Pub Date : 2023-12-07DOI: 10.1134/S1560354723060011
Philip Arathoon
The (2)-body problem on the sphere and hyperbolic space are both real forms of holomorphic Hamiltonian systems defined on the complex sphere. This admits a natural description in terms of biquaternions and allows us to address questions concerning the hyperbolic system by complexifying it and treating it as the complexification of a spherical system. In this way, results for the (2)-body problem on the sphere are readily translated to the hyperbolic case. For instance, we implement this idea to completely classify the relative equilibria for the (2)-body problem on hyperbolic 3-space and discuss their stability for a strictly attractive potential.
{"title":"Unifying the Hyperbolic and Spherical (2)-Body Problem with Biquaternions","authors":"Philip Arathoon","doi":"10.1134/S1560354723060011","DOIUrl":"10.1134/S1560354723060011","url":null,"abstract":"<div><p>The <span>(2)</span>-body problem on the sphere and hyperbolic space are both real forms of holomorphic Hamiltonian systems defined on the complex sphere. This admits a natural description in terms of biquaternions and allows us to address questions concerning the hyperbolic system by complexifying it and treating it as the complexification of a spherical system. In this way, results for the <span>(2)</span>-body problem on the sphere are readily translated to the hyperbolic case. For instance, we implement this idea to completely classify the relative equilibria for the <span>(2)</span>-body problem on hyperbolic 3-space and discuss their stability for a strictly attractive potential.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"28 6","pages":"822 - 834"},"PeriodicalIF":0.8,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138555416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-07DOI: 10.1134/S1560354723060059
Boris S. Bardin
A general method is presented for constructing a nonlinear canonical transformation, which makes it possible to introduce local variables in a neighborhood of periodic motions of an autonomous Hamiltonian system with two degrees of freedom. This method can be used for investigating the behavior of the Hamiltonian system in the vicinity of its periodic trajectories. In particular, it can be applied to solve the problem of orbital stability of periodic motions.
{"title":"On the Method of Introduction of Local Variables in a Neighborhood of Periodic Solution of a Hamiltonian System with Two Degrees of Freedom","authors":"Boris S. Bardin","doi":"10.1134/S1560354723060059","DOIUrl":"10.1134/S1560354723060059","url":null,"abstract":"<div><p>A general method is presented for constructing a nonlinear canonical transformation, which makes it possible to introduce local variables in a neighborhood of periodic motions of an autonomous Hamiltonian system with two degrees of freedom. This method can be used for investigating the behavior of the Hamiltonian system in\u0000the vicinity of its periodic trajectories. In particular, it can be applied to solve the problem of orbital stability of periodic motions.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"28 6","pages":"878 - 887"},"PeriodicalIF":0.8,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138563720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-07DOI: 10.1134/S1560354723060047
Vladislav D. Galkin, Elena V. Nozdrinova, Olga V. Pochinka
In this paper, we obtain a classification of gradient-like flows on arbitrary surfaces by generalizing the circular Fleitas scheme. In 1975 he proved that such a scheme is a complete invariant of topological equivalence for polar flows on 2- and 3-manifolds. In this paper, we generalize the concept of a circular scheme to arbitrary gradient-like flows on surfaces. We prove that the isomorphism class of such schemes is a complete invariant of topological equivalence. We also solve exhaustively the realization problem by describing an abstract circular scheme and the process of realizing a gradient-like flow on the surface. In addition, we construct an efficient algorithm for distinguishing the isomorphism of circular schemes.
{"title":"Circular Fleitas Scheme for Gradient-Like Flows on the Surface","authors":"Vladislav D. Galkin, Elena V. Nozdrinova, Olga V. Pochinka","doi":"10.1134/S1560354723060047","DOIUrl":"10.1134/S1560354723060047","url":null,"abstract":"<div><p>In this paper, we obtain a classification of gradient-like\u0000flows on arbitrary surfaces by generalizing the circular\u0000Fleitas\u0000scheme. In 1975 he proved that such a scheme is a complete\u0000invariant of topological equivalence for polar flows on 2- and 3-manifolds.\u0000In this paper, we generalize the concept of a circular scheme\u0000to arbitrary gradient-like flows on surfaces. We prove that the\u0000isomorphism class of such schemes is a complete invariant of\u0000topological equivalence. We also solve exhaustively the\u0000realization problem by describing an abstract circular\u0000scheme and the process of realizing a gradient-like flow on\u0000the surface. In addition, we construct an efficient algorithm\u0000for distinguishing the isomorphism of circular schemes.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"28 6","pages":"865 - 877"},"PeriodicalIF":0.8,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138555422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-07DOI: 10.1134/S1560354723060060
Alexander A. Kilin, Tatiana B. Ivanova, Elena N. Pivovarova
This paper treats the problem of a spherical robot with an axisymmetric pendulum drive rolling without slipping on a vibrating plane. The main purpose of the paper is to investigate the stabilization of the upper vertical rotations of the pendulum using feedback (additional control action). For the chosen type of feedback, regions of asymptotic stability of the upper vertical rotations of the pendulum are constructed and possible bifurcations are analyzed. Special attention is also given to the question of the stability of periodic solutions arising as the vertical rotations lose stability.
{"title":"Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base Using Feedback","authors":"Alexander A. Kilin, Tatiana B. Ivanova, Elena N. Pivovarova","doi":"10.1134/S1560354723060060","DOIUrl":"10.1134/S1560354723060060","url":null,"abstract":"<div><p>This paper treats the problem of a spherical robot with an axisymmetric pendulum drive\u0000rolling without slipping on a vibrating plane. The main purpose of the paper is\u0000to investigate the stabilization of the upper vertical rotations of the pendulum\u0000using feedback (additional control action). For the chosen type of feedback,\u0000regions of asymptotic stability of the upper vertical rotations of the pendulum are constructed\u0000and possible bifurcations are analyzed. Special attention is also given to the question of\u0000the stability of periodic solutions arising as the vertical rotations lose stability.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"28 6","pages":"888 - 905"},"PeriodicalIF":0.8,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1560354723060060.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138563353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-07DOI: 10.1134/S1560354723060023
Alejandro Bravo-Doddoli
The space of (2)-jets of a real function of two real variables, denoted by (J^{2}(mathbb{R}^{2},mathbb{R})), admits the structure of a metabelian Carnot group, so (J^{2}(mathbb{R}^{2},mathbb{R})) has a normal abelian sub-group (mathbb{A}). As any sub-Riemannian manifold, (J^{2}(mathbb{R}^{2},mathbb{R})) has an associated Hamiltonian geodesic flow. The Hamiltonian action of (mathbb{A}) on (T^{*}J^{2}(mathbb{R}^{2},mathbb{R})) yields the reduced Hamiltonian (H_{mu}) on (T^{*}mathcal{H}simeq T^{*}(J^{2}(mathbb{R}^{2},mathbb{R})/mathbb{A})), where (H_{mu}) is a two-dimensional Euclidean space. The paper is devoted to proving that the reduced Hamiltonian (H_{mu}) is non-integrable by meromorphic functions for some values of (mu). This result suggests the sub-Riemannian geodesic flow on (J^{2}(mathbb{R}^{2},mathbb{R})) is not meromorphically integrable.
{"title":"Non-Integrable Sub-Riemannian Geodesic Flow on (J^{2}(mathbb{R}^{2},mathbb{R}))","authors":"Alejandro Bravo-Doddoli","doi":"10.1134/S1560354723060023","DOIUrl":"10.1134/S1560354723060023","url":null,"abstract":"<div><p>The space of <span>(2)</span>-jets of a real function of two real variables, denoted by <span>(J^{2}(mathbb{R}^{2},mathbb{R}))</span>, admits the structure of a metabelian Carnot group, so <span>(J^{2}(mathbb{R}^{2},mathbb{R}))</span> has a normal abelian sub-group <span>(mathbb{A})</span>. As any sub-Riemannian manifold, <span>(J^{2}(mathbb{R}^{2},mathbb{R}))</span> has an associated Hamiltonian geodesic flow. The Hamiltonian action of <span>(mathbb{A})</span> on <span>(T^{*}J^{2}(mathbb{R}^{2},mathbb{R}))</span> yields the reduced Hamiltonian <span>(H_{mu})</span> on <span>(T^{*}mathcal{H}simeq T^{*}(J^{2}(mathbb{R}^{2},mathbb{R})/mathbb{A}))</span>, where <span>(H_{mu})</span> is a two-dimensional Euclidean space. The paper is devoted to proving that the reduced Hamiltonian <span>(H_{mu})</span> is non-integrable by meromorphic functions for some values of <span>(mu)</span>. This result suggests the sub-Riemannian geodesic flow on <span>(J^{2}(mathbb{R}^{2},mathbb{R}))</span> is not meromorphically integrable.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"28 6","pages":"835 - 840"},"PeriodicalIF":0.8,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138555578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-20DOI: 10.1134/S1560354723040159
Peter De Maesschalck, Freddy Dumortier, Robert Roussarie
The paper deals with multi-layer canard cycles, extending the results of [1]. As a practical tool we introduce the connection diagram of a canard cycle and we show how to determine it in an easy way. This connection diagram presents in a clear way all available information that is necessary to formulate the main system of equations used in the study of the bifurcating limit cycles. In a forthcoming paper we will show that both the type of the layers and the nature of the connections between the layers play an essential role in determining the number and the bifurcations of the limit cycles that can be created from a canard cycle.
{"title":"Side-Comparison for Transition Maps in Multi-Layer Canard Problems","authors":"Peter De Maesschalck, Freddy Dumortier, Robert Roussarie","doi":"10.1134/S1560354723040159","DOIUrl":"10.1134/S1560354723040159","url":null,"abstract":"<div><p>The paper deals with multi-layer canard cycles, extending the results of [1]. As a practical tool we introduce the connection diagram of a canard cycle and we show how to determine it in an easy way. This connection diagram presents in a clear way all available information that is necessary to formulate the main system of equations used in the study of the bifurcating limit cycles. In a forthcoming paper we will show that both the type of the layers and the nature of the connections between the layers play an essential role in determining the number and the bifurcations of the limit cycles that can be created from a canard cycle.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"28 4","pages":"763 - 780"},"PeriodicalIF":1.4,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50500796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-20DOI: 10.1134/S1560354723040111
Toshiaki Fujiwara, Ernesto Pérez-Chavela
We study relative equilibria ((RE)) for the three-body problem on (mathbb{S}^{2}), under the influence of a general potential which only depends on (cossigma_{ij}) where (sigma_{ij}) are the mutual angles among the masses. Explicit conditions for masses (m_{k}) and (cossigma_{ij})