Pub Date : 2023-02-20eCollection Date: 2023-01-01DOI: 10.1017/wtc.2023.3
Samaneh Davarzani, David Saucier, Purva Talegaonkar, Erin Parker, Alana Turner, Carver Middleton, Will Carroll, John E Ball, Ali Gurbuz, Harish Chander, Reuben F Burch, Brian K Smith, Adam Knight, Charles Freeman
The development of wearable technology, which enables motion tracking analysis for human movement outside the laboratory, can improve awareness of personal health and performance. This study used a wearable smart sock prototype to track foot-ankle kinematics during gait movement. Multivariable linear regression and two deep learning models, including long short-term memory (LSTM) and convolutional neural networks, were trained to estimate the joint angles in sagittal and frontal planes measured by an optical motion capture system. Participant-specific models were established for ten healthy subjects walking on a treadmill. The prototype was tested at various walking speeds to assess its ability to track movements for multiple speeds and generalize models for estimating joint angles in sagittal and frontal planes. LSTM outperformed other models with lower mean absolute error (MAE), lower root mean squared error, and higher R-squared values. The average MAE score was less than 1.138° and 0.939° in sagittal and frontal planes, respectively, when training models for each speed and 2.15° and 1.14° when trained and evaluated for all speeds. These results indicate wearable smart socks to generalize foot-ankle kinematics over various walking speeds with relatively low error and could consequently be used to measure gait parameters without the need for a lab-constricted motion capture system.
{"title":"Closing the Wearable Gap: Foot-ankle kinematic modeling via deep learning models based on a smart sock wearable.","authors":"Samaneh Davarzani, David Saucier, Purva Talegaonkar, Erin Parker, Alana Turner, Carver Middleton, Will Carroll, John E Ball, Ali Gurbuz, Harish Chander, Reuben F Burch, Brian K Smith, Adam Knight, Charles Freeman","doi":"10.1017/wtc.2023.3","DOIUrl":"10.1017/wtc.2023.3","url":null,"abstract":"<p><p>The development of wearable technology, which enables motion tracking analysis for human movement outside the laboratory, can improve awareness of personal health and performance. This study used a wearable smart sock prototype to track foot-ankle kinematics during gait movement. Multivariable linear regression and two deep learning models, including long short-term memory (LSTM) and convolutional neural networks, were trained to estimate the joint angles in sagittal and frontal planes measured by an optical motion capture system. Participant-specific models were established for ten healthy subjects walking on a treadmill. The prototype was tested at various walking speeds to assess its ability to track movements for multiple speeds and generalize models for estimating joint angles in sagittal and frontal planes. LSTM outperformed other models with lower mean absolute error (MAE), lower root mean squared error, and higher <i>R</i>-squared values. The average MAE score was less than 1.138° and 0.939° in sagittal and frontal planes, respectively, when training models for each speed and 2.15° and 1.14° when trained and evaluated for all speeds. These results indicate wearable smart socks to generalize foot-ankle kinematics over various walking speeds with relatively low error and could consequently be used to measure gait parameters without the need for a lab-constricted motion capture system.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936318/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47557057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-24eCollection Date: 2023-01-01DOI: 10.1017/wtc.2022.31
Jan T Meyer, Natalie Tanczak, Christoph M Kanzler, Colin Pelletier, Roger Gassert, Olivier Lambercy
Wearable robotic devices (WRD) are still struggling to fulfill their vast potential. Inadequate daily life usability is one of the main hindrances to increased technology acceptance. Improving usability evaluation practices during the development of WRD could help address these limitations. In this work, we present the design and validation of a novel online platform aiming to fill this gap, the Interactive Usability Toolbox (IUT). This platform consists of a public website that offers an interactive, context-specific search within a database of 154 user research methods and educational information about usability. In a dedicated study, the effect of this platform to support usability evaluation was investigated. Twelve WRD experts were asked to complete the task of defining usability evaluation protocols for two specific use cases. The platform was provided to support one of the use cases. The quality and composition of the proposed protocols were assessed by (i) two blinded reviewers, (ii) the participants themselves, and (iii) the study coordinators. We showed that using the IUT significantly affected the proposed evaluation focus, shifting protocols from mainly effectiveness-oriented to more user-focused studies. The protocol quality, as rated by the external reviewers, remained equivalent to those designed with conventional strategies. A mixed-method usability evaluation of the platform yielded an overall positive image, with detailed suggestions for further improvements. The IUT is expected to positively affect the evaluation and development of WRD through its educational value, the context-specific recommendations supporting ongoing benchmarking endeavors, and highlighting the value of qualitative user research.
{"title":"Design and validation of a novel online platform to support the usability evaluation of wearable robotic devices.","authors":"Jan T Meyer, Natalie Tanczak, Christoph M Kanzler, Colin Pelletier, Roger Gassert, Olivier Lambercy","doi":"10.1017/wtc.2022.31","DOIUrl":"10.1017/wtc.2022.31","url":null,"abstract":"<p><p>Wearable robotic devices (WRD) are still struggling to fulfill their vast potential. Inadequate daily life usability is one of the main hindrances to increased technology acceptance. Improving usability evaluation practices during the development of WRD could help address these limitations. In this work, we present the design and validation of a novel online platform aiming to fill this gap, the Interactive Usability Toolbox (IUT). This platform consists of a public website that offers an interactive, context-specific search within a database of 154 user research methods and educational information about usability. In a dedicated study, the effect of this platform to support usability evaluation was investigated. Twelve WRD experts were asked to complete the task of defining usability evaluation protocols for two specific use cases. The platform was provided to support one of the use cases. The quality and composition of the proposed protocols were assessed by (i) two blinded reviewers, (ii) the participants themselves, and (iii) the study coordinators. We showed that using the IUT significantly affected the proposed evaluation focus, shifting protocols from mainly effectiveness-oriented to more user-focused studies. The protocol quality, as rated by the external reviewers, remained equivalent to those designed with conventional strategies. A mixed-method usability evaluation of the platform yielded an overall positive image, with detailed suggestions for further improvements. The IUT is expected to positively affect the evaluation and development of WRD through its educational value, the context-specific recommendations supporting ongoing benchmarking endeavors, and highlighting the value of qualitative user research.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936320/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44996307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-23eCollection Date: 2023-01-01DOI: 10.1017/wtc.2022.32
Rachel M van Sluijs, David Rodriguez-Cianca, Clara B Sanz-Morère, Stefano Massardi, Volker Bartenbach, Diego Torricelli
Cumulative back muscle fatigue plays a role in the occurrence of low-back injuries in occupations that require repetitive lifting of heavy loads and working in forward leaning postures. Lift-support exoskeletons have the potential to reduce back and hip muscle activity, thereby delaying the onset of fatigue in these muscles. Therefore, exoskeletons are being considered a potentially important tool to further reduce workload-related injuries. However, today no standards have been established on how to benchmark the support level of lift-support exoskeletons. This work proposes an experimental protocol to quantify the support level of a lift-support exoskeletons on instant changes in muscle activity and fatigue development while maintaining a static forward leaning posture. It then applies the protocol to experimentally assess the effect of the support provided by a commercially available lift-support exoskeleton, the LiftSuit 2.0 (Auxivo AG, Schwerzenbach, Switzerland), on the user. In a sample of 14 participants, the amplitude of the muscle activity of the back muscles and hip muscles () was significantly reduced. Wearing the exoskeleton significantly reduced the amount of fatigue developed during the task (). Changes in muscle fatigue can be objectively recorded and correlated with relevant changes for exoskeleton users: the time a task can be performed and perceived low-back fatigue. Thus, including such measures of fatigue in standardized benchmarking procedures will help quantify the benefits of exoskeletons for occupational use.
{"title":"A method to quantify the reduction of back and hip muscle fatigue of lift-support exoskeletons.","authors":"Rachel M van Sluijs, David Rodriguez-Cianca, Clara B Sanz-Morère, Stefano Massardi, Volker Bartenbach, Diego Torricelli","doi":"10.1017/wtc.2022.32","DOIUrl":"10.1017/wtc.2022.32","url":null,"abstract":"<p><p>Cumulative back muscle fatigue plays a role in the occurrence of low-back injuries in occupations that require repetitive lifting of heavy loads and working in forward leaning postures. Lift-support exoskeletons have the potential to reduce back and hip muscle activity, thereby delaying the onset of fatigue in these muscles. Therefore, exoskeletons are being considered a potentially important tool to further reduce workload-related injuries. However, today no standards have been established on how to benchmark the support level of lift-support exoskeletons. This work proposes an experimental protocol to quantify the support level of a lift-support exoskeletons on instant changes in muscle activity and fatigue development while maintaining a static forward leaning posture. It then applies the protocol to experimentally assess the effect of the support provided by a commercially available lift-support exoskeleton, the LiftSuit 2.0 (Auxivo AG, Schwerzenbach, Switzerland), on the user. In a sample of 14 participants, the amplitude of the muscle activity of the back muscles and hip muscles () was significantly reduced. Wearing the exoskeleton significantly reduced the amount of fatigue developed during the task (). Changes in muscle fatigue can be objectively recorded and correlated with relevant changes for exoskeleton users: the time a task can be performed and perceived low-back fatigue. Thus, including such measures of fatigue in standardized benchmarking procedures will help quantify the benefits of exoskeletons for occupational use.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936298/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47883161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-05eCollection Date: 2023-01-01DOI: 10.1017/wtc.2022.28
Klaus Bengler, Christina M Harbauer, Martin Fleischer
The development of exoskeletons is currently a lengthy process full of challenges. We are proposing a framework to accelerate the process and make the resulting exoskeletons more user-centered. The needed accomplishments in science are described in an effort to lay the foundation for future research projects. Since the early 2000s, exoskeletons have been discussed as an emerging technology in industrial, medical, or military applications. Those systems are designed to support people during manual tasks. At first, those systems lacked broad acceptance. Many models found their niches in ongoing developments and more diverse systems entering the market. There are still applications that are in dire need of such assistance. Due to the lack of experience with body-worn robotics, the development of such systems has been shaped by trial and error. The lack of legacy products results in longer development times. In this paper, a process to generate a framework is presented to display the required research to enable future exoskeleton designers. Owing to their proximity to the user's body, exoskeletons are highly complex systems that need sophisticated subsystems, such as kinematic, control, interaction design, or actuators, to be accepted by users. Due to the wide variety of fields and high user demands, a synchronized multidisciplinary effort is necessary. To achieve this, a process to develop a modular framework for exoskeleton design is proposed. It focuses on user- and use-case-centered solutions for matching kinematics, actuation, and control. To ensure the usefulness of the framework, an evaluation of the incorporated solutions is required.
{"title":"Exoskeletons: A challenge for development.","authors":"Klaus Bengler, Christina M Harbauer, Martin Fleischer","doi":"10.1017/wtc.2022.28","DOIUrl":"10.1017/wtc.2022.28","url":null,"abstract":"<p><p>The development of exoskeletons is currently a lengthy process full of challenges. We are proposing a framework to accelerate the process and make the resulting exoskeletons more user-centered. The needed accomplishments in science are described in an effort to lay the foundation for future research projects. Since the early 2000s, exoskeletons have been discussed as an emerging technology in industrial, medical, or military applications. Those systems are designed to support people during manual tasks. At first, those systems lacked broad acceptance. Many models found their niches in ongoing developments and more diverse systems entering the market. There are still applications that are in dire need of such assistance. Due to the lack of experience with body-worn robotics, the development of such systems has been shaped by trial and error. The lack of legacy products results in longer development times. In this paper, a process to generate a framework is presented to display the required research to enable future exoskeleton designers. Owing to their proximity to the user's body, exoskeletons are highly complex systems that need sophisticated subsystems, such as kinematic, control, interaction design, or actuators, to be accepted by users. Due to the wide variety of fields and high user demands, a synchronized multidisciplinary effort is necessary. To achieve this, a process to develop a modular framework for exoskeleton design is proposed. It focuses on user- and use-case-centered solutions for matching kinematics, actuation, and control. To ensure the usefulness of the framework, an evaluation of the incorporated solutions is required.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936272/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43359956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Musculoskeletal disorders have the highest prevalence of work-related health problems. Due to the aging population, the prevalence of shoulder pain in workers in physically demanding occupations is increasing, thereby causing rising costs to society and underlining the need for preventive technologies. Wearable support structures are designed to reduce the physical work load during physically demanding tasks. Here, we evaluate the physiological benefit of the DeltaSuit, a novel passive shoulder exoskeleton, using an assessment framework that conforms to the approach proposed in the literature. In this study, 32 healthy volunteers performed isometric, quasi-isometric, and dynamic tasks that represent typical overhead work to evaluate the DeltaSuit performance. Muscle activity of the arm, neck, shoulder, and back muscles, as well as cardiac cost, perceived exertion, and task-related discomfort during task execution with and without the exoskeleton were compared. When working with the DeltaSuit, muscle activity was reduced up to 56% ( p < 0.001) in the Trapezius Descendens and up to 64% ( p < 0.001) in the Deltoideus medius . Furthermore, we observed no additional loading on the abdomen and back muscles. The use of the exoskeleton resulted in statistically significant reductions in cardiac cost (15%, p < 0.05), perceived exertion (21.5%, p < 0.001), and task-related discomfort in the shoulder (57%, p < 0.001). These results suggest that passive exoskeletons, such as the DeltaSuit, have the potential to meaningfully support users when performing tasks in overhead postures and offer a valuable solution to relieve the critical body parts of biomechanical strains for workers at high risk of musculoskeletal disorders.
{"title":"Effect of passive shoulder exoskeleton support during working with arms over shoulder level","authors":"Annina Brunner, Rachel van Sluijs, Tobias Luder, Cherilyn Camichel, Melanie Kos, Dario Bee, Volker Bartenbach, Olivier Lambercy","doi":"10.1017/wtc.2023.21","DOIUrl":"https://doi.org/10.1017/wtc.2023.21","url":null,"abstract":"Abstract Musculoskeletal disorders have the highest prevalence of work-related health problems. Due to the aging population, the prevalence of shoulder pain in workers in physically demanding occupations is increasing, thereby causing rising costs to society and underlining the need for preventive technologies. Wearable support structures are designed to reduce the physical work load during physically demanding tasks. Here, we evaluate the physiological benefit of the DeltaSuit, a novel passive shoulder exoskeleton, using an assessment framework that conforms to the approach proposed in the literature. In this study, 32 healthy volunteers performed isometric, quasi-isometric, and dynamic tasks that represent typical overhead work to evaluate the DeltaSuit performance. Muscle activity of the arm, neck, shoulder, and back muscles, as well as cardiac cost, perceived exertion, and task-related discomfort during task execution with and without the exoskeleton were compared. When working with the DeltaSuit, muscle activity was reduced up to 56% ( p < 0.001) in the Trapezius Descendens and up to 64% ( p < 0.001) in the Deltoideus medius . Furthermore, we observed no additional loading on the abdomen and back muscles. The use of the exoskeleton resulted in statistically significant reductions in cardiac cost (15%, p < 0.05), perceived exertion (21.5%, p < 0.001), and task-related discomfort in the shoulder (57%, p < 0.001). These results suggest that passive exoskeletons, such as the DeltaSuit, have the potential to meaningfully support users when performing tasks in overhead postures and offer a valuable solution to relieve the critical body parts of biomechanical strains for workers at high risk of musculoskeletal disorders.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135446655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lukas Mitterlehner, Yasmin Xinyue Li, Matthias Wolf
Abstract Musculoskeletal disorders remain the most common work-related health problem in the European Union. The most common work-related musculoskeletal disorder reported by workers is backache, especially in the logistics sector. Thus, this article aims to evaluate the effects of a commercial passive low-back exoskeleton during simulated logistics tasks. Thirty participants were recruited for this study. Typical logistics tasks were simulated in a laboratory environment. Cross-over research design was utilized to assess the effects of the exoskeleton on heart rate, trunk inclination, trunk acceleration, throughput, and perceived exertion. Also, usability and acceptance were obtained using a custom questionnaire. We found mostly non-significant differences. Effects on throughput varied widely between workplaces. Usability ratings were poor and acceptance moderate. The study suggests that a holistic evaluation and implementation approach for industrial exoskeletons is necessary. Further, prior to exoskeleton implementation, workplace adaptation might be required.
{"title":"Objective and subjective evaluation of a passive low-back exoskeleton during simulated logistics tasks","authors":"Lukas Mitterlehner, Yasmin Xinyue Li, Matthias Wolf","doi":"10.1017/wtc.2023.19","DOIUrl":"https://doi.org/10.1017/wtc.2023.19","url":null,"abstract":"Abstract Musculoskeletal disorders remain the most common work-related health problem in the European Union. The most common work-related musculoskeletal disorder reported by workers is backache, especially in the logistics sector. Thus, this article aims to evaluate the effects of a commercial passive low-back exoskeleton during simulated logistics tasks. Thirty participants were recruited for this study. Typical logistics tasks were simulated in a laboratory environment. Cross-over research design was utilized to assess the effects of the exoskeleton on heart rate, trunk inclination, trunk acceleration, throughput, and perceived exertion. Also, usability and acceptance were obtained using a custom questionnaire. We found mostly non-significant differences. Effects on throughput varied widely between workplaces. Usability ratings were poor and acceptance moderate. The study suggests that a holistic evaluation and implementation approach for industrial exoskeletons is necessary. Further, prior to exoskeleton implementation, workplace adaptation might be required.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135556336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kaleb Burch, Sagar Doshi, Amit Chaudhari, Erik Thostenson, Jill Higginson
This study presents a new wearable insole pressure sensor (IPS), composed of fabric coated in a carbon nanotube-based composite thin film, and validates its use for quantifying ground reaction forces (GRFs) during human walking. Healthy young adults (n = 7) walked on a treadmill at three different speeds while data were recorded simultaneously from the IPS and a force plate (FP). The IPS was compared against the FP by evaluating differences between the two instruments under two different assessments: (1) comparing the two peak forces at weight acceptance and push-off (2PK) and (2) comparing the absolute maximum (MAX) of each gait cycle. Agreement between the two systems was evaluated using the Bland-Altman method. For the 2PK assessment, the group mean of differences (MoD) was -1.3 ± 4.3% body weight (BW) and the distance between the MoD and the limits of agreement (2S) was 25.4 ± 11.1% BW. For the MAX assessment, the average MoD across subjects was 1.9 ± 3.0% BW, and 2S was 15.8 ± 9.3% BW. The results of this study show that this sensor technology can be used to obtain accurate measurements of peak walking forces with a basic calibration and consequently open new opportunities to monitor GRF outside of the laboratory.
{"title":"Estimating ground reaction force with novel carbon nanotube-based textile insole pressure sensors.","authors":"Kaleb Burch, Sagar Doshi, Amit Chaudhari, Erik Thostenson, Jill Higginson","doi":"10.1017/wtc.2023.2","DOIUrl":"https://doi.org/10.1017/wtc.2023.2","url":null,"abstract":"<p><p>This study presents a new wearable insole pressure sensor (IPS), composed of fabric coated in a carbon nanotube-based composite thin film, and validates its use for quantifying ground reaction forces (GRFs) during human walking. Healthy young adults (<i>n</i> = 7) walked on a treadmill at three different speeds while data were recorded simultaneously from the IPS and a force plate (FP). The IPS was compared against the FP by evaluating differences between the two instruments under two different assessments: (1) comparing the two peak forces at weight acceptance and push-off (2PK) and (2) comparing the absolute maximum (MAX) of each gait cycle. Agreement between the two systems was evaluated using the Bland-Altman method. For the 2PK assessment, the group mean of differences (MoD) was -1.3 ± 4.3% body weight (BW) and the distance between the MoD and the limits of agreement (2S) was 25.4 ± 11.1% BW. For the MAX assessment, the average MoD across subjects was 1.9 ± 3.0% BW, and 2S was 15.8 ± 9.3% BW. The results of this study show that this sensor technology can be used to obtain accurate measurements of peak walking forces with a basic calibration and consequently open new opportunities to monitor GRF outside of the laboratory.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062471/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10138376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Powered exoskeletons need actuators that are lightweight, compact, and efficient while allowing for accurate torque control. To satisfy these requirements, researchers have proposed using series elastic actuators (SEAs). SEAs use a spring in series with rotary or linear actuators. The spring compliance, in conjunction with an appropriate control scheme, improves torque control, efficiency, output impedance, and disturbance rejection. However, springs add weight to the actuator and complexity to the control, which may have negative effects on the performance of the powered exoskeleton. Therefore, there is an unmet need for new SEA designs that are lighter and more efficient than available systems, as well as for control strategies that push the performance of SEA-based exoskeletons without requiring complex modeling and tuning. This article presents the design, development, and testing of a novel SEA with high force density for powered exoskeletons, as well as the use of a two degree-of-freedom (2DOF) PID system to improve output impedance and disturbance rejection. Benchtop testing results show reduced output impedance and damping values when using a 2DOF PID controller as compared to a 1DOF PID controller. Human experiments with three able-bodied subjects ( N = 3) show improved torque tracking with reduced root-mean-square error by 45.2% and reduced peak error by 49.8% when using a 2DOF PID controller. Furthermore, EMG data shows a reduction in peak EMG value when using the exoskeleton in assistive mode compared to the exoskeleton operating in transparent mode.
{"title":"Series-elastic actuator with two degree-of-freedom PID control improves torque control in a powered knee exoskeleton","authors":"Sergei V. Sarkisian, Lukas Gabert, Tommaso Lenzi","doi":"10.1017/wtc.2023.20","DOIUrl":"https://doi.org/10.1017/wtc.2023.20","url":null,"abstract":"Abstract Powered exoskeletons need actuators that are lightweight, compact, and efficient while allowing for accurate torque control. To satisfy these requirements, researchers have proposed using series elastic actuators (SEAs). SEAs use a spring in series with rotary or linear actuators. The spring compliance, in conjunction with an appropriate control scheme, improves torque control, efficiency, output impedance, and disturbance rejection. However, springs add weight to the actuator and complexity to the control, which may have negative effects on the performance of the powered exoskeleton. Therefore, there is an unmet need for new SEA designs that are lighter and more efficient than available systems, as well as for control strategies that push the performance of SEA-based exoskeletons without requiring complex modeling and tuning. This article presents the design, development, and testing of a novel SEA with high force density for powered exoskeletons, as well as the use of a two degree-of-freedom (2DOF) PID system to improve output impedance and disturbance rejection. Benchtop testing results show reduced output impedance and damping values when using a 2DOF PID controller as compared to a 1DOF PID controller. Human experiments with three able-bodied subjects ( N = 3) show improved torque tracking with reduced root-mean-square error by 45.2% and reduced peak error by 49.8% when using a 2DOF PID controller. Furthermore, EMG data shows a reduction in peak EMG value when using the exoskeleton in assistive mode compared to the exoskeleton operating in transparent mode.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136367323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-27eCollection Date: 2022-01-01DOI: 10.1017/wtc.2022.29
Gleb Koginov, Kanako Sternberg, Peter Wolf, Kai Schmidt, Jaime E Duarte, Robert Riener
Assistive forces transmitted from wearable robots to the robot's users are often defined by controllers that rely on the accurate estimation of the human posture. The compliant nature of the human-robot interface can negatively affect the robot's ability to estimate the posture. In this article, we present a novel algorithm that uses machine learning to correct these errors in posture estimation. For that, we recorded motion capture data and robot performance data from a group of participants (n = 8; 4 females) who walked on a treadmill while wearing a wearable robot, the Myosuit. Participants walked on level ground at various gait speeds and levels of support from the Myosuit. We used optical motion capture data to measure the relative displacement between the person and the Myosuit. We then combined this data with data derived from the robot to train a model, using a grading boosting algorithm (XGBoost), that corrected for the mechanical compliance errors in posture estimation. For the Myosuit controller, we were particularly interested in the angle of the thigh segment. Using our algorithm, the estimated thigh segment's angle RMS error was reduced from 6.3° (2.3°) to 2.5° (1.0°), mean (standard deviation). The average maximum error was reduced from 13.1° (4.9°) to 5.9° (2.1°). These improvements in posture estimation were observed for all of the considered assistance force levels and walking speeds. This suggests that ML-based algorithms provide a promising opportunity to be used in combination with wearable-robot sensors for an accurate user posture estimation.
{"title":"An algorithm to reduce human-robot interface compliance errors in posture estimation in wearable robots.","authors":"Gleb Koginov, Kanako Sternberg, Peter Wolf, Kai Schmidt, Jaime E Duarte, Robert Riener","doi":"10.1017/wtc.2022.29","DOIUrl":"10.1017/wtc.2022.29","url":null,"abstract":"<p><p>Assistive forces transmitted from wearable robots to the robot's users are often defined by controllers that rely on the accurate estimation of the human posture. The compliant nature of the human-robot interface can negatively affect the robot's ability to estimate the posture. In this article, we present a novel algorithm that uses machine learning to correct these errors in posture estimation. For that, we recorded motion capture data and robot performance data from a group of participants (<i>n</i> = 8; 4 females) who walked on a treadmill while wearing a wearable robot, the Myosuit. Participants walked on level ground at various gait speeds and levels of support from the Myosuit. We used optical motion capture data to measure the relative displacement between the person and the Myosuit. We then combined this data with data derived from the robot to train a model, using a grading boosting algorithm (XGBoost), that corrected for the mechanical compliance errors in posture estimation. For the Myosuit controller, we were particularly interested in the angle of the thigh segment. Using our algorithm, the estimated thigh segment's angle RMS error was reduced from 6.3° (2.3°) to 2.5° (1.0°), mean (standard deviation). The average maximum error was reduced from 13.1° (4.9°) to 5.9° (2.1°). These improvements in posture estimation were observed for all of the considered assistance force levels and walking speeds. This suggests that ML-based algorithms provide a promising opportunity to be used in combination with wearable-robot sensors for an accurate user posture estimation.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57585850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}