubic (FCC) and Ni7Zr2 phases between 420 and 500 °C, indicating robust thermal stability. Electrochemical assessments identify a critical temperature threshold: Below the glass transition temperature (Tg), the HE-MG maintains excellent corrosion resistance, promoting stable passivation layers. Above Tg, enhanced long-range atomic rearrangement during relaxation increases passivation layer defects and significantly diminishes corrosion resistance. X-ray photoelectron spectroscopy (XPS) analyses show that the primary components of the passivation layer are TiO2, ZrO2, HfO2 and BeO. Increased annealing temperatures lead to enhanced Be and Ni content and decreased Ti, Zr and Hf. Additionally, high mixing entropy and significant atomic size mismatch suppress long-range atomic rearrangement and crystallization. The crystallization begins above Tg by 20 °C, with crystalline phases evenly distributed within the matrix without drastically affecting corrosion resistance. This investigation highlights the impact of thermal treatment on the properties of HE-MG, contributing valuable insights into optimizing their performance and applications.

Graphical abstract

本研究全面探讨了退火对 Ti20Zr20Hf20Be20Ni20 (at%) 高熵金属玻璃 (HE-MG) 的结构、电化学性能和钝化膜特性的影响。在不同的退火温度下,样品在 3.5 wt% 的氯化钠溶液中进行分析,以评估其微观结构的变化和耐腐蚀性。研究结果表明,HE-MG 经历了多级结晶,在 420 至 500 °C 之间显示出无定形基体与面心立方(FCC)和 Ni7Zr2 相的结合,这表明其具有很强的热稳定性。电化学评估确定了一个临界温度阈值:在玻璃化温度(Tg)以下,HE-MG 可保持优异的耐腐蚀性,促进稳定的钝化层。超过 Tg 时,弛豫过程中增强的长程原子重排会增加钝化层缺陷,并显著降低耐腐蚀性。X 射线光电子能谱(XPS)分析表明,钝化层的主要成分是 TiO2、ZrO2、HfO2 和 BeO。提高退火温度会导致 Be 和 Ni 含量增加,而 Ti、Zr 和 Hf 含量减少。此外,高混合熵和显著的原子尺寸失配抑制了长程原子重排和结晶。结晶开始于 20 °C Tg 以上,结晶相均匀地分布在基体中,不会对耐腐蚀性产生重大影响。这项研究强调了热处理对 HE-MG 性能的影响,为优化 HE-MG 的性能和应用提供了宝贵的见解。
{"title":"Impact of annealing on structural and corrosion resistance properties of Ti20Zr20Hf20Be20Ni20 high-entropy metallic glass","authors":"Ke-Ran Li, Pan Gong, Dong-Liang Wang, Cheng Zhang, Hu Huang, Muhammad Yasir, Mao Zhang, Xin-Yun Wang","doi":"10.1007/s12598-024-02952-x","DOIUrl":"https://doi.org/10.1007/s12598-024-02952-x","url":null,"abstract":"<p>This study comprehensively investigates the effects of annealing on the structural, electrochemical properties and passivation film characteristics of Ti<sub>20</sub>Zr<sub>20</sub>Hf<sub>20</sub>Be<sub>20</sub>Ni<sub>20</sub> (at%) high-entropy metallic glass (HE-MG). Subjected to various annealing temperatures, the samples were analyzed in a 3.5 wt% NaCl solution to evaluate changes in their microstructure and assess their corrosion resistance. Findings reveal that the HE-MG undergoes multistage crystallization, displaying an amorphous matrix integrated with face centered cubic (FCC) and Ni<sub>7</sub>Zr<sub>2</sub> phases between 420 and 500 °C, indicating robust thermal stability. Electrochemical assessments identify a critical temperature threshold: Below the glass transition temperature (<i>T</i><sub>g</sub>), the HE-MG maintains excellent corrosion resistance, promoting stable passivation layers. Above <i>T</i><sub>g</sub>, enhanced long-range atomic rearrangement during relaxation increases passivation layer defects and significantly diminishes corrosion resistance. X-ray photoelectron spectroscopy (XPS) analyses show that the primary components of the passivation layer are TiO<sub>2</sub>, ZrO<sub>2</sub>, HfO<sub>2</sub> and BeO. Increased annealing temperatures lead to enhanced Be and Ni content and decreased Ti, Zr and Hf. Additionally, high mixing entropy and significant atomic size mismatch suppress long-range atomic rearrangement and crystallization. The crystallization begins above <i>T</i><sub>g</sub> by 20 °C, with crystalline phases evenly distributed within the matrix without drastically affecting corrosion resistance. This investigation highlights the impact of thermal treatment on the properties of HE-MG, contributing valuable insights into optimizing their performance and applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":null,"pages":null},"PeriodicalIF":8.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient hydrogen transfer carriers: hydrogenation mechanism of dibenzyltoluene catalyzed by Mg-based metal hydride 高效氢转移载体:镁基金属氢化物催化二苄基甲苯的氢化机理
IF 8.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-09 DOI: 10.1007/s12598-024-02941-0
Hai-Yu Deng, Li-Jun Jiang, Shao-Hua Wang, Wen-Quan Jiang, Yuan-Fang Wu, Xiu-Mei Guo, Shu-Mao Wang, Lei Hao
{"title":"Efficient hydrogen transfer carriers: hydrogenation mechanism of dibenzyltoluene catalyzed by Mg-based metal hydride","authors":"Hai-Yu Deng, Li-Jun Jiang, Shao-Hua Wang, Wen-Quan Jiang, Yuan-Fang Wu, Xiu-Mei Guo, Shu-Mao Wang, Lei Hao","doi":"10.1007/s12598-024-02941-0","DOIUrl":"https://doi.org/10.1007/s12598-024-02941-0","url":null,"abstract":"","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":null,"pages":null},"PeriodicalIF":8.8,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inorganic ammonium salt doping in nickel oxide for highly efficient planar perovskite solar cells 在氧化镍中掺入无机铵盐以制造高效平面过氧化物太阳能电池
IF 8.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-09 DOI: 10.1007/s12598-024-02984-3
Rui-Chen Song, Jian-Ming Yang, Li-Fang Wu, Hong-Yu Li, Zhi-Xin Yang, Zhe-Hao Wang, Zhi-Fang Wu, Alexey B. Tarasov, Sardor Donaev, Chang Xue, Sheng-Hao Wang

Abstract

Inverted perovskite solar cells (PSCs) have stood out in recent years for their great potential in offering low-temperature compatibility, long-term stability and tandem cell suitability. However, challenges persist, particularly concerning the use of nickel oxide nanoparticles (NiOx NPs) as the hole transport material, where issues such as low conductivity, impurity-induced aggregation and interface redox reactions significantly hinder device performance. In response, this study presents a novel synthesis method for NiOx NPs, leveraging the introduction of ammonium salt dopants (NH4Cl and NH4SCN), and the solar cell utilizing the doped NiOx substrate exhibits much enhanced device performance. Furthermore, doped solar cells reach 23.27% power conversion efficiency (PCE) when a self-assembled monolayer (SAM) is further employed. This study provides critical insights into the synthesis and growth pathways of NiOx NPs, propelling the development of efficient hole transport materials for high-performance PSCs.

Graphical abstract

摘要 近年来,倒置型过氧化物太阳能电池(PSCs)因其在低温兼容性、长期稳定性和串联电池适用性方面的巨大潜力而脱颖而出。然而,挑战依然存在,特别是在使用氧化镍纳米粒子(NiOx NPs)作为空穴传输材料方面,低导电性、不纯物质诱导的聚集和界面氧化还原反应等问题严重阻碍了设备性能的提高。为此,本研究提出了一种新的掺杂铵盐(NH4Cl 和 NH4SCN)的镍氧化物 NPs 合成方法,利用掺杂镍氧化物基底的太阳能电池大大提高了器件性能。此外,当进一步采用自组装单层(SAM)时,掺杂太阳能电池的功率转换效率(PCE)可达到 23.27%。这项研究提供了有关氧化镍 NPs 的合成和生长途径的重要见解,推动了高性能 PSCs 的高效空穴传输材料的发展。
{"title":"Inorganic ammonium salt doping in nickel oxide for highly efficient planar perovskite solar cells","authors":"Rui-Chen Song, Jian-Ming Yang, Li-Fang Wu, Hong-Yu Li, Zhi-Xin Yang, Zhe-Hao Wang, Zhi-Fang Wu, Alexey B. Tarasov, Sardor Donaev, Chang Xue, Sheng-Hao Wang","doi":"10.1007/s12598-024-02984-3","DOIUrl":"https://doi.org/10.1007/s12598-024-02984-3","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Inverted perovskite solar cells (PSCs) have stood out in recent years for their great potential in offering low-temperature compatibility, long-term stability and tandem cell suitability. However, challenges persist, particularly concerning the use of nickel oxide nanoparticles (NiO<sub><i>x</i></sub> NPs) as the hole transport material, where issues such as low conductivity, impurity-induced aggregation and interface redox reactions significantly hinder device performance. In response, this study presents a novel synthesis method for NiO<sub><i>x</i></sub> NPs, leveraging the introduction of ammonium salt dopants (NH<sub>4</sub>Cl and NH<sub>4</sub>SCN), and the solar cell utilizing the doped NiO<sub><i>x</i></sub> substrate exhibits much enhanced device performance. Furthermore, doped solar cells reach 23.27% power conversion efficiency (PCE) when a self-assembled monolayer (SAM) is further employed. This study provides critical insights into the synthesis and growth pathways of NiO<sub><i>x</i></sub> NPs, propelling the development of efficient hole transport materials for high-performance PSCs.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":null,"pages":null},"PeriodicalIF":8.8,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic release of copper and lithium components in biodegradable zinc alloy for osteoimmunomodulation 用于骨免疫调节的生物可降解锌合金中铜和锂成分的协同释放
IF 8.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-09 DOI: 10.1007/s12598-024-02930-3
Yu-Jue Zhang, Zhao-Yong Lv, Xin Luo, Hui-Fen Qiang, Jia-Qi He, Cai-Yao Hou, Ya-Geng Li, Feng-Zhen Liu, Lu-Ning Wang

Zinc (Zn)-based alloys have emerged as promising bioresorbable metals for orthopedic implants because of their favorable combination of moderate degradation rates, good mechanical properties, and biocompatibility. In addition, the performance of bone implants relies heavily on their osteointegration ability, which is closely related to the immune responses triggered after implantation. In this study, two Zn-based alloys, Zn–2Cu and Zn–2Cu–0.8Li were developed, to improve the comprehensive properties of Zn implants. The introduction of copper (Cu) and lithium (Li) via alloying improved the hardness and localized corrosion resistance of Zn-based specimens. Both the Zn alloys exhibited enhanced adhesion, proliferation, and osteogenic differentiation behaviors when tested with MC3T3-E1 cells. Importantly, the immune response of RAW264.7, mediated by the two Zn alloys, with pure Zn as a control was systematically investigated. The results demonstrated that the synergistic release of Cu2+ and Li+ played a pivotal role in promoting the anti-inflammatory and osteoimmunomodulatory properties of degradable Zn. By alloying with Cu and Li, we achieved sequential and sustained ion release, resulting in the synergistic enhancement of osteoimmunomodulation through the modulation of the JAK-STAT signaling pathway. Finally, the Zn-based specimens were evaluated in vivo using rat mandibular defect models. After 8 weeks, the Zn–2Cu–0.8Li group exhibited significantly higher bone regeneration than the Zn–2Cu and pure Zn groups. These findings highlight the beneficial immune response and potential of Zn–Cu–Li alloys as novel biodegradable materials for orthopedic implants.

Grapical abstract

锌(Zn)基合金具有适中的降解率、良好的机械性能和生物相容性,因此已成为骨科植入物中很有前途的生物可吸收金属。此外,骨植入物的性能在很大程度上取决于其骨整合能力,而骨整合能力与植入后引发的免疫反应密切相关。本研究开发了两种锌基合金,即 Zn-2Cu 和 Zn-2Cu-0.8Li,以改善锌植入物的综合性能。通过合金化引入铜(Cu)和锂(Li),提高了锌基试样的硬度和局部耐腐蚀性。在用 MC3T3-E1 细胞进行测试时,两种锌合金都表现出更强的粘附性、增殖性和成骨分化行为。重要的是,研究人员系统地调查了两种锌合金和纯锌作为对照的 RAW264.7 免疫反应。结果表明,Cu2+ 和 Li+ 的协同释放在促进可降解锌的抗炎和骨免疫调节特性方面发挥了关键作用。通过与 Cu 和 Li 合金,我们实现了离子的连续和持续释放,从而通过调节 JAK-STAT 信号通路协同增强了骨免疫调节功能。最后,利用大鼠下颌骨缺损模型对锌基试样进行了体内评估。8 周后,Zn-2Cu-0.8Li 组的骨再生能力明显高于 Zn-2Cu 组和纯 Zn 组。这些发现凸显了锌-铜-锂合金作为骨科植入物的新型可生物降解材料的有益免疫反应和潜力。
{"title":"Synergistic release of copper and lithium components in biodegradable zinc alloy for osteoimmunomodulation","authors":"Yu-Jue Zhang, Zhao-Yong Lv, Xin Luo, Hui-Fen Qiang, Jia-Qi He, Cai-Yao Hou, Ya-Geng Li, Feng-Zhen Liu, Lu-Ning Wang","doi":"10.1007/s12598-024-02930-3","DOIUrl":"https://doi.org/10.1007/s12598-024-02930-3","url":null,"abstract":"<p>Zinc (Zn)-based alloys have emerged as promising bioresorbable metals for orthopedic implants because of their favorable combination of moderate degradation rates, good mechanical properties, and biocompatibility. In addition, the performance of bone implants relies heavily on their osteointegration ability, which is closely related to the immune responses triggered after implantation. In this study, two Zn-based alloys, Zn–2Cu and Zn–2Cu–0.8Li were developed, to improve the comprehensive properties of Zn implants. The introduction of copper (Cu) and lithium (Li) via alloying improved the hardness and localized corrosion resistance of Zn-based specimens. Both the Zn alloys exhibited enhanced adhesion, proliferation, and osteogenic differentiation behaviors when tested with MC3T3-E1 cells. Importantly, the immune response of RAW264.7, mediated by the two Zn alloys, with pure Zn as a control was systematically investigated. The results demonstrated that the synergistic release of Cu<sup>2+</sup> and Li<sup>+</sup> played a pivotal role in promoting the anti-inflammatory and osteoimmunomodulatory properties of degradable Zn. By alloying with Cu and Li, we achieved sequential and sustained ion release, resulting in the synergistic enhancement of osteoimmunomodulation through the modulation of the JAK-STAT signaling pathway. Finally, the Zn-based specimens were evaluated in vivo using rat mandibular defect models. After 8 weeks, the Zn–2Cu–0.8Li group exhibited significantly higher bone regeneration than the Zn–2Cu and pure Zn groups. These findings highlight the beneficial immune response and potential of Zn–Cu–Li alloys as novel biodegradable materials for orthopedic implants.</p><h3 data-test=\"abstract-sub-heading\">Grapical abstract</h3>\u0000","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":null,"pages":null},"PeriodicalIF":8.8,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-dimensional hollow porous Ru–CuO nanofibers covered with ZIF-71 for H2S gas sensing and its first-principle study 用于 H2S 气体传感的 ZIF-71 覆盖层一维中空多孔 Ru-CuO 纳米纤维及其第一原理研究
IF 8.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.1007/s12598-024-02977-2
Chang-Kun Qiu, Lin Wang, Fei An, Hao Zhang, Qing-Run Li, Hao-Zhi Wang, Ming-Jun Li, Jing-Yu Guo, Pei-Lin Jia, Zong-Wei Liu, Liang Zhu, Wei Xu, Dong-Zhi Zhang

Based on the unique catalytic properties of precious metals, the introduction of precious metals into metal oxide semiconductors will greatly improve the gas-sensitive properties of materials. As a new type of porous material, metal–organic frameworks (MOF) can be used for gas separation and adsorption due to their adjustable pore size and acceptable thermal stability. In this work, the ZIF-71 MOF was synthesized on CuO nanofibers doped with different concentrations of Ru to form a Ru–CuO@ZIF-71 nanocomposite sensor, which was then used for H2S detection. The sensor shows sensitivity to trace amounts of H2S gas (100 ppb), and the response is greatly enhanced at the optimal Ru doping ratio and operating temperature. The introduction of the ZIF-71 membrane can significantly increase the selectivity of the sensor while further improving the sensitivity. Finally, the possible sensing mechanism of the Ru–CuO@ZIF-71 sensor was explored. The enhancement of the H2S gas sensing properties may be attributed to the catalysis of Ru and the formation of the Schottky junction at the Ru–CuO interface. Besides, the calculation based on density functional theory reveals enhanced adsorption capacities of CuO for H2S after Ru doping. Therefore, the Ru–CuO@ZIF-71 sensor has strong application potential in exhaled gas detection and portable detection of H2S gas in industrial environments.

Graphical abstract

基于贵金属独特的催化特性,在金属氧化物半导体中引入贵金属将大大改善材料的气敏特性。作为一种新型多孔材料,金属有机框架(MOF)具有可调节的孔径和可接受的热稳定性,可用于气体分离和吸附。在这项工作中,在掺入不同浓度 Ru 的 CuO 纳米纤维上合成了 ZIF-71 MOF,形成了 Ru-CuO@ZIF-71 纳米复合传感器,并将其用于 H2S 检测。该传感器对痕量 H2S 气体(100 ppb)具有灵敏度,在最佳 Ru 掺杂比例和工作温度下,其响应大大增强。ZIF-71 膜的引入可以显著提高传感器的选择性,同时进一步提高灵敏度。最后,探讨了 Ru-CuO@ZIF-71 传感器可能的传感机制。H2S 气体传感性能的增强可能归因于 Ru 的催化作用和 Ru-CuO 界面肖特基结的形成。此外,基于密度泛函理论的计算显示,掺杂 Ru 后 CuO 对 H2S 的吸附能力增强。因此,Ru-CuO@ZIF-71 传感器在呼出气体检测和工业环境中 H2S 气体的便携式检测方面具有很强的应用潜力。
{"title":"One-dimensional hollow porous Ru–CuO nanofibers covered with ZIF-71 for H2S gas sensing and its first-principle study","authors":"Chang-Kun Qiu, Lin Wang, Fei An, Hao Zhang, Qing-Run Li, Hao-Zhi Wang, Ming-Jun Li, Jing-Yu Guo, Pei-Lin Jia, Zong-Wei Liu, Liang Zhu, Wei Xu, Dong-Zhi Zhang","doi":"10.1007/s12598-024-02977-2","DOIUrl":"https://doi.org/10.1007/s12598-024-02977-2","url":null,"abstract":"<p>Based on the unique catalytic properties of precious metals, the introduction of precious metals into metal oxide semiconductors will greatly improve the gas-sensitive properties of materials. As a new type of porous material, metal–organic frameworks (MOF) can be used for gas separation and adsorption due to their adjustable pore size and acceptable thermal stability. In this work, the ZIF-71 MOF was synthesized on CuO nanofibers doped with different concentrations of Ru to form a Ru–CuO@ZIF-71 nanocomposite sensor, which was then used for H<sub>2</sub>S detection. The sensor shows sensitivity to trace amounts of H<sub>2</sub>S gas (100 ppb), and the response is greatly enhanced at the optimal Ru doping ratio and operating temperature. The introduction of the ZIF-71 membrane can significantly increase the selectivity of the sensor while further improving the sensitivity. Finally, the possible sensing mechanism of the Ru–CuO@ZIF-71 sensor was explored. The enhancement of the H<sub>2</sub>S gas sensing properties may be attributed to the catalysis of Ru and the formation of the Schottky junction at the Ru–CuO interface. Besides, the calculation based on density functional theory reveals enhanced adsorption capacities of CuO for H<sub>2</sub>S after Ru doping. Therefore, the Ru–CuO@ZIF-71 sensor has strong application potential in exhaled gas detection and portable detection of H<sub>2</sub>S gas in industrial environments.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":null,"pages":null},"PeriodicalIF":8.8,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tris-buffered efficacy: enhancing stability and reversibility of Zn anode by efficient modulation at Zn/electrolyte interface 三缓冲功效:通过在锌/电解质界面上进行有效调节,提高锌阳极的稳定性和可逆性
IF 8.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-05 DOI: 10.1007/s12598-024-02990-5
Yong-Jian Wang, Su-Hong Li, Lin Li, Jian-Yong Ren, Ling-Di Shen, Chao Lai

Aqueous zinc-ion batteries (AZIBs) have developed rapidly in recent years but still face several challenges, including zinc dendrites growth, hydrogen evolution reaction, passivation and corrosion. The pH of the electrolyte plays a crucial role in these processes, significantly impacting the stability and reversibility of Zn2+ deposition. Therefore, pH-buffer tris (hydroxymethyl) amino methane (tris) is chosen as a versatile electrolyte additive to address these issues. Tris can buffer electrolyte pH at Zn/electrolyte interface by protonated/deprotonated nature of amino group, optimize the coordination environment of zinc solvate ions by its strong interaction with zinc ions, and simultaneously create an in-situ stable solid electrolyte interface membrane on the zinc anode surface. These synergistic effects effectively restrain dendrite formation and side reactions, resulting in a highly stable and reversible Zn anode, thereby enhancing the electrochemical performance of AZIBs. The Zn||Zn battery with 0.15 wt% tris additives maintains stable cycling for 1500 h at 4 mA·cm−2 and 1120 h at 10 mA·cm−2. Furthermore, the Coulombic efficiency reaches ~ 99.2% at 4 mA·cm−2@1 mAh·cm−2. The Zn||NVO full batteries also demonstrated a stable specific capacity and exceptional capacity retention.

Graphical abstract

近年来,水性锌离子电池(AZIBs)发展迅速,但仍面临一些挑战,包括锌枝晶生长、氢进化反应、钝化和腐蚀。电解液的 pH 值在这些过程中起着至关重要的作用,对 Zn2+ 沉积的稳定性和可逆性有重大影响。因此,pH 缓冲剂三(羟甲基)氨基甲烷(三羟甲基)被选为解决这些问题的多功能电解质添加剂。三羟甲基氨基甲烷可通过氨基的质子化/去质子化性质缓冲锌/电解质界面的电解质 pH 值,通过与锌离子的强相互作用优化锌溶质离子的配位环境,同时在锌阳极表面形成一层原位稳定的固体电解质界面膜。这些协同效应有效抑制了枝晶的形成和副反应的发生,形成了高度稳定和可逆的锌阳极,从而提高了 AZIB 的电化学性能。使用 0.15 wt% 三添加剂的 Zn||Zn 电池在 4 mA-cm-2 下可稳定循环 1500 小时,在 10 mA-cm-2 下可稳定循环 1120 小时。此外,在 4 mA-cm-2@1 mAh-cm-2 条件下,库仑效率达到约 99.2%。Zn||NVO全电池还表现出稳定的比容量和优异的容量保持率。
{"title":"Tris-buffered efficacy: enhancing stability and reversibility of Zn anode by efficient modulation at Zn/electrolyte interface","authors":"Yong-Jian Wang, Su-Hong Li, Lin Li, Jian-Yong Ren, Ling-Di Shen, Chao Lai","doi":"10.1007/s12598-024-02990-5","DOIUrl":"https://doi.org/10.1007/s12598-024-02990-5","url":null,"abstract":"<p>Aqueous zinc-ion batteries (AZIBs) have developed rapidly in recent years but still face several challenges, including zinc dendrites growth, hydrogen evolution reaction, passivation and corrosion. The pH of the electrolyte plays a crucial role in these processes, significantly impacting the stability and reversibility of Zn<sup>2+</sup> deposition. Therefore, pH-buffer tris (hydroxymethyl) amino methane (tris) is chosen as a versatile electrolyte additive to address these issues. Tris can buffer electrolyte pH at Zn/electrolyte interface by protonated/deprotonated nature of amino group, optimize the coordination environment of zinc solvate ions by its strong interaction with zinc ions, and simultaneously create an in-situ stable solid electrolyte interface membrane on the zinc anode surface. These synergistic effects effectively restrain dendrite formation and side reactions, resulting in a highly stable and reversible Zn anode, thereby enhancing the electrochemical performance of AZIBs. The Zn||Zn battery with 0.15 wt% tris additives maintains stable cycling for 1500 h at 4 mA·cm<sup>−2</sup> and 1120 h at 10 mA·cm<sup>−2</sup>. Furthermore, the Coulombic efficiency reaches ~ 99.2% at 4 mA·cm<sup>−2</sup>@1 mAh·cm<sup>−2</sup>. The Zn||NVO full batteries also demonstrated a stable specific capacity and exceptional capacity retention.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":null,"pages":null},"PeriodicalIF":8.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced strength of a high-conductivity Cu-Cr alloy by Sc addition 通过添加 Sc 增强高导电率铜-铬合金的强度
IF 8.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-04 DOI: 10.1007/s12598-024-02947-8
Tao Huang, Chao-Min Zhang, Ying-Xuan Ma, Shu-Guo Jia, Ke-Xing Song, Yan-Jun Zhou, Xiu-Hua Guo, Zhen-Peng Xiao, Hui-Wen Guo

A new Cu-Cr-Sc alloy was designed, prepared and subjected to deformation heat treatment. Transmission electron microscopy (TEM), electron backscatter diffraction (EBSD) and X-ray diffraction (XRD) were employed to investigate the effects of Sc on the microstructural changes in the Cu-Cr alloy in different states, examine the changes in the precipitates during aging, reveal the intrinsic correlation between the structure and property in the peak aging state, and evaluate the Sc distribution in the Cu-Cr alloy. The addition of Sc significantly increased the yield strength of the Cu-Cr alloy by ~ 24.6% after aging at 480 °C for 1 h, while it had a high electrical conductivity of 81.5% international annealed copper standard (IACS). This enhancement was attributed to the effective inhibition of Cr phase coarsening and recrystallization through the addition of Sc, which strengthened the alloy. Furthermore, in the Cu-Cr-Sc alloy, most of the Sc atoms precipitated as the Cu4Sc phase, with a small amount of Sc segregating at the grain boundaries to pin them. This grain boundary pinning helped to inhibit grain growth and further improve the strength. The main strengthening mechanisms identified in Cu-Cr-Sc alloys were dislocation strengthening and precipitation strengthening.

Graphical abstract

设计、制备了一种新型 Cu-Cr-Sc 合金,并对其进行了变形热处理。采用透射电子显微镜(TEM)、电子反向散射衍射(EBSD)和 X 射线衍射(XRD)研究了 Sc 对不同状态下 Cu-Cr 合金微观结构变化的影响,考察了时效过程中析出物的变化,揭示了峰值时效状态下结构与性能之间的内在关联,并评估了 Sc 在 Cu-Cr 合金中的分布。添加 Sc 后,Cu-Cr 合金在 480 °C 下时效 1 小时后屈服强度明显提高了约 24.6%,同时导电率高达 81.5% 国际退火铜标准(IACS)。这种提高归因于通过添加钪有效抑制了铬相的粗化和再结晶,从而强化了合金。此外,在 Cu-Cr-Sc 合金中,大部分 Sc 原子以 Cu4Sc 相的形式析出,少量 Sc 在晶界处偏析,将晶界固定。这种晶界夹持有助于抑制晶粒长大,进一步提高强度。在 Cu-Cr-Sc 合金中发现的主要强化机制是位错强化和沉淀强化。
{"title":"Enhanced strength of a high-conductivity Cu-Cr alloy by Sc addition","authors":"Tao Huang, Chao-Min Zhang, Ying-Xuan Ma, Shu-Guo Jia, Ke-Xing Song, Yan-Jun Zhou, Xiu-Hua Guo, Zhen-Peng Xiao, Hui-Wen Guo","doi":"10.1007/s12598-024-02947-8","DOIUrl":"https://doi.org/10.1007/s12598-024-02947-8","url":null,"abstract":"<p>A new Cu-Cr-Sc alloy was designed, prepared and subjected to deformation heat treatment. Transmission electron microscopy (TEM), electron backscatter diffraction (EBSD) and X-ray diffraction (XRD) were employed to investigate the effects of Sc on the microstructural changes in the Cu-Cr alloy in different states, examine the changes in the precipitates during aging, reveal the intrinsic correlation between the structure and property in the peak aging state, and evaluate the Sc distribution in the Cu-Cr alloy. The addition of Sc significantly increased the yield strength of the Cu-Cr alloy by ~ 24.6% after aging at 480 °C for 1 h, while it had a high electrical conductivity of 81.5% international annealed copper standard (IACS). This enhancement was attributed to the effective inhibition of Cr phase coarsening and recrystallization through the addition of Sc, which strengthened the alloy. Furthermore, in the Cu-Cr-Sc alloy, most of the Sc atoms precipitated as the Cu<sub>4</sub>Sc phase, with a small amount of Sc segregating at the grain boundaries to pin them. This grain boundary pinning helped to inhibit grain growth and further improve the strength. The main strengthening mechanisms identified in Cu-Cr-Sc alloys were dislocation strengthening and precipitation strengthening.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":null,"pages":null},"PeriodicalIF":8.8,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking oxygen vacancy-rich high-entropy oxides in upgrading composite solid electrolyte 释放升级复合固体电解质中的富氧空位高熵氧化物
IF 8.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-04 DOI: 10.1007/s12598-024-02961-w
Jun Cheng, Nai-Xuan Ci, Hong-Qiang Zhang, Zhen Zeng, Xuan Zhou, Yuan-Yuan Li, Hua-Jun Qiu, Wei Zhai, Dan-Dan Gao, Li-Jie Ci, De-Ping Li

Recently, high-entropy materials are attracting enormous attention in battery applications, encompassing both electrode materials and solid electrolytes, due to the pliability and diversification in material composition and electronic structure. Theoretically, the rapid ion transport and the abundance of surface defects in high-entropy materials suggest a potential for enhancing the performance of composite solid-state electrolytes (CPEs). Herein, using a high-entropy oxide (HEO) filler to assess its potential contributions to CPEs is proposed. The distinctive structural distortions in HEO significantly improve the ionic conductivity (5 × 10−4 S·cm−1 at 60 °C) and Li-ion transference number (0.57) of CPEs. Furthermore, the enhanced Li-ion transport capability extends the critical current density from 0.6 to 1.5 mA·cm−2 in Li/Li symmetric cells. In addition, all-solid-state batteries incorporating the HEO-modified CPEs exhibit superior rate performance and cycling stability. The work will enrich the application of HEOs in CPEs and provide fundamental understanding.

Graphical abstract

近来,高熵材料因其材料成分和电子结构的柔韧性和多样性,在电池应用领域受到极大关注,包括电极材料和固体电解质。从理论上讲,高熵材料的快速离子传输和丰富的表面缺陷为提高复合固态电解质(CPE)的性能提供了可能。本文提出使用高熵氧化物(HEO)填料来评估其对 CPE 的潜在贡献。HEO 中独特的结构畸变显著提高了 CPE 的离子电导率(5 × 10-4 S-cm-1,60 °C)和锂离子传输数(0.57)。此外,增强的锂离子传输能力还将锂/锂对称电池的临界电流密度从 0.6 mA-cm-2 提高到 1.5 mA-cm-2。此外,采用 HEO 改性氯化聚乙烯的全固态电池表现出卓越的速率性能和循环稳定性。这项工作将丰富 HEO 在 CPE 中的应用,并提供基本的理解。
{"title":"Unlocking oxygen vacancy-rich high-entropy oxides in upgrading composite solid electrolyte","authors":"Jun Cheng, Nai-Xuan Ci, Hong-Qiang Zhang, Zhen Zeng, Xuan Zhou, Yuan-Yuan Li, Hua-Jun Qiu, Wei Zhai, Dan-Dan Gao, Li-Jie Ci, De-Ping Li","doi":"10.1007/s12598-024-02961-w","DOIUrl":"https://doi.org/10.1007/s12598-024-02961-w","url":null,"abstract":"<p>Recently, high-entropy materials are attracting enormous attention in battery applications, encompassing both electrode materials and solid electrolytes, due to the pliability and diversification in material composition and electronic structure. Theoretically, the rapid ion transport and the abundance of surface defects in high-entropy materials suggest a potential for enhancing the performance of composite solid-state electrolytes (CPEs). Herein, using a high-entropy oxide (HEO) filler to assess its potential contributions to CPEs is proposed. The distinctive structural distortions in HEO significantly improve the ionic conductivity (5 × 10<sup>−4</sup> S·cm<sup>−1</sup> at 60 °C) and Li-ion transference number (0.57) of CPEs. Furthermore, the enhanced Li-ion transport capability extends the critical current density from 0.6 to 1.5 mA·cm<sup>−2</sup> in Li/Li symmetric cells. In addition, all-solid-state batteries incorporating the HEO-modified CPEs exhibit superior rate performance and cycling stability. The work will enrich the application of HEOs in CPEs and provide fundamental understanding.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":null,"pages":null},"PeriodicalIF":8.8,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A pore-confined strategy for synthesizing CoFe nanoparticles in mesoporous biocarbon matrix as advanced bifunctional oxygen electrocatalyst for zinc–air battery 在介孔生物碳基质中合成 CoFe 纳米粒子的孔隙封闭策略,作为锌-空气电池的先进双功能氧电催化剂
IF 8.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-04 DOI: 10.1007/s12598-024-02969-2
Xiang-Jun Zheng, Hong-Yu Gong, Na Zhang, Wen-Hua Shi, Qing Sun, Yu-Hang Qian, Li-Kun Jiang, Xue-Cheng Cao, Rui-Zhi Yang, Chang-Zhou Yuan

Abstract

Designing rational transition-metal/carbon composites with highly dispersed and firmly anchored nanoparticles (NPs) to prevent agglomeration and shedding is crucial for realizing excellent electrocatalytic performances. Herein, a biomass pore-confined strategy based on mesoporous willow catkin is explored to obtain uniformly dispersed CoFe NPs in N-doped carbon nanotubes and hollow carbon fibers (CoFe@N-CNTs/HCFs). The resultant catalyst exhibits enhanced electrocatalytic performance, which affords a half-wave potential of 0.86 V (vs. RHE) with a limited current density of 6.0 mA·cm−2 for oxygen reduction reaction and potential of 1.67 V (vs. RHE) at 10 mA·cm−2 in 0.1 M KOH for oxygen evolution reaction. When applied to rechargeable zinc–air batteries, a maximum power density of 340 mW·cm−2 and long-term cyclic durability over 800 h are achieved. Such superior bifunctional electrocatalytic activities are ascribed to the biocarbon matrix with abundant mesopores and unobstructed hollow channels, CoFe NPs with high dispersion and controllable nanoscale and the hybrid composite with optimized electronic structure. This work presents an effective approach for constraining the size and dispersion of NPs in a low-cost biocarbon substrate, offering valuable insights for designing advanced oxygen electrocatalysts.

Graphical abstract

摘要设计合理的过渡金属/碳复合材料,使其具有高度分散和牢固锚定的纳米粒子(NPs),以防止团聚和脱落,对于实现优异的电催化性能至关重要。本文探索了一种基于介孔柳枝荑的生物质孔隙约束策略,以获得均匀分散在掺杂 N 的碳纳米管和中空碳纤维(CoFe@N-CNTs/HCFs)中的 CoFe NPs。生成的催化剂具有更强的电催化性能,在 6.0 mA-cm-2 的有限电流密度下,氧还原反应的半波电位为 0.86 V(相对于 RHE);在 0.1 M KOH 中,10 mA-cm-2 的电流密度下,氧进化反应的半波电位为 1.67 V(相对于 RHE)。当应用于可充电锌-空气电池时,可达到 340 mW-cm-2 的最大功率密度和超过 800 小时的长期循环耐久性。如此优异的双功能电催化活性归功于具有丰富中孔和畅通中空通道的生物碳基质、高分散性和可控纳米尺度的 CoFe NPs 以及具有优化电子结构的混合复合材料。这项工作提出了一种在低成本生物碳基质中限制 NPs 尺寸和分散的有效方法,为设计先进的氧电催化剂提供了宝贵的启示。
{"title":"A pore-confined strategy for synthesizing CoFe nanoparticles in mesoporous biocarbon matrix as advanced bifunctional oxygen electrocatalyst for zinc–air battery","authors":"Xiang-Jun Zheng, Hong-Yu Gong, Na Zhang, Wen-Hua Shi, Qing Sun, Yu-Hang Qian, Li-Kun Jiang, Xue-Cheng Cao, Rui-Zhi Yang, Chang-Zhou Yuan","doi":"10.1007/s12598-024-02969-2","DOIUrl":"https://doi.org/10.1007/s12598-024-02969-2","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Designing rational transition-metal/carbon composites with highly dispersed and firmly anchored nanoparticles (NPs) to prevent agglomeration and shedding is crucial for realizing excellent electrocatalytic performances. Herein, a biomass pore-confined strategy based on mesoporous willow catkin is explored to obtain uniformly dispersed CoFe NPs in N-doped carbon nanotubes and hollow carbon fibers (CoFe@N-CNTs/HCFs). The resultant catalyst exhibits enhanced electrocatalytic performance, which affords a half-wave potential of 0.86 V (vs. RHE) with a limited current density of 6.0 mA·cm<sup>−2</sup> for oxygen reduction reaction and potential of 1.67 V (vs. RHE) at 10 mA·cm<sup>−2</sup> in 0.1 M KOH for oxygen evolution reaction. When applied to rechargeable zinc–air batteries, a maximum power density of 340 mW·cm<sup>−2</sup> and long-term cyclic durability over 800 h are achieved. Such superior bifunctional electrocatalytic activities are ascribed to the biocarbon matrix with abundant mesopores and unobstructed hollow channels, CoFe NPs with high dispersion and controllable nanoscale and the hybrid composite with optimized electronic structure. This work presents an effective approach for constraining the size and dispersion of NPs in a low-cost biocarbon substrate, offering valuable insights for designing advanced oxygen electrocatalysts.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":null,"pages":null},"PeriodicalIF":8.8,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient visible-light-driven hydrogen production with Ag-doped flower-like ZnIn2S4 microspheres 利用掺银花状 ZnIn2S4 微球在可见光下高效制氢
IF 8.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-03 DOI: 10.1007/s12598-024-02979-0
Man Yang, Xiao-Qiang Zhan, De-Liu Ou, Lin Wang, Lu-Lu Zhao, Hong-Li Yang, Zi-Yi Liao, Wei-You Yang, Guo-Zhi Ma, Hui-Lin Hou

The zinc indium sulfide (ZnIn2S4) semiconductors have garnered significant interest in photocatalysis due to their environmentally friendly characteristics, appropriate bandgap, and high absorption coefficient. However, the exploration of advanced strategies to realize the effective and tailored doping still poses significant challenges in enhancing hydrogen evolution performance. In this work, a mild cation exchange strategy is reported to incorporate Ag cations into flower-like ZnIn2S4 microspheres, enabling the selective replacement of Zn atoms by Ag. Remarkably, the as-fabricated Ag-ZnIn2S4 exhibited exceptional photocatalytic hydrogen production performance, achieving a rate of 8098 μmol·g−1· h−1 under visible light irradiation. This is 4 times than that of pristine ZnIn2S4 (2002 μmol·g−1· h−1), and stands as the highest one among metal-doped-ZnIn2S4 photocatalysts ever reported. Along with the theoretical calculations, it has been confirmed that the enhanced photocatalytic hydrogen generation behavior can primarily be attributed to the synergistic effect with improved light absorption, reduced adsorption energy, increased active sites and optimized charge carrier transfer, induced by the cation exchange with Ag in ZnIn2S4. This work might provide some valuable insights on the design and development of highly efficient visible light driven photocatalysts for water splitting applications.

Graphical abstract

硫化锌铟(ZnIn2S4)半导体因其环保特性、合适的带隙和高吸收系数而在光催化领域备受关注。然而,探索实现有效和定制掺杂的先进策略仍是提高氢气进化性能的重大挑战。本研究采用温和的阳离子交换策略,将银阳离子掺入到花状 ZnIn2S4 微球中,从而实现了银原子对 Zn 原子的选择性取代。值得注意的是,制备的 Ag-ZnIn2S4 表现出优异的光催化制氢性能,在可见光照射下,制氢率达到 8098 μmol-g-1-h-1。这是原始 ZnIn2S4(2002 μmol-g-1-h-1)的 4 倍,也是迄今所报道的掺金属 ZnIn2S4 光催化剂中最高的。理论计算证实,光催化制氢性能的增强主要归因于 ZnIn2S4 中与 Ag 的阳离子交换所产生的协同效应,即改善光吸收、降低吸附能、增加活性位点和优化电荷载流子转移。这项工作可能会为设计和开发用于水分离应用的高效可见光驱动光催化剂提供一些有价值的见解。
{"title":"Efficient visible-light-driven hydrogen production with Ag-doped flower-like ZnIn2S4 microspheres","authors":"Man Yang, Xiao-Qiang Zhan, De-Liu Ou, Lin Wang, Lu-Lu Zhao, Hong-Li Yang, Zi-Yi Liao, Wei-You Yang, Guo-Zhi Ma, Hui-Lin Hou","doi":"10.1007/s12598-024-02979-0","DOIUrl":"https://doi.org/10.1007/s12598-024-02979-0","url":null,"abstract":"<p>The zinc indium sulfide (ZnIn<sub>2</sub>S<sub>4</sub>) semiconductors have garnered significant interest in photocatalysis due to their environmentally friendly characteristics, appropriate bandgap, and high absorption coefficient. However, the exploration of advanced strategies to realize the effective and tailored doping still poses significant challenges in enhancing hydrogen evolution performance. In this work, a mild cation exchange strategy is reported to incorporate Ag cations into flower-like ZnIn<sub>2</sub>S<sub>4</sub> microspheres, enabling the selective replacement of Zn atoms by Ag. Remarkably, the as-fabricated Ag-ZnIn<sub>2</sub>S<sub>4</sub> exhibited exceptional photocatalytic hydrogen production performance, achieving a rate of 8098 μmol·g<sup>−1</sup>· h<sup>−1</sup> under visible light irradiation. This is 4 times than that of pristine ZnIn<sub>2</sub>S<sub>4</sub> (2002 μmol·g<sup>−1</sup>· h<sup>−1</sup>), and stands as the highest one among metal-doped-ZnIn<sub>2</sub>S<sub>4</sub> photocatalysts ever reported. Along with the theoretical calculations, it has been confirmed that the enhanced photocatalytic hydrogen generation behavior can primarily be attributed to the synergistic effect with improved light absorption, reduced adsorption energy, increased active sites and optimized charge carrier transfer, induced by the cation exchange with Ag in ZnIn<sub>2</sub>S<sub>4</sub>. This work might provide some valuable insights on the design and development of highly efficient visible light driven photocatalysts for water splitting applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":null,"pages":null},"PeriodicalIF":8.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Rare Metals
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1