首页 > 最新文献

Wearable technologies最新文献

英文 中文
The effect of transcutaneous spinal cord stimulation on the balance and neurophysiological characteristics of young healthy adults. 经皮脊髓刺激对年轻健康成年人的平衡和神经生理特征的影响。
Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-02-08 eCollection Date: 2024-01-01 DOI: 10.1017/wtc.2023.24
Isirame Omofuma, Robert Carrera, Jayson King-Ori, Sunil K Agrawal

Transcutaneous spinal cord stimulation (TSCS) is gaining popularity as a noninvasive alternative to epidural stimulation. However, there is still much to learn about its effects and utility in assisting recovery of motor control. In this study, we applied TSCS to healthy subjects concurrently performing a functional training task to study its effects during a training intervention. We first carried out neurophysiological tests to characterize the H-reflex, H-reflex recovery, and posterior root muscle reflex thresholds, and then conducted balance tests, first without TSCS and then with TSCS. Balance tests included trunk perturbations in forward, backward, left, and right directions, and subjects' balance was characterized by their response to force perturbations. A balance training task involved the subjects playing a catch-and-throw game in virtual reality (VR) while receiving trunk perturbations and TSCS. Balance tests with and without TSCS were conducted after the VR training to measure subjects' post-training balance characteristics and then neurophysiological tests were carried out again. Statistical comparisons using t-tests between the balance and neurophysiological data collected before and after the VR training intervention found that the immediate effect of TSCS was to increase muscle activity during forward perturbations and to reduce balance performance in that direction. Muscle activity decreased after training and even more once TSCS was turned off. We thus observed an interaction of effects where TSCS increased muscle activity while the physical training decreased it.

经皮脊髓刺激(TSCS)作为硬膜外刺激的非侵入性替代疗法,越来越受到人们的欢迎。然而,关于经皮脊髓刺激在帮助恢复运动控制方面的效果和作用,我们还有很多需要了解的地方。在本研究中,我们将 TSCS 应用于同时进行功能训练任务的健康受试者,以研究其在训练干预期间的效果。我们首先进行了神经生理学测试,以确定 H 反射、H 反射恢复和后根肌肉反射阈值的特征,然后进行了平衡测试,首先是在不使用 TSCS 的情况下,然后是在使用 TSCS 的情况下。平衡测试包括向前、向后、向左和向右方向的躯干扰动,受试者对力扰动的反应表征了他们的平衡能力。平衡训练任务包括受试者在虚拟现实(VR)中玩接球投球游戏,同时接受躯干扰动和 TSCS。VR 训练结束后,受试者分别进行了有 TSCS 和无 TSCS 的平衡测试,以测量受试者训练后的平衡特性,然后再次进行神经电生理测试。使用 t 检验对 VR 训练干预前后收集的平衡和神经生理学数据进行统计比较后发现,TSCS 的直接效果是增加向前扰动时的肌肉活动,并降低该方向的平衡性能。肌肉活动在训练后会减少,一旦关闭 TSCS,减少的幅度更大。因此,我们观察到了一种相互作用的效应,即 TSCS 增加了肌肉活动,而物理训练则减少了肌肉活动。
{"title":"The effect of transcutaneous spinal cord stimulation on the balance and neurophysiological characteristics of young healthy adults.","authors":"Isirame Omofuma, Robert Carrera, Jayson King-Ori, Sunil K Agrawal","doi":"10.1017/wtc.2023.24","DOIUrl":"10.1017/wtc.2023.24","url":null,"abstract":"<p><p>Transcutaneous spinal cord stimulation (TSCS) is gaining popularity as a noninvasive alternative to epidural stimulation. However, there is still much to learn about its effects and utility in assisting recovery of motor control. In this study, we applied TSCS to healthy subjects concurrently performing a functional training task to study its effects during a training intervention. We first carried out neurophysiological tests to characterize the H-reflex, H-reflex recovery, and posterior root muscle reflex thresholds, and then conducted balance tests, first without TSCS and then with TSCS. Balance tests included trunk perturbations in forward, backward, left, and right directions, and subjects' balance was characterized by their response to force perturbations. A balance training task involved the subjects playing a catch-and-throw game in virtual reality (VR) while receiving trunk perturbations and TSCS. Balance tests with and without TSCS were conducted after the VR training to measure subjects' post-training balance characteristics and then neurophysiological tests were carried out again. Statistical comparisons using t-tests between the balance and neurophysiological data collected before and after the VR training intervention found that the immediate effect of TSCS was to increase muscle activity during forward perturbations and to reduce balance performance in that direction. Muscle activity decreased after training and even more once TSCS was turned off. We thus observed an interaction of effects where TSCS increased muscle activity while the physical training decreased it.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"5 ","pages":"e3"},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936317/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140133759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The efficacy of different torque profiles for weight compensation of the hand. 不同扭矩曲线对手部重量补偿的功效。
Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-01-29 eCollection Date: 2024-01-01 DOI: 10.1017/wtc.2023.23
Bas J van der Burgh, Suzanne J Filius, Giuseppe Radaelli, Jaap Harlaar

Orthotic wrist supports will be beneficial for people with muscular weakness to keep their hand in a neutral rest position and prevent potential wrist contractures. Compensating the weight of the hands is complex since the level of support depends on both wrist and forearm orientations. To explore simplified approaches, two different weight compensation strategies (constant and linear) were compared to the theoretical ideal sinusoidal profile and no compensation in eight healthy subjects using a mechanical wrist support system. All three compensation strategies showed a significant reduction of 47-53% surface electromyography activity in the anti-gravity m. extensor carpi radialis. However, for the higher palmar flexion region, a significant increase of 44-61% in the m. flexor carpi radialis was found for all compensation strategies. No significant differences were observed between the various compensation strategies. Two conclusions can be drawn: (1) a simplified torque profile (e.g., constant or linear) for weight compensation can be considered as equally effective as the theoretically ideal sinusoidal profile and (2) even the theoretically ideal profile provides no perfect support as other factors than weight, such as passive joint impedance, most likely influence the required compensation torque for the wrist joint.

矫形腕托有利于肌肉无力者将手保持在中性休息位置,防止潜在的腕部挛缩。手部的重量补偿非常复杂,因为支撑水平取决于手腕和前臂的方向。为了探索简化的方法,我们使用机械腕部支撑系统,将两种不同的重量补偿策略(恒定和线性)与理论上的理想正弦曲线和无补偿进行了比较。所有三种补偿策略都显示,反重力腕伸肌的表面肌电活动明显减少了 47-53%。然而,在较高的掌屈区域,所有补偿策略都发现腕屈肌的表面肌电活动显著增加了 44-61%。各种补偿策略之间没有明显差异。可以得出两个结论:(1)用于体重补偿的简化扭矩曲线(如恒定或线性)与理论上理想的正弦曲线同样有效;(2)即使是理论上理想的曲线也不能提供完美的支持,因为除体重外的其他因素(如被动关节阻抗)很可能会影响腕关节所需的补偿扭矩。
{"title":"The efficacy of different torque profiles for weight compensation of the hand.","authors":"Bas J van der Burgh, Suzanne J Filius, Giuseppe Radaelli, Jaap Harlaar","doi":"10.1017/wtc.2023.23","DOIUrl":"10.1017/wtc.2023.23","url":null,"abstract":"<p><p>Orthotic wrist supports will be beneficial for people with muscular weakness to keep their hand in a neutral rest position and prevent potential wrist contractures. Compensating the weight of the hands is complex since the level of support depends on both wrist and forearm orientations. To explore simplified approaches, two different weight compensation strategies (<i>constant</i> and <i>linear</i>) were compared to the theoretical ideal <i>sinusoidal</i> profile and no compensation in eight healthy subjects using a mechanical wrist support system. All three compensation strategies showed a significant reduction of 47-53% surface electromyography activity in the anti-gravity m. extensor carpi radialis. However, for the higher palmar flexion region, a significant increase of 44-61% in the m. flexor carpi radialis was found for all compensation strategies. No significant differences were observed between the various compensation strategies. Two conclusions can be drawn: (1) a simplified torque profile (e.g., constant or linear) for weight compensation can be considered as equally effective as the theoretically ideal sinusoidal profile and (2) even the theoretically ideal profile provides no perfect support as other factors than weight, such as passive joint impedance, most likely influence the required compensation torque for the wrist joint.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"5 ","pages":"e2"},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952050/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combining soft robotics and telerehabilitation for improving motor function after stroke. 结合软机器人技术和远程康复技术,改善中风后的运动功能。
Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-01-26 eCollection Date: 2024-01-01 DOI: 10.1017/wtc.2023.26
Tommaso Proietti, Kristin Nuckols, Jesse Grupper, Diogo Schwerz de Lucena, Bianca Inirio, Kelley Porazinski, Diana Wagner, Tazzy Cole, Christina Glover, Sarah Mendelowitz, Maxwell Herman, Joan Breen, David Lin, Conor Walsh

Telerehabilitation and robotics, either traditional rigid or soft, have been extensively studied and used to improve hand functionality after a stroke. However, a limited number of devices combined these two technologies to such a level of maturity that was possible to use them at the patients' home, unsupervised. Here we present a novel investigation that demonstrates the feasibility of a system that integrates a soft inflatable robotic glove, a cloud-connected software interface, and a telerehabilitation therapy. Ten chronic moderate-to-severe stroke survivors independently used the system at their home for 4 weeks, following a software-led therapy and being in touch with occupational therapists. Data from the therapy, including automatic assessments by the robot, were available to the occupational therapists in real-time, thanks to the cloud-connected capability of the system. The participants used the system intensively (about five times more movements per session than the standard care) for a total of more than 8 hr of therapy on average. We were able to observe improvements in standard clinical metrics (FMA +3.9 ± 4.0, p < .05, COPM-P + 2.5 ± 1.3, p < .05, COPM-S + 2.6 ± 1.9, p < .05, MAL-AOU +6.6 ± 6.5, p < .05) and range of motion (+88%) at the end of the intervention. Despite being small, these improvements sustained at follow-up, 2 weeks after the end of the therapy. These promising results pave the way toward further investigation for the deployment of combined soft robotic/telerehabilitive systems at-home for autonomous usage for stroke rehabilitation.

远程康复和机器人技术(无论是传统的刚性技术还是软性技术)已被广泛研究和用于改善中风后的手部功能。然而,将这两项技术结合到一起的设备数量有限,且成熟度不高,无法在患者家中无人监督的情况下使用。在这里,我们展示了一项新颖的研究,证明了将软质充气机器人手套、云连接软件界面和远程康复疗法整合在一起的系统的可行性。十名中度至重度中风的慢性病患者在家中独立使用了该系统 4 周,接受软件指导的治疗,并与职业治疗师保持联系。由于系统具有云连接功能,职业治疗师可以实时获得治疗数据,包括机器人的自动评估。参与者集中使用了该系统(每次治疗的动作是标准治疗的五倍),平均治疗时间超过 8 小时。我们能够观察到标准临床指标的改善(FMA +3.9 ± 4.0,p p p p
{"title":"Combining soft robotics and telerehabilitation for improving motor function after stroke.","authors":"Tommaso Proietti, Kristin Nuckols, Jesse Grupper, Diogo Schwerz de Lucena, Bianca Inirio, Kelley Porazinski, Diana Wagner, Tazzy Cole, Christina Glover, Sarah Mendelowitz, Maxwell Herman, Joan Breen, David Lin, Conor Walsh","doi":"10.1017/wtc.2023.26","DOIUrl":"10.1017/wtc.2023.26","url":null,"abstract":"<p><p>Telerehabilitation and robotics, either traditional rigid or soft, have been extensively studied and used to improve hand functionality after a stroke. However, a limited number of devices combined these two technologies to such a level of maturity that was possible to use them at the patients' home, unsupervised. Here we present a novel investigation that demonstrates the feasibility of a system that integrates a soft inflatable robotic glove, a cloud-connected software interface, and a telerehabilitation therapy. Ten chronic moderate-to-severe stroke survivors independently used the system at their home for 4 weeks, following a software-led therapy and being in touch with occupational therapists. Data from the therapy, including automatic assessments by the robot, were available to the occupational therapists in real-time, thanks to the cloud-connected capability of the system. The participants used the system intensively (about five times more movements per session than the standard care) for a total of more than 8 hr of therapy on average. We were able to observe improvements in standard clinical metrics (FMA +3.9 ± 4.0, <i>p</i> < .05, COPM-P + 2.5 ± 1.3, <i>p</i> < .05, COPM-S + 2.6 ± 1.9, <i>p</i> < .05, MAL-AOU +6.6 ± 6.5, <i>p</i> < .05) and range of motion (+88%) at the end of the intervention. Despite being small, these improvements sustained at follow-up, 2 weeks after the end of the therapy. These promising results pave the way toward further investigation for the deployment of combined soft robotic/telerehabilitive systems at-home for autonomous usage for stroke rehabilitation.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"5 ","pages":"e1"},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating cognitive and physical work performance: A comparative study of an active and passive industrial back-support exoskeleton 评估认知和体力工作表现:主动式和被动式工业背部支撑外骨骼的比较研究
Q2 ENGINEERING, BIOMEDICAL Pub Date : 2023-12-20 DOI: 10.1017/wtc.2023.25
Renée Govaerts, Tom Turcksin, B. Vanderborght, B. Roelands, R. Meeusen, K. De Pauw, S. De Bock
Abstract Occupational back-support exoskeletons, categorized as active or passive, hold promise for mitigating work-related musculoskeletal disorders. However, their impact on combined physical and cognitive aspects of industrial work performance remains inadequately understood, especially regarding potential differences between exoskeleton categories. A randomized, counterbalanced cross-over study was conducted, comparing the active CrayX, passive Paexo Back, and a no exoskeleton condition. A 15-min dual task was used to simulate both cognitive and physical aspects of industrial work performance. Cognitive workload parameters included reaction time, accuracy, and subjective measures. Physical workload included movement duration, segmented in three phases: (1) walking to and grabbing the box, (2) picking up, carrying, and putting down the box, and (3) returning to the starting point. Comfort of both devices was also surveyed. The Paexo significantly increased movement duration in the first segment compared to NoExo (Paexo = 1.55 ± 0.19 s; NoExo = 1.32 ± 0.17 s; p < .01). Moreover, both the Paexo and CrayX increased movement duration for the third segment compared to NoExo (CrayX = 1.70 ± 0.27 s; Paexo = 1.74 ± 0.27 s, NoExo = 1.54 ± 0.23 s; p < .01). No significant impact on cognitive outcomes was observed. Movement Time 2 was not significantly affected by both exoskeletons. Results of the first movement segment suggest the Paexo may hinder trunk bending, favoring the active device for dynamic movements. Both devices may have contributed to a higher workload as the movement duration in the third segment increased compared to NoExo.
摘要 职业背部支撑外骨骼分为主动式和被动式两种,有望减轻与工作有关的肌肉骨骼疾病。然而,人们对它们对工业工作表现的身体和认知方面的综合影响仍缺乏足够的了解,尤其是不同外骨骼类别之间的潜在差异。我们进行了一项随机、平衡交叉研究,比较了主动式 CrayX、被动式 Paexo Back 和无外骨骼条件。研究人员使用 15 分钟的双重任务来模拟工业工作中的认知和体力方面的表现。认知工作量参数包括反应时间、准确性和主观测量。体力工作量包括运动持续时间,分为三个阶段:(1) 走到箱子前并抓住箱子,(2) 拿起、搬运并放下箱子,(3) 返回起点。此外,还对两种设备的舒适度进行了调查。与 NoExo 相比,Paexo 明显增加了第一段的运动持续时间(Paexo = 1.55 ± 0.19 秒;NoExo = 1.32 ± 0.17 秒;p < .01)。此外,与 NoExo 相比,Paexo 和 CrayX 都增加了第三段的运动持续时间(CrayX = 1.70 ± 0.27 秒;Paexo = 1.74 ± 0.27 秒,NoExo = 1.54 ± 0.23 秒;p < .01)。对认知结果无明显影响。两种外骨骼对运动时间 2 均无明显影响。第一个运动片段的结果表明,Paexo 可能会阻碍躯干弯曲,从而有利于主动装置进行动态运动。与 NoExo 相比,随着第三段运动持续时间的增加,两种装置都可能导致更高的工作量。
{"title":"Evaluating cognitive and physical work performance: A comparative study of an active and passive industrial back-support exoskeleton","authors":"Renée Govaerts, Tom Turcksin, B. Vanderborght, B. Roelands, R. Meeusen, K. De Pauw, S. De Bock","doi":"10.1017/wtc.2023.25","DOIUrl":"https://doi.org/10.1017/wtc.2023.25","url":null,"abstract":"Abstract Occupational back-support exoskeletons, categorized as active or passive, hold promise for mitigating work-related musculoskeletal disorders. However, their impact on combined physical and cognitive aspects of industrial work performance remains inadequately understood, especially regarding potential differences between exoskeleton categories. A randomized, counterbalanced cross-over study was conducted, comparing the active CrayX, passive Paexo Back, and a no exoskeleton condition. A 15-min dual task was used to simulate both cognitive and physical aspects of industrial work performance. Cognitive workload parameters included reaction time, accuracy, and subjective measures. Physical workload included movement duration, segmented in three phases: (1) walking to and grabbing the box, (2) picking up, carrying, and putting down the box, and (3) returning to the starting point. Comfort of both devices was also surveyed. The Paexo significantly increased movement duration in the first segment compared to NoExo (Paexo = 1.55 ± 0.19 s; NoExo = 1.32 ± 0.17 s; p < .01). Moreover, both the Paexo and CrayX increased movement duration for the third segment compared to NoExo (CrayX = 1.70 ± 0.27 s; Paexo = 1.74 ± 0.27 s, NoExo = 1.54 ± 0.23 s; p < .01). No significant impact on cognitive outcomes was observed. Movement Time 2 was not significantly affected by both exoskeletons. Results of the first movement segment suggest the Paexo may hinder trunk bending, favoring the active device for dynamic movements. Both devices may have contributed to a higher workload as the movement duration in the third segment increased compared to NoExo.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"119 42","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138958560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new approach to a powered knee prosthesis: Layering powered assistance onto strictly passive prosthesis behavior. 动力膝关节假体的新方法:将动力辅助分层到严格被动的假体行为上
Q2 ENGINEERING, BIOMEDICAL Pub Date : 2023-08-18 eCollection Date: 2023-01-01 DOI: 10.1017/wtc.2023.14
Steve C Culver, Léo G Vailati, David C Morgenroth, Michael Goldfarb

This article describes a novel approach to the control of a powered knee prosthesis where the control system provides passive behavior for most activities and then provides powered assistance only for those activities that require them. The control approach presented here is based on the categorization of knee joint function during activities into four behaviors: resistive stance behavior, active stance behavior, ballistic swing, and non-ballistic swing. The approach is further premised on the assumption that healthy non-perturbed swing-phase is characterized by a ballistic swing motion, and therefore, a replacement of that function should be similarly ballistic. The control system utilizes a six-state finite-state machine, where each state provides different constitutive behaviors (concomitant with the four aforementioned knee behaviors) which are appropriate for a range of activities. Transitions between states and torque control within states is controlled by user motion, such that the control system provides, to the extent possible, knee torque behavior as a reaction to user motion, including for powered behaviors. The control system is demonstrated on a novel device that provides a sufficiently low impedance to enable a strictly passive ballistic swing-phase, while also providing sufficiently high torque to offer powered stance-phase knee-extension during activities such as step-over stair ascent. Experiments employing the knee and control system on an individual with transfemoral amputation are presented that compare the functionality of the power-supplemented nominally passive system with that of a conventional passive microprocessor-controlled knee prosthesis.

摘要:本文描述了一种控制动力膝关节假体的新方法,其中控制系统为大多数活动提供被动行为,然后仅为需要它们的活动提供动力辅助。本文提出的控制方法是基于活动过程中膝关节功能的分类,分为四种行为:抗性姿态行为、主动姿态行为、弹道摆动和非弹道摆动。该方法的进一步前提是假设健康的无扰动摆动相位以弹道摆动运动为特征,因此,该函数的替换应该类似于弹道运动。控制系统采用六状态有限状态机,其中每个状态提供适合于一系列活动的不同本构行为(伴随上述四种膝关节行为)。状态之间的转换和状态内的转矩控制由用户运动控制,因此控制系统尽可能提供膝关节转矩行为作为对用户运动的反应,包括动力行为。该控制系统在一种新型设备上进行了演示,该设备提供了足够低的阻抗,可以实现严格被动的弹道摆动相位,同时还提供了足够高的扭矩,可以在诸如跨楼梯上升等活动中提供动力的站立相位膝关节伸展。在经股骨截肢患者身上进行了膝关节和控制系统的实验,比较了动力辅助的名义被动系统与传统被动微处理器控制的膝关节假体的功能。
{"title":"A new approach to a powered knee prosthesis: Layering powered assistance onto strictly passive prosthesis behavior.","authors":"Steve C Culver, Léo G Vailati, David C Morgenroth, Michael Goldfarb","doi":"10.1017/wtc.2023.14","DOIUrl":"10.1017/wtc.2023.14","url":null,"abstract":"<p><p>This article describes a novel approach to the control of a powered knee prosthesis where the control system provides passive behavior for most activities and then provides powered assistance only for those activities that require them. The control approach presented here is based on the categorization of knee joint function during activities into four behaviors: resistive stance behavior, active stance behavior, ballistic swing, and non-ballistic swing. The approach is further premised on the assumption that healthy non-perturbed swing-phase is characterized by a ballistic swing motion, and therefore, a replacement of that function should be similarly ballistic. The control system utilizes a six-state finite-state machine, where each state provides different constitutive behaviors (concomitant with the four aforementioned knee behaviors) which are appropriate for a range of activities. Transitions between states and torque control within states is controlled by user motion, such that the control system provides, to the extent possible, knee torque behavior as a reaction to user motion, including for powered behaviors. The control system is demonstrated on a novel device that provides a sufficiently low impedance to enable a strictly passive ballistic swing-phase, while also providing sufficiently high torque to offer powered stance-phase knee-extension during activities such as step-over stair ascent. Experiments employing the knee and control system on an individual with transfemoral amputation are presented that compare the functionality of the power-supplemented nominally passive system with that of a conventional passive microprocessor-controlled knee prosthesis.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"4 1","pages":"e21"},"PeriodicalIF":0.0,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41401044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Wearable Real-time Kinematic and Kinetic Measurement Sensor Setup for Human Locomotion. 一种适用于人体运动的可佩戴实时运动学和动力学测量传感器装置。
Q2 ENGINEERING, BIOMEDICAL Pub Date : 2023-04-11 DOI: 10.1017/wtc.2023.7
Huawei Wang, Akash Basu, Guillaume Durandau, Massimo Sartori

Current laboratory-based setups (optical marker cameras + force plates) for human motion measurement require participants to stay in a constrained capture region which forbids rich movement types. This study established a fully wearable system, based on commercially available sensors (inertial measurement units + pressure insoles) that can measure both kinematic and kinetic motion data simultaneously and support wireless frame-by-frame streaming. In addition, its capability and accuracy were tested against a conventional laboratory-based setup. An experiment was conducted, with 9 participants wearing the wearable measurement system and performing 13 daily motion activities, from slow walking to fast running, together with vertical jump, squat, lunge and single-leg landing, inside the capture space of the laboratory-based motion capture system. The recorded sensor data were post-processed to obtain joint angles, ground reaction forces (GRFs), and joint torques (via multi-body inverse dynamics). Compared to the laboratory-based system, the established wearable measurement system can measure accurate information of all lower limb joint angles (Pearson's r = 0.929), vertical GRFs (Pearson's r = 0.954), and ankle joint torques (Pearson's r = 0.917). Center of pressure (CoP) in the anterior-posterior direction and knee joint torques were fairly matched (Pearson's r = 0.683 and 0.612, respectively). Calculated hip joint torques and measured medial-lateral CoP did not match with the laboratory-based system (Pearson's r = 0.21 and 0.47, respectively). Furthermore, both raw and processed datasets are openly accessible (https://doi.org/10.5281/zenodo.6457662). Documentation, data processing codes, and guidelines to establish the real-time wearable kinetic measurement system are also shared (https://github.com/HuaweiWang/WearableMeasurementSystem).

目前基于实验室的人体运动测量设置(光学标记相机+测力板)要求参与者停留在一个受限的捕捉区域,这禁止了丰富的运动类型。这项研究建立了一个基于商用传感器(惯性测量单元+压力鞋垫)的完全可穿戴系统,该系统可以同时测量运动学和动力学数据,并支持逐帧无线流传输。此外,它的能力和准确性还与传统的实验室设置进行了测试。进行了一项实验,9名参与者佩戴可穿戴测量系统,在基于实验室的运动捕捉系统的捕捉空间内进行了13项日常运动活动,从慢走到快跑,以及垂直跳跃、深蹲、弓步和单腿着地。对记录的传感器数据进行后处理,以获得关节角度、地面反作用力(GRF)和关节扭矩(通过多体逆动力学)。与基于实验室的系统相比,所建立的可穿戴测量系统可以测量所有下肢关节角度(Pearson’s r=0.929)、垂直GRF(Pearson's r=0.954)、,前后方向的压力中心(CoP)和膝关节力矩相当匹配(Pearson的r分别为0.683和0.612)。计算的髋关节力矩和测量的内侧-外侧CoP与基于实验室的系统不匹配(Pearson的r分别为0.21和0.47)。此外,原始数据集和处理后的数据集都可以公开访问(https://doi.org/10.5281/zenodo.6457662)。还共享了建立实时可穿戴动力学测量系统的文件、数据处理代码和指南(https://github.com/HuaweiWang/WearableMeasurementSystem)。
{"title":"A Wearable Real-time Kinematic and Kinetic Measurement Sensor Setup for Human Locomotion.","authors":"Huawei Wang, Akash Basu, Guillaume Durandau, Massimo Sartori","doi":"10.1017/wtc.2023.7","DOIUrl":"10.1017/wtc.2023.7","url":null,"abstract":"<p><p>Current laboratory-based setups (optical marker cameras + force plates) for human motion measurement require participants to stay in a constrained capture region which forbids rich movement types. This study established a fully wearable system, based on commercially available sensors (inertial measurement units + pressure insoles) that can measure both kinematic and kinetic motion data simultaneously and support wireless frame-by-frame streaming. In addition, its capability and accuracy were tested against a conventional laboratory-based setup. An experiment was conducted, with 9 participants wearing the wearable measurement system and performing 13 daily motion activities, from slow walking to fast running, together with vertical jump, squat, lunge and single-leg landing, inside the capture space of the laboratory-based motion capture system. The recorded sensor data were post-processed to obtain joint angles, ground reaction forces (GRFs), and joint torques (via multi-body inverse dynamics). Compared to the laboratory-based system, the established wearable measurement system can measure accurate information of all lower limb joint angles (Pearson's r = 0.929), vertical GRFs (Pearson's r = 0.954), and ankle joint torques (Pearson's r = 0.917). Center of pressure (CoP) in the anterior-posterior direction and knee joint torques were fairly matched (Pearson's r = 0.683 and 0.612, respectively). Calculated hip joint torques and measured medial-lateral CoP did not match with the laboratory-based system (Pearson's r = 0.21 and 0.47, respectively). Furthermore, both raw and processed datasets are openly accessible (<i>https://doi.org/10.5281/zenodo.6457662</i>). Documentation, data processing codes, and guidelines to establish the real-time wearable kinetic measurement system are also shared (https://github.com/HuaweiWang/WearableMeasurementSystem).</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"4 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614461/pdf/EMS171064.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9758051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum: Gait monitoring for older adults during guided walking: An integrated assistive robot and wearable sensor approach - ERRATUM. 勘误:老年人在引导行走过程中的步态监测:一种集成辅助机器人和可穿戴传感器的方法 - ERRATUM.
IF 3.4 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2023-01-06 eCollection Date: 2022-01-01 DOI: 10.1017/wtc.2022.27
Qingya Zhao, Zhuo Chen, Corey D Landis, Ashley Lytle, Ashwini K Rao, Damiano Zanotto, Yi Guo

[This corrects the article DOI: 10.1017/wtc.2022.23.].

[此处更正了文章 DOI:10.1017/wtc.2022.23]。
{"title":"Erratum: Gait monitoring for older adults during guided walking: An integrated assistive robot and wearable sensor approach - ERRATUM.","authors":"Qingya Zhao, Zhuo Chen, Corey D Landis, Ashley Lytle, Ashwini K Rao, Damiano Zanotto, Yi Guo","doi":"10.1017/wtc.2022.27","DOIUrl":"10.1017/wtc.2022.27","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1017/wtc.2022.23.].</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"3 1","pages":"e31"},"PeriodicalIF":3.4,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936244/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57585810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of passive shoulder exoskeleton support during working with arms over shoulder level 被动肩外骨骼支撑在手臂过肩水平工作时的效果
Q2 ENGINEERING, BIOMEDICAL Pub Date : 2023-01-01 DOI: 10.1017/wtc.2023.21
Annina Brunner, Rachel van Sluijs, Tobias Luder, Cherilyn Camichel, Melanie Kos, Dario Bee, Volker Bartenbach, Olivier Lambercy
Abstract Musculoskeletal disorders have the highest prevalence of work-related health problems. Due to the aging population, the prevalence of shoulder pain in workers in physically demanding occupations is increasing, thereby causing rising costs to society and underlining the need for preventive technologies. Wearable support structures are designed to reduce the physical work load during physically demanding tasks. Here, we evaluate the physiological benefit of the DeltaSuit, a novel passive shoulder exoskeleton, using an assessment framework that conforms to the approach proposed in the literature. In this study, 32 healthy volunteers performed isometric, quasi-isometric, and dynamic tasks that represent typical overhead work to evaluate the DeltaSuit performance. Muscle activity of the arm, neck, shoulder, and back muscles, as well as cardiac cost, perceived exertion, and task-related discomfort during task execution with and without the exoskeleton were compared. When working with the DeltaSuit, muscle activity was reduced up to 56% ( p < 0.001) in the Trapezius Descendens and up to 64% ( p < 0.001) in the Deltoideus medius . Furthermore, we observed no additional loading on the abdomen and back muscles. The use of the exoskeleton resulted in statistically significant reductions in cardiac cost (15%, p < 0.05), perceived exertion (21.5%, p < 0.001), and task-related discomfort in the shoulder (57%, p < 0.001). These results suggest that passive exoskeletons, such as the DeltaSuit, have the potential to meaningfully support users when performing tasks in overhead postures and offer a valuable solution to relieve the critical body parts of biomechanical strains for workers at high risk of musculoskeletal disorders.
肌肉骨骼疾病是与工作相关的健康问题中患病率最高的。由于人口老龄化,肩部疼痛在体力要求高的职业中的患病率正在增加,从而导致社会成本上升,并强调了对预防技术的需求。可穿戴支撑结构的设计是为了在体力要求高的任务中减少体力工作负荷。在这里,我们使用符合文献中提出的方法的评估框架来评估DeltaSuit(一种新型被动肩部外骨骼)的生理效益。在这项研究中,32名健康志愿者分别完成了等距、准等距和动态任务,这些任务代表了典型的头顶工作,以评估DeltaSuit的性能。比较了在有和没有外骨骼的情况下,手臂、颈部、肩部和背部肌肉的肌肉活动,以及心脏成本、感知劳累和任务相关的不适。当使用DeltaSuit时,肌肉活动减少了56% (p <0.001),高达64% (p <0.001)中三角肌。此外,我们观察到腹部和背部肌肉没有额外的负荷。外骨骼的使用导致心脏成本显著降低(15%,p <知觉劳累(21.5%,p <0.001),以及与工作相关的肩部不适(57%,p <0.001)。这些结果表明,被动外骨骼,如DeltaSuit,有可能在用户以头顶姿势执行任务时提供有意义的支持,并为肌肉骨骼疾病高风险工人提供有价值的解决方案,以减轻生物力学压力的关键身体部位。
{"title":"Effect of passive shoulder exoskeleton support during working with arms over shoulder level","authors":"Annina Brunner, Rachel van Sluijs, Tobias Luder, Cherilyn Camichel, Melanie Kos, Dario Bee, Volker Bartenbach, Olivier Lambercy","doi":"10.1017/wtc.2023.21","DOIUrl":"https://doi.org/10.1017/wtc.2023.21","url":null,"abstract":"Abstract Musculoskeletal disorders have the highest prevalence of work-related health problems. Due to the aging population, the prevalence of shoulder pain in workers in physically demanding occupations is increasing, thereby causing rising costs to society and underlining the need for preventive technologies. Wearable support structures are designed to reduce the physical work load during physically demanding tasks. Here, we evaluate the physiological benefit of the DeltaSuit, a novel passive shoulder exoskeleton, using an assessment framework that conforms to the approach proposed in the literature. In this study, 32 healthy volunteers performed isometric, quasi-isometric, and dynamic tasks that represent typical overhead work to evaluate the DeltaSuit performance. Muscle activity of the arm, neck, shoulder, and back muscles, as well as cardiac cost, perceived exertion, and task-related discomfort during task execution with and without the exoskeleton were compared. When working with the DeltaSuit, muscle activity was reduced up to 56% ( p < 0.001) in the Trapezius Descendens and up to 64% ( p < 0.001) in the Deltoideus medius . Furthermore, we observed no additional loading on the abdomen and back muscles. The use of the exoskeleton resulted in statistically significant reductions in cardiac cost (15%, p < 0.05), perceived exertion (21.5%, p < 0.001), and task-related discomfort in the shoulder (57%, p < 0.001). These results suggest that passive exoskeletons, such as the DeltaSuit, have the potential to meaningfully support users when performing tasks in overhead postures and offer a valuable solution to relieve the critical body parts of biomechanical strains for workers at high risk of musculoskeletal disorders.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"142 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135446655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Objective and subjective evaluation of a passive low-back exoskeleton during simulated logistics tasks 被动下背外骨骼在模拟物流任务中的客观和主观评价
Q2 ENGINEERING, BIOMEDICAL Pub Date : 2023-01-01 DOI: 10.1017/wtc.2023.19
Lukas Mitterlehner, Yasmin Xinyue Li, Matthias Wolf
Abstract Musculoskeletal disorders remain the most common work-related health problem in the European Union. The most common work-related musculoskeletal disorder reported by workers is backache, especially in the logistics sector. Thus, this article aims to evaluate the effects of a commercial passive low-back exoskeleton during simulated logistics tasks. Thirty participants were recruited for this study. Typical logistics tasks were simulated in a laboratory environment. Cross-over research design was utilized to assess the effects of the exoskeleton on heart rate, trunk inclination, trunk acceleration, throughput, and perceived exertion. Also, usability and acceptance were obtained using a custom questionnaire. We found mostly non-significant differences. Effects on throughput varied widely between workplaces. Usability ratings were poor and acceptance moderate. The study suggests that a holistic evaluation and implementation approach for industrial exoskeletons is necessary. Further, prior to exoskeleton implementation, workplace adaptation might be required.
在欧盟,肌肉骨骼疾病仍然是最常见的与工作相关的健康问题。工人报告的最常见的与工作有关的肌肉骨骼疾病是背痛,尤其是在物流部门。因此,本文旨在评估商业被动低背外骨骼在模拟物流任务中的效果。本研究招募了30名参与者。在实验室环境中模拟了典型的物流任务。交叉研究设计用于评估外骨骼对心率、躯干倾角、躯干加速度、吞吐量和感知劳累的影响。此外,可用性和接受度是通过自定义问卷获得的。我们发现大多数差异不显著。不同工作场所对吞吐量的影响差异很大。可用性评级很差,接受度也不高。研究表明,有必要对工业外骨骼进行整体评估和实施。此外,在实现外骨骼之前,可能需要对工作场所进行适应。
{"title":"Objective and subjective evaluation of a passive low-back exoskeleton during simulated logistics tasks","authors":"Lukas Mitterlehner, Yasmin Xinyue Li, Matthias Wolf","doi":"10.1017/wtc.2023.19","DOIUrl":"https://doi.org/10.1017/wtc.2023.19","url":null,"abstract":"Abstract Musculoskeletal disorders remain the most common work-related health problem in the European Union. The most common work-related musculoskeletal disorder reported by workers is backache, especially in the logistics sector. Thus, this article aims to evaluate the effects of a commercial passive low-back exoskeleton during simulated logistics tasks. Thirty participants were recruited for this study. Typical logistics tasks were simulated in a laboratory environment. Cross-over research design was utilized to assess the effects of the exoskeleton on heart rate, trunk inclination, trunk acceleration, throughput, and perceived exertion. Also, usability and acceptance were obtained using a custom questionnaire. We found mostly non-significant differences. Effects on throughput varied widely between workplaces. Usability ratings were poor and acceptance moderate. The study suggests that a holistic evaluation and implementation approach for industrial exoskeletons is necessary. Further, prior to exoskeleton implementation, workplace adaptation might be required.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135556336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating ground reaction force with novel carbon nanotube-based textile insole pressure sensors. 基于碳纳米管的新型纺织鞋垫压力传感器估算地面反作用力。
Q2 ENGINEERING, BIOMEDICAL Pub Date : 2023-01-01 DOI: 10.1017/wtc.2023.2
Kaleb Burch, Sagar Doshi, Amit Chaudhari, Erik Thostenson, Jill Higginson

This study presents a new wearable insole pressure sensor (IPS), composed of fabric coated in a carbon nanotube-based composite thin film, and validates its use for quantifying ground reaction forces (GRFs) during human walking. Healthy young adults (n = 7) walked on a treadmill at three different speeds while data were recorded simultaneously from the IPS and a force plate (FP). The IPS was compared against the FP by evaluating differences between the two instruments under two different assessments: (1) comparing the two peak forces at weight acceptance and push-off (2PK) and (2) comparing the absolute maximum (MAX) of each gait cycle. Agreement between the two systems was evaluated using the Bland-Altman method. For the 2PK assessment, the group mean of differences (MoD) was -1.3 ± 4.3% body weight (BW) and the distance between the MoD and the limits of agreement (2S) was 25.4 ± 11.1% BW. For the MAX assessment, the average MoD across subjects was 1.9 ± 3.0% BW, and 2S was 15.8 ± 9.3% BW. The results of this study show that this sensor technology can be used to obtain accurate measurements of peak walking forces with a basic calibration and consequently open new opportunities to monitor GRF outside of the laboratory.

本研究提出了一种新型可穿戴鞋垫压力传感器(IPS),该传感器由涂有碳纳米管基复合薄膜的织物组成,并验证了其用于量化人类行走过程中的地面反作用力(GRFs)的用途。健康的年轻人(n = 7)在跑步机上以三种不同的速度行走,同时记录IPS和力板(FP)的数据。将IPS与FP进行比较,评估两种仪器在两种不同评估下的差异:(1)比较重量接受和推离时的两个峰值力(2PK)和(2)比较每个步态周期的绝对最大值(MAX)。使用Bland-Altman方法评估两个系统之间的一致性。在2PK评估中,组平均差异(MoD)为-1.3±4.3%体重(BW), MoD与一致限(2S)之间的距离为25.4±11.1%体重(BW)。在MAX评估中,受试者平均MoD为1.9±3.0% BW, 2S为15.8±9.3% BW。这项研究的结果表明,该传感器技术可用于通过基本校准获得峰值行走力的精确测量,从而为实验室以外的GRF监测开辟了新的机会。
{"title":"Estimating ground reaction force with novel carbon nanotube-based textile insole pressure sensors.","authors":"Kaleb Burch,&nbsp;Sagar Doshi,&nbsp;Amit Chaudhari,&nbsp;Erik Thostenson,&nbsp;Jill Higginson","doi":"10.1017/wtc.2023.2","DOIUrl":"https://doi.org/10.1017/wtc.2023.2","url":null,"abstract":"<p><p>This study presents a new wearable insole pressure sensor (IPS), composed of fabric coated in a carbon nanotube-based composite thin film, and validates its use for quantifying ground reaction forces (GRFs) during human walking. Healthy young adults (<i>n</i> = 7) walked on a treadmill at three different speeds while data were recorded simultaneously from the IPS and a force plate (FP). The IPS was compared against the FP by evaluating differences between the two instruments under two different assessments: (1) comparing the two peak forces at weight acceptance and push-off (2PK) and (2) comparing the absolute maximum (MAX) of each gait cycle. Agreement between the two systems was evaluated using the Bland-Altman method. For the 2PK assessment, the group mean of differences (MoD) was -1.3 ± 4.3% body weight (BW) and the distance between the MoD and the limits of agreement (2S) was 25.4 ± 11.1% BW. For the MAX assessment, the average MoD across subjects was 1.9 ± 3.0% BW, and 2S was 15.8 ± 9.3% BW. The results of this study show that this sensor technology can be used to obtain accurate measurements of peak walking forces with a basic calibration and consequently open new opportunities to monitor GRF outside of the laboratory.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"4 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062471/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10138376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Wearable technologies
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1