The timespans over which different plastics degrade in the environment are poorly understood. This study aimed to rank the degradation speed of five widespread plastic polymers–low density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polylactic acid (PLA) and polyethylene terephthalate (PET)–in terms of their physicochemical properties. Five of the six samples were plastic films with identical dimensions, which allowed the influence of morphology to be excluded, with a polyethylene carrier bag (PEB) tested for comparison. An accelerated weathering chamber was used to photochemically degrade samples over 41 days, with degradation monitored via mass loss and changes to carbonyl index, crystallinity and contact angle. The mass loss ranking was PP ≫ LDPE > PEB > PS > PLA > PET. Estimates of the time needed for complete degradation ranged from 0.27 years for PP to 1179 years for PET. Therefore, mass loss in PP proceeded more rapidly than the other polymers, which was unexpected based on previous literature and is plausibly explained by the presence of an unlisted additive which accelerated degradation. Increases in carbonyl index proceeded more rapidly in PP and LDPE than the other polymers tested. However, changes in contact angle and crystallinity did not correspond to the mass loss ranking. Therefore, monitoring the carbonyl index during accelerated weathering trials can indicate which polymers will fragment more quickly. However, alternative approaches are needed to simulate conditions where photooxidation reactions are negligible, such as the ocean floor.
{"title":"Ranking the accelerated weathering of plastic polymers†","authors":"Maryam Hoseini, Jess Stead and Tom Bond","doi":"10.1039/D3EM00295K","DOIUrl":"10.1039/D3EM00295K","url":null,"abstract":"<p >The timespans over which different plastics degrade in the environment are poorly understood. This study aimed to rank the degradation speed of five widespread plastic polymers–low density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polylactic acid (PLA) and polyethylene terephthalate (PET)–in terms of their physicochemical properties. Five of the six samples were plastic films with identical dimensions, which allowed the influence of morphology to be excluded, with a polyethylene carrier bag (PEB) tested for comparison. An accelerated weathering chamber was used to photochemically degrade samples over 41 days, with degradation monitored <em>via</em> mass loss and changes to carbonyl index, crystallinity and contact angle. The mass loss ranking was PP ≫ LDPE > PEB > PS > PLA > PET. Estimates of the time needed for complete degradation ranged from 0.27 years for PP to 1179 years for PET. Therefore, mass loss in PP proceeded more rapidly than the other polymers, which was unexpected based on previous literature and is plausibly explained by the presence of an unlisted additive which accelerated degradation. Increases in carbonyl index proceeded more rapidly in PP and LDPE than the other polymers tested. However, changes in contact angle and crystallinity did not correspond to the mass loss ranking. Therefore, monitoring the carbonyl index during accelerated weathering trials can indicate which polymers will fragment more quickly. However, alternative approaches are needed to simulate conditions where photooxidation reactions are negligible, such as the ocean floor.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2081-2091"},"PeriodicalIF":5.5,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/em/d3em00295k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50159963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amila O. De Silva, Cora J. Young, Christine Spencer, Derek C. G. Muir, Martin Sharp, Igor Lehnherr and Alison Criscitiello
Organophosphate esters (OPEs) have been used as flame retardants, plasticizers, and anti-foaming agents over the past several decades. Of particular interest is the long range transport potential of OPEs given their ubiquitous detection in Arctic marine air. Here we report 19 OPE congeners in ice cores drilled on remote icefields and ice caps in the Canadian high Arctic. A multi-decadal temporal profile was constructed in the sectioned ice cores representing a time scale spanning the 1970s to 2014–16. In the Devon Ice Cap record, the annual total OPE (∑OPEs) depositional flux for all of 2014 was 81 μg m−2, with the profile dominated by triphenylphosphate (TPP, 9.4 μg m−2) and tris(2-chloroisopropyl) phosphate (TCPP, 42 μg m−2). Here, many OPEs displayed an exponentially increasing depositional flux including TCPP which had a doubling time of 4.1 ± 0.44 years. At the more northern site on Mt. Oxford icefield, the OPE fluxes were lower. Here, the annual ∑OPEs flux in 2016 was 5.3 μg m−2, dominated by TCPP (1.5 μg m−2) but also tris(2-butoxyethyl) phosphate (1.5 μg m−2 TBOEP). The temporal trend for halogenated OPEs in the Mt. Oxford icefield is bell-shaped, peaking in the mid-2000s. The observation of OPEs in remote Arctic ice cores demonstrates the cryosphere as a repository for these substances, and supports the potential for long-range transport of OPEs, likely associated with aerosol transport.
{"title":"Canadian high arctic ice core records of organophosphate flame retardants and plasticizers†","authors":"Amila O. De Silva, Cora J. Young, Christine Spencer, Derek C. G. Muir, Martin Sharp, Igor Lehnherr and Alison Criscitiello","doi":"10.1039/D3EM00215B","DOIUrl":"10.1039/D3EM00215B","url":null,"abstract":"<p >Organophosphate esters (OPEs) have been used as flame retardants, plasticizers, and anti-foaming agents over the past several decades. Of particular interest is the long range transport potential of OPEs given their ubiquitous detection in Arctic marine air. Here we report 19 OPE congeners in ice cores drilled on remote icefields and ice caps in the Canadian high Arctic. A multi-decadal temporal profile was constructed in the sectioned ice cores representing a time scale spanning the 1970s to 2014–16. In the Devon Ice Cap record, the annual total OPE (∑OPEs) depositional flux for all of 2014 was 81 μg m<small><sup>−2</sup></small>, with the profile dominated by triphenylphosphate (TPP, 9.4 μg m<small><sup>−2</sup></small>) and tris(2-chloroisopropyl) phosphate (TCPP, 42 μg m<small><sup>−2</sup></small>). Here, many OPEs displayed an exponentially increasing depositional flux including TCPP which had a doubling time of 4.1 ± 0.44 years. At the more northern site on Mt. Oxford icefield, the OPE fluxes were lower. Here, the annual ∑OPEs flux in 2016 was 5.3 μg m<small><sup>−2</sup></small>, dominated by TCPP (1.5 μg m<small><sup>−2</sup></small>) but also tris(2-butoxyethyl) phosphate (1.5 μg m<small><sup>−2</sup></small> TBOEP). The temporal trend for halogenated OPEs in the Mt. Oxford icefield is bell-shaped, peaking in the mid-2000s. The observation of OPEs in remote Arctic ice cores demonstrates the cryosphere as a repository for these substances, and supports the potential for long-range transport of OPEs, likely associated with aerosol transport.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2001-2014"},"PeriodicalIF":5.5,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/em/d3em00215b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49671758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamed Elsheref, Lena Messina and Matthew A. Tarr
Oil spills represent a major source of negative environmental impacts in marine systems. Despite many decades of research on oil spill behavior, photochemistry was neglected as a major factor in the fate of oil spilled in marine systems. Subsequent to the Deepwater Horizon oil spill, numerous studies using varied approaches have demonstrated the importance of photochemistry, including short-term impacts (hours to days) that were previously unrecognized. These studies have demonstrated the importance of photochemistry in the overall oil transformation after a spill and more specifically the impacts on emulsification, oxygenation, and microbial interactions. In addition to new perspectives, advances in analytical approaches have allowed an improved understanding of oil photochemistry after maritime spill. Although the literature on the Deepwater Horizon spill is extensive, this review focuses only on studies relevant to the advances in oil photochemistry understanding since the Deepwater Horizon spill.
{"title":"Photochemistry of oil in marine systems: developments since the Deepwater Horizon spill","authors":"Mohamed Elsheref, Lena Messina and Matthew A. Tarr","doi":"10.1039/D3EM00248A","DOIUrl":"10.1039/D3EM00248A","url":null,"abstract":"<p >Oil spills represent a major source of negative environmental impacts in marine systems. Despite many decades of research on oil spill behavior, photochemistry was neglected as a major factor in the fate of oil spilled in marine systems. Subsequent to the Deepwater Horizon oil spill, numerous studies using varied approaches have demonstrated the importance of photochemistry, including short-term impacts (hours to days) that were previously unrecognized. These studies have demonstrated the importance of photochemistry in the overall oil transformation after a spill and more specifically the impacts on emulsification, oxygenation, and microbial interactions. In addition to new perspectives, advances in analytical approaches have allowed an improved understanding of oil photochemistry after maritime spill. Although the literature on the Deepwater Horizon spill is extensive, this review focuses only on studies relevant to the advances in oil photochemistry understanding since the Deepwater Horizon spill.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 1878-1908"},"PeriodicalIF":5.5,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50159905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiuyan Chen, Qiang Zhang, Weifeng Chen, Usman Farooq, Taotao Lu, Bin Wang, Jinzhi Ni, Huiying Zhang and Zhichong Qi
In the post-COVID-19 era, extensive quantities of antipyretic drugs are being haphazardly released from households into the environment, which may pose potential risks to ecological systems and human health. Identification of the mobility behaviors of these compounds in the subsurface environment is crucial to understand the environmental fate of these common contaminants. The mobility properties of three broad-spectrum antipyretic drugs, including ibuprofen (IBF), indometacin (IMC), and acetaminophen (APAP), in porous soil media, were investigated in this study. The results showed that the mobility of the three drugs (the background electrolyte was Na+) through the soil column followed the order of APAP > IBF > IMC. The difference in the physicochemical characteristics of various antipyretic drugs (e.g., the molecular structure and hydrophobicity) could explain this trend. Unlike Na+, Ca2+ ions tended to serve as bridging agents by linking the soil grains and antipyretic molecules, leading to the relatively weak mobility behaviors of antipyretic drugs. Furthermore, for a given antipyretic drug, the antipyretic mobility was promoted when the background solution pH values were raised from 5.0 to 9.0. The phenomenon stemmed from the improved electrostatic repulsion between the dissociated species of antipyretic molecules and soil grains, as well as the weakened hydrophobic interactions between antipyretic drugs and soil organic matter. Furthermore, a two-site non-equilibrium transport model was used to estimate the mobility of antipyretic drugs. The results obtained from this work provide vital information illustrating the transport and retention of various antipyretic drugs in aquifers.
{"title":"Mobility of antipyretic drugs with different molecular structures in saturated soil porous media†","authors":"Jiuyan Chen, Qiang Zhang, Weifeng Chen, Usman Farooq, Taotao Lu, Bin Wang, Jinzhi Ni, Huiying Zhang and Zhichong Qi","doi":"10.1039/D3EM00358B","DOIUrl":"10.1039/D3EM00358B","url":null,"abstract":"<p >In the post-COVID-19 era, extensive quantities of antipyretic drugs are being haphazardly released from households into the environment, which may pose potential risks to ecological systems and human health. Identification of the mobility behaviors of these compounds in the subsurface environment is crucial to understand the environmental fate of these common contaminants. The mobility properties of three broad-spectrum antipyretic drugs, including ibuprofen (IBF), indometacin (IMC), and acetaminophen (APAP), in porous soil media, were investigated in this study. The results showed that the mobility of the three drugs (the background electrolyte was Na<small><sup>+</sup></small>) through the soil column followed the order of APAP > IBF > IMC. The difference in the physicochemical characteristics of various antipyretic drugs (<em>e.g.</em>, the molecular structure and hydrophobicity) could explain this trend. Unlike Na<small><sup>+</sup></small>, Ca<small><sup>2+</sup></small> ions tended to serve as bridging agents by linking the soil grains and antipyretic molecules, leading to the relatively weak mobility behaviors of antipyretic drugs. Furthermore, for a given antipyretic drug, the antipyretic mobility was promoted when the background solution pH values were raised from 5.0 to 9.0. The phenomenon stemmed from the improved electrostatic repulsion between the dissociated species of antipyretic molecules and soil grains, as well as the weakened hydrophobic interactions between antipyretic drugs and soil organic matter. Furthermore, a two-site non-equilibrium transport model was used to estimate the mobility of antipyretic drugs. The results obtained from this work provide vital information illustrating the transport and retention of various antipyretic drugs in aquifers.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2092-2101"},"PeriodicalIF":5.5,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71409756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The oxidation of pyrite (FeS2) not only adversely affects the environment, but also plays a critical role in the geochemical evolution of Fe and S elements. However, the oxidation rate of FeS2 is often controlled by its exposed crystal facets. Herein, the oxidation behaviors and mechanisms of naturally existing FeS2(100) and FeS2(210) crystals are investigated. The adsorption models of O2 on FeS2(100) and FeS2(210) facets are established, additionally, their corresponding surface energies, O2 adsorption sites and energies are also obtained using Density Functional Theory (DFT) calculations. These results suggest that the FeS2(210) facet more readily reacts with O2 because it has more unsaturated coordination of Fe atoms compared with the FeS2(100) facet. Moreover, electrochemical results such as EIS, Tafel and CV curves further prove that FeS2(210) possesses a higher oxidation rate than that of FeS2(100). The results of chemical oxidation experiments and XPS analyses show that FeS2(210) can produce more total Fe, SO42− and H+ than FeS2(100). Furthermore, various intermediate S species such as SO32−, S2O32−, S3O62−, S4O62− and S5O62− are also detected. This work can provide a basis for understanding the oxidation mechanism of facet-dependent FeS2 and the geochemical evolution of Fe and S elements.
{"title":"Investigating the oxidation mechanism of facet-dependent pyrite: implications for the environment and sulfur evolution†","authors":"Chenrui Liu, Yun Liu, Shuai Zeng and Dejian Li","doi":"10.1039/D3EM00221G","DOIUrl":"10.1039/D3EM00221G","url":null,"abstract":"<p >The oxidation of pyrite (FeS<small><sub>2</sub></small>) not only adversely affects the environment, but also plays a critical role in the geochemical evolution of Fe and S elements. However, the oxidation rate of FeS<small><sub>2</sub></small> is often controlled by its exposed crystal facets. Herein, the oxidation behaviors and mechanisms of naturally existing FeS<small><sub>2</sub></small>(100) and FeS<small><sub>2</sub></small>(210) crystals are investigated. The adsorption models of O<small><sub>2</sub></small> on FeS<small><sub>2</sub></small>(100) and FeS<small><sub>2</sub></small>(210) facets are established, additionally, their corresponding surface energies, O<small><sub>2</sub></small> adsorption sites and energies are also obtained using Density Functional Theory (DFT) calculations. These results suggest that the FeS<small><sub>2</sub></small>(210) facet more readily reacts with O<small><sub>2</sub></small> because it has more unsaturated coordination of Fe atoms compared with the FeS<small><sub>2</sub></small>(100) facet. Moreover, electrochemical results such as EIS, Tafel and CV curves further prove that FeS<small><sub>2</sub></small>(210) possesses a higher oxidation rate than that of FeS<small><sub>2</sub></small>(100). The results of chemical oxidation experiments and XPS analyses show that FeS<small><sub>2</sub></small>(210) can produce more total Fe, SO<small><sub>4</sub></small><small><sup>2−</sup></small> and H<small><sup>+</sup></small> than FeS<small><sub>2</sub></small>(100). Furthermore, various intermediate S species such as SO<small><sub>3</sub></small><small><sup>2−</sup></small>, S<small><sub>2</sub></small>O<small><sub>3</sub></small><small><sup>2−</sup></small>, S<small><sub>3</sub></small>O<small><sub>6</sub></small><small><sup>2−</sup></small>, S<small><sub>4</sub></small>O<small><sub>6</sub></small><small><sup>2−</sup></small> and S<small><sub>5</sub></small>O<small><sub>6</sub></small><small><sup>2−</sup></small> are also detected. This work can provide a basis for understanding the oxidation mechanism of facet-dependent FeS<small><sub>2</sub></small> and the geochemical evolution of Fe and S elements.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2031-2041"},"PeriodicalIF":5.5,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41230414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elisabeta-Irina Geana, Angela Mihaela Baracu, Marius C. Stoian, Oana Brincoveanu, Cristina Pachiu and Livia Alexandra Dinu
Glyphosate (GLY), a widely utilized pesticide, poses a significant threat to human health even at minute concentrations. In this study, we propose an innovative electrochemical sensor for the indirect detection of GLY in surface water samples. The sensor incorporates a nanohybrid material composed of multi-layer graphene decorated with gold nanoparticles (AuNPs), synthesized in a single-step electrochemical process. To ensure portability and on-site measurements, the sensor is developed on a screen-printed electrode, chosen for its integration and miniaturization capabilities. The proposed sensor demonstrates remarkable sensitivity and selectivity for GLY detection in surface water samples, with an exceptional limit of detection (LOD) of 0.03 parts per billion (ppb) in both buffer and surface water matrices. Moreover, it exhibits a remarkably high sensitivity of 0.15 μA ppb−1. This electrochemical sensor offers a promising approach for accurate GLY monitoring, addressing the urgent need for reliable pesticide detection in environmental samples. The proposed sensor showed high selectivity towards GLY, when analysed in the presence of other pesticides such as phosmet, chlorpyrifos and glufosinate-ammonium. The recovery percentages of GLY from spiked surface water samples were between 93.8 and 98.9%. The study's broader implications extend to revolutionizing the way environmental chemistry addresses pesticide contamination, water quality assessment, and sustainable management of environmental pollutants. By pushing the boundaries of detection capabilities and offering practical solutions, this research contributes to the advancement of knowledge and practices that are essential for preserving and protecting our environment.
{"title":"Hybrid nanomaterial-based indirect electrochemical sensing of glyphosate in surface water: a promising approach for environmental monitoring†","authors":"Elisabeta-Irina Geana, Angela Mihaela Baracu, Marius C. Stoian, Oana Brincoveanu, Cristina Pachiu and Livia Alexandra Dinu","doi":"10.1039/D3EM00355H","DOIUrl":"10.1039/D3EM00355H","url":null,"abstract":"<p >Glyphosate (GLY), a widely utilized pesticide, poses a significant threat to human health even at minute concentrations. In this study, we propose an innovative electrochemical sensor for the indirect detection of GLY in surface water samples. The sensor incorporates a nanohybrid material composed of multi-layer graphene decorated with gold nanoparticles (AuNPs), synthesized in a single-step electrochemical process. To ensure portability and on-site measurements, the sensor is developed on a screen-printed electrode, chosen for its integration and miniaturization capabilities. The proposed sensor demonstrates remarkable sensitivity and selectivity for GLY detection in surface water samples, with an exceptional limit of detection (LOD) of 0.03 parts per billion (ppb) in both buffer and surface water matrices. Moreover, it exhibits a remarkably high sensitivity of 0.15 μA ppb<small><sup>−1</sup></small>. This electrochemical sensor offers a promising approach for accurate GLY monitoring, addressing the urgent need for reliable pesticide detection in environmental samples. The proposed sensor showed high selectivity towards GLY, when analysed in the presence of other pesticides such as phosmet, chlorpyrifos and glufosinate-ammonium. The recovery percentages of GLY from spiked surface water samples were between 93.8 and 98.9%. The study's broader implications extend to revolutionizing the way environmental chemistry addresses pesticide contamination, water quality assessment, and sustainable management of environmental pollutants. By pushing the boundaries of detection capabilities and offering practical solutions, this research contributes to the advancement of knowledge and practices that are essential for preserving and protecting our environment.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2057-2066"},"PeriodicalIF":5.5,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49687719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Viktoria Müller, Larissa Cristine Andrade Costa, Filipe Soares Rondan, Eleonora Matic, Marcia Foster Mesko, Andrew Kindness and Jörg Feldmann
Per and polyfluoroalkylated substances (PFAS) are common additives in ski waxes for their water repellent characteristic. Abrasion of ski wax leaves PFAS on the snow surface, however, little is known about the distribution and concentration of PFAS in snow and soil due to skiing. In this study we analysed different ski waxes, snowmelts and soil from family skiing areas from Alpine locations using targeted high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) to understand more about PFAS distribution in the environment. In general, we found a very diverse PFAS pattern in the analysed media. PFAS level was higher in skiing areas compared to the non-skiing ones that were used as control. ∑target PFAS ranged between <1.7 ng L−1 and 143 ng L−1 in snowmelt, <0.62 ng g−1 and 5.35 ng g−1 in soil and <1.89 and 874 ± 240 ng g−1 in ski wax samples. Snowmelt was dominated by short-chained PFAS, while soil and wax contained both short and long-chained PFAS. Extractable organic fluorine (EOF) was several orders of magnitude higher for waxes (0.5–2 mg g−1) than for soils (up to 0.3 μg g−1), while total fluorine (TF) content of the waxes was even higher, up to 31 210 ± 420 μg g−1. We also showed that the ∑ target PFAS accounts for up to 1.5% in EOF content, showing that targeted LC-MS/MS gives a limited measure of the pollution originated from ski waxes and non-targeted analysis and EOF is necessary for a better overview on PFAS distribution.
{"title":"Per and polyfluoroalkylated substances (PFAS) target and EOF analyses in ski wax, snowmelts, and soil from skiing areas†","authors":"Viktoria Müller, Larissa Cristine Andrade Costa, Filipe Soares Rondan, Eleonora Matic, Marcia Foster Mesko, Andrew Kindness and Jörg Feldmann","doi":"10.1039/D3EM00375B","DOIUrl":"10.1039/D3EM00375B","url":null,"abstract":"<p >Per and polyfluoroalkylated substances (PFAS) are common additives in ski waxes for their water repellent characteristic. Abrasion of ski wax leaves PFAS on the snow surface, however, little is known about the distribution and concentration of PFAS in snow and soil due to skiing. In this study we analysed different ski waxes, snowmelts and soil from family skiing areas from Alpine locations using targeted high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) to understand more about PFAS distribution in the environment. In general, we found a very diverse PFAS pattern in the analysed media. PFAS level was higher in skiing areas compared to the non-skiing ones that were used as control. ∑target PFAS ranged between <1.7 ng L<small><sup>−1</sup></small> and 143 ng L<small><sup>−1</sup></small> in snowmelt, <0.62 ng g<small><sup>−1</sup></small> and 5.35 ng g<small><sup>−1</sup></small> in soil and <1.89 and 874 ± 240 ng g<small><sup>−1</sup></small> in ski wax samples. Snowmelt was dominated by short-chained PFAS, while soil and wax contained both short and long-chained PFAS. Extractable organic fluorine (EOF) was several orders of magnitude higher for waxes (0.5–2 mg g<small><sup>−1</sup></small>) than for soils (up to 0.3 μg g<small><sup>−1</sup></small>), while total fluorine (TF) content of the waxes was even higher, up to 31 210 ± 420 μg g<small><sup>−1</sup></small>. We also showed that the ∑ target PFAS accounts for up to 1.5% in EOF content, showing that targeted LC-MS/MS gives a limited measure of the pollution originated from ski waxes and non-targeted analysis and EOF is necessary for a better overview on PFAS distribution.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 1926-1936"},"PeriodicalIF":5.5,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/em/d3em00375b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49671759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Because it is typically not possible to pursue compound identification efforts for all chemical features detected during non-target analysis (NTA), the need for prioritization arises. Here we propose a strategy that ranks chemical features detected in environmental samples based on a model-derived metric that quantifies a feature's attribute that makes it desirable to elucidate its structure, e.g., a high potential for bioaccumulation in humans or wildlife. The procedure involves the identification of isomers that could plausibly represent the molecular formulae assigned to NTA-detected chemical features. For each isomer, the prioritization metric is calculated using properties predicted with high-throughput methods. After the molecular formulae are ranked based on the average values of the prioritization metric calculated for all isomers assigned to a formula, the highest ranked molecular formulae are prioritized for structure elucidation. We applied this workflow to features identified in house dust, using the ratio of chemical intake through dust ingestion to chemical concentration in blood (dose-to-concentration ratio, DCR) as the prioritization metric. Collections of isomers for the molecular formulae were assembled from the PubChem database and DCR was estimated using partitioning and biotransformation properties predicted for each isomer using quantitative structure property relationships. The ten top-ranked molecular formulae with notably lower average DCR-values represented mostly compounds already known to be indoor pollutants of concern, such as two polybrominated diphenyl ethers, bis(2-ethylhexyl) tetrabromophthalate, tetrabromobisphenol A, tris(1,3-dichloroisopropyl)phosphate and the azo dye disperse blue 373.
{"title":"Prioritizing molecular formulae identified by non-target analysis through high-throughput modelling: application to identify compounds with high human accumulation potential from house dust","authors":"Zhizhen Zhang, Li Li, Hui Peng and Frank Wania","doi":"10.1039/D3EM00317E","DOIUrl":"10.1039/D3EM00317E","url":null,"abstract":"<p >Because it is typically not possible to pursue compound identification efforts for all chemical features detected during non-target analysis (NTA), the need for prioritization arises. Here we propose a strategy that ranks chemical features detected in environmental samples based on a model-derived metric that quantifies a feature's attribute that makes it desirable to elucidate its structure, <em>e.g.</em>, a high potential for bioaccumulation in humans or wildlife. The procedure involves the identification of isomers that could plausibly represent the molecular formulae assigned to NTA-detected chemical features. For each isomer, the prioritization metric is calculated using properties predicted with high-throughput methods. After the molecular formulae are ranked based on the average values of the prioritization metric calculated for all isomers assigned to a formula, the highest ranked molecular formulae are prioritized for structure elucidation. We applied this workflow to features identified in house dust, using the ratio of chemical intake through dust ingestion to chemical concentration in blood (dose-to-concentration ratio, DCR) as the prioritization metric. Collections of isomers for the molecular formulae were assembled from the PubChem database and DCR was estimated using partitioning and biotransformation properties predicted for each isomer using quantitative structure property relationships. The ten top-ranked molecular formulae with notably lower average DCR-values represented mostly compounds already known to be indoor pollutants of concern, such as two polybrominated diphenyl ethers, bis(2-ethylhexyl) tetrabromophthalate, tetrabromobisphenol A, tris(1,3-dichloroisopropyl)phosphate and the azo dye disperse blue 373.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 11","pages":" 1817-1829"},"PeriodicalIF":5.5,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41230416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ingjerd S. Krogseth, Knut Breivik, Sylvia Frantzen, Bente M. Nilsen, Sabine Eckhardt, Therese H. Nøst and Frank Wania
There is concern over possible effects on ecosystems and humans from exposure to persistent organic pollutants (POPs) and chemicals with similar properties. The main objective of this study was to develop, evaluate, and apply the Nested Exposure Model (NEM) designed to simulate the link between global emissions and resulting ecosystem exposure while accounting for variation in time and space. NEM, using environmental and biological data, global emissions, and physicochemical properties as input, was used to estimate PCB-153 concentrations in seawater and biota of the Norwegian marine environment from 1930 to 2020. These concentrations were compared to measured concentrations in (i) seawater, (ii) an Arctic marine food web comprising zooplankton, fish and marine mammals, and (iii) Atlantic herring (Clupea harengus) and Atlantic cod (Gadus morhua) from large baseline studies and monitoring programs. NEM reproduced PCB-153 concentrations in seawater, the Arctic food web, and Norwegian fish within a factor of 0.1–31, 0.14–3.1, and 0.09–21, respectively. The model also successfully reproduced measured trophic magnification factors for PCB-153 at Svalbard as well as geographical variations in PCB-153 burden in Atlantic cod between the Skagerrak, North Sea, Norwegian Sea, and Barents Sea, but estimated a steeper decline in PCB-153 concentration in herring and cod during the last decades than observed. Using the evaluated model with various emission scenarios showed the important contribution of European and global primary emissions for the PCB-153 load in fish from Norwegian marine offshore areas.
{"title":"Modelling PCB-153 in northern ecosystems across time, space, and species using the nested exposure model†","authors":"Ingjerd S. Krogseth, Knut Breivik, Sylvia Frantzen, Bente M. Nilsen, Sabine Eckhardt, Therese H. Nøst and Frank Wania","doi":"10.1039/D2EM00439A","DOIUrl":"10.1039/D2EM00439A","url":null,"abstract":"<p >There is concern over possible effects on ecosystems and humans from exposure to persistent organic pollutants (POPs) and chemicals with similar properties. The main objective of this study was to develop, evaluate, and apply the Nested Exposure Model (NEM) designed to simulate the link between global emissions and resulting ecosystem exposure while accounting for variation in time and space. NEM, using environmental and biological data, global emissions, and physicochemical properties as input, was used to estimate PCB-153 concentrations in seawater and biota of the Norwegian marine environment from 1930 to 2020. These concentrations were compared to measured concentrations in (i) seawater, (ii) an Arctic marine food web comprising zooplankton, fish and marine mammals, and (iii) Atlantic herring (<em>Clupea harengus</em>) and Atlantic cod (<em>Gadus morhua</em>) from large baseline studies and monitoring programs. NEM reproduced PCB-153 concentrations in seawater, the Arctic food web, and Norwegian fish within a factor of 0.1–31, 0.14–3.1, and 0.09–21, respectively. The model also successfully reproduced measured trophic magnification factors for PCB-153 at Svalbard as well as geographical variations in PCB-153 burden in Atlantic cod between the Skagerrak, North Sea, Norwegian Sea, and Barents Sea, but estimated a steeper decline in PCB-153 concentration in herring and cod during the last decades than observed. Using the evaluated model with various emission scenarios showed the important contribution of European and global primary emissions for the PCB-153 load in fish from Norwegian marine offshore areas.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 1986-2000"},"PeriodicalIF":5.5,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/em/d2em00439a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41094378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dietary exposure to per- and polyfluoroalkyl substances (PFAS) is poorly understood. Evaluating PFAS in food is complicated by the need to evaluate varied matrices and a lack of a standard, matrix-specific sample extraction methods. Prior food studies implemented universal rather than matrix-specific extraction approaches, which may yield false negatives and an underestimation of PFAS dietary exposure if methods are not suitable to all matrices. Here the objectives were to screen and optimize PFAS extraction methods for plants, tissues, and dairy; apply optimized extraction methods to a grocery store food survey; and compare estimated exposure to published reference doses (RfDs). Optimized, matrix-specific extractions generally yielded internal standard recoveries of 50–150% and matrix spike recoveries of 70–130%. The frequency of PFAS detection in grocery store foods (16 of 22 products) was higher than in previous work. PFAS were detected at concentrations of 10 ng kgdw−1 (perfluorobutane sulfonate; washed green beans and perfluorohexanoic acid; unwashed tomato) to 2680 ng kgdw−1 (perfluorohexane sulfonate; radish). Concentrations of perfluorooctanoic acid (PFOA) in carrots, lettuce, radish, and canned green beans yielded median exposure intake (EI) values of 0.016–0.240 ng per kgbw-day, which exceeded the EPA RfD (0.0015 ng per kgbw-day). Washing reduced radish PFOA concentrations below detection, but EIs at the reporting limit still exceeded the RfD. The combination of improved data quality and greater frequency of PFAS detection vs. prior studies plus EI > RfD for some PFAS suggests a need for matrix-specific extractions and analysis of PFAS in additional grocery store foods from broader geographic regions.
人们对全氟烷基和多氟烷基物质(PFAS)的饮食暴露知之甚少。由于需要评估各种基质,并且缺乏标准的基质特异性样品提取方法,评估食品中的PFAS变得复杂。先前的食品研究采用了通用而非基质特异性提取方法,如果方法不适用于所有基质,可能会产生假阴性和对PFAS饮食暴露的低估。这里的目标是筛选和优化植物、组织和乳制品的PFAS提取方法;将优化提取方法应用于杂货店食品调查;并将估计的暴露量与公布的参考剂量(RfDs)进行比较。优化的基质特异性提取通常产生50-150%的内标回收率和70-130%的基质尖峰回收率。在杂货店食品中检测PFAS的频率(22种产品中有16种)高于之前的工作。PFAS的检测浓度为10 ng kgdw-1(全氟丁烷磺酸;清洗过的青豆和全氟己酸;未清洗过的番茄)至2680 ng kgdw-1[全氟己磺酸;萝卜]。胡萝卜、生菜、萝卜和罐装青豆中全氟辛酸的浓度产生的暴露摄入量中值为0.016-0.240纳克/千克体重天,超过了EPA RfD(0.0015纳克/千克重量天)。清洗使萝卜全氟辛烷磺酸浓度低于检测值,但报告限值下的EIs仍超过RfD。与先前的研究相比,数据质量的提高和PFAS检测频率的提高,加上某些PFAS的EI>RfD,表明需要对来自更广泛地理区域的其他杂货店食品中的PFAS进行基质特异性提取和分析。
{"title":"Per- and polyfluoroalkyl substances (PFAS) in grocery store foods: method optimization, occurrence, and exposure assessment†","authors":"Zhao Yang, Marzieh Shojaei and Jennifer L. Guelfo","doi":"10.1039/D3EM00268C","DOIUrl":"10.1039/D3EM00268C","url":null,"abstract":"<p >Dietary exposure to per- and polyfluoroalkyl substances (PFAS) is poorly understood. Evaluating PFAS in food is complicated by the need to evaluate varied matrices and a lack of a standard, matrix-specific sample extraction methods. Prior food studies implemented universal rather than matrix-specific extraction approaches, which may yield false negatives and an underestimation of PFAS dietary exposure if methods are not suitable to all matrices. Here the objectives were to screen and optimize PFAS extraction methods for plants, tissues, and dairy; apply optimized extraction methods to a grocery store food survey; and compare estimated exposure to published reference doses (RfDs). Optimized, matrix-specific extractions generally yielded internal standard recoveries of 50–150% and matrix spike recoveries of 70–130%. The frequency of PFAS detection in grocery store foods (16 of 22 products) was higher than in previous work. PFAS were detected at concentrations of 10 ng kg<small><sub>dw</sub></small><small><sup>−1</sup></small> (perfluorobutane sulfonate; washed green beans and perfluorohexanoic acid; unwashed tomato) to 2680 ng kg<small><sub>dw</sub></small><small><sup>−1</sup></small> (perfluorohexane sulfonate; radish). Concentrations of perfluorooctanoic acid (PFOA) in carrots, lettuce, radish, and canned green beans yielded median exposure intake (EI) values of 0.016–0.240 ng per kg<small><sub>bw</sub></small>-day, which exceeded the EPA RfD (0.0015 ng per kg<small><sub>bw</sub></small>-day). Washing reduced radish PFOA concentrations below detection, but EIs at the reporting limit still exceeded the RfD. The combination of improved data quality and greater frequency of PFAS detection <em>vs.</em> prior studies plus EI > RfD for some PFAS suggests a need for matrix-specific extractions and analysis of PFAS in additional grocery store foods from broader geographic regions.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2015-2030"},"PeriodicalIF":5.5,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41098793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}