首页 > 最新文献

AIP Advances最新文献

英文 中文
Karpman–Washimi ponderomotive force and self-generated magnetic field in nonextensive plasmas 非广延性等离子体中的卡普曼-瓦希米思动力和自生磁场
IF 1.6 4区 物理与天体物理 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-17 DOI: 10.1063/5.0228257
Ming-Chun Qi, Xiao-Song Yang, Chen Xia, San-Qiu Liu
The non-stationary Karpman–Washimi ponderomotive force and self-generated magnetic field in an unmagnetized system are investigated in the context of nonextensive distribution based on the kinetic theory. The ponderomotive force, magnetization, and radiation power are obtained as functions of the nonextensive parameter q, wave frequency, and wave number. It is shown that the presence of high-velocity electrons leads to an increase in temporal and spatial variation parts of ponderomotive force, magnetization, and radiation power. Furthermore, the results indicate that the self-generated magnetic field driven by the Karpman–Washimi ponderomotive force primarily manifests as small-scale and low-frequency magnetic field.
基于动力学理论,在非广延性分布的背景下研究了未磁化系统中的非稳态卡普曼-瓦希米思动力和自生磁场。得到了思动力、磁化和辐射功率作为非广延性参数 q、波频和波数的函数。结果表明,高速电子的存在会导致思向力、磁化和辐射功率的时空变化部分增加。此外,结果表明卡普曼-瓦希米思动力驱动的自生磁场主要表现为小尺度和低频磁场。
{"title":"Karpman–Washimi ponderomotive force and self-generated magnetic field in nonextensive plasmas","authors":"Ming-Chun Qi, Xiao-Song Yang, Chen Xia, San-Qiu Liu","doi":"10.1063/5.0228257","DOIUrl":"https://doi.org/10.1063/5.0228257","url":null,"abstract":"The non-stationary Karpman–Washimi ponderomotive force and self-generated magnetic field in an unmagnetized system are investigated in the context of nonextensive distribution based on the kinetic theory. The ponderomotive force, magnetization, and radiation power are obtained as functions of the nonextensive parameter q, wave frequency, and wave number. It is shown that the presence of high-velocity electrons leads to an increase in temporal and spatial variation parts of ponderomotive force, magnetization, and radiation power. Furthermore, the results indicate that the self-generated magnetic field driven by the Karpman–Washimi ponderomotive force primarily manifests as small-scale and low-frequency magnetic field.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"18 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic structures and magnetism of MTe2 (M = Cr, V, and Fe) monolayer nanoribbons MTe2(M = Cr、V 和 Fe)单层纳米带的电子结构和磁性
IF 1.6 4区 物理与天体物理 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-17 DOI: 10.1063/5.0223768
Wei Chen, Qi Chen, Jianmin Zhang, Yu Zheng, Ying Long
Inspired by the fabrication of the transition metal dichalcogenide nanoribbons with well-defined atomically precise edges, we study the stability, electronic structures, and magnetism of MTe2 (M = Cr, V, and Fe) monolayer nanoribbons. The calculations indicate that all three types of monolayers can form structurally stable zigzag (ZNR) and armchair (ANR) nanoribbons, which significantly alter the properties of the monolayer films, as shown in Table I. For the zigzag nanoribbons, CrTe2-ZNR transitions from a non-magnetic semiconductor to a ferrimagnetic metal. VTe2-ZNR transforms from a ferromagnetic semiconductor to a ferrimagnetic metal. FeTe2-ZNR mostly maintains the characteristics of the monolayer. For the armchair nanoribbons, CrTe2-ANR exhibits ferrimagnetism. The electrical conductivity is related to the width. CrTe2-ANR with narrow width is semiconducting, while wider ones are metallic. VTe2-ANR displays ferromagnetic or ferrimagnetic metallic behavior depending on the width. FeTe2-ANR with widths larger than 11 remains ferromagnetic metal, while with narrow widths are unstable. In addition, the magnetism of all MTe2 monolayer nanoribbons primarily originates from the 3d transition metal atoms. These findings are essential for applications of MTe2 nanoribbons-based low-dimensional spintronic devices.
受具有明确原子精确边缘的过渡金属二掺杂纳米带制备技术的启发,我们研究了 MTe2(M = Cr、V 和 Fe)单层纳米带的稳定性、电子结构和磁性。计算结果表明,所有三种类型的单层都能形成结构稳定的之字形(ZNR)和扶手椅形(ANR)纳米带,它们会显著改变单层薄膜的性质,如表 I 所示。对于人字形纳米带,CrTe2-ZNR 从非磁性半导体转变为铁磁性金属。VTe2-ZNR 从铁磁性半导体转变为铁磁性金属。FeTe2-ZNR 大多保持了单层的特性。对于扶手纳米带,CrTe2-ANR 表现出铁磁性。导电性与宽度有关。宽度较窄的 CrTe2-ANR 是半导体,而宽度较宽的则是金属。VTe2-ANR 根据宽度的不同表现出铁磁性或铁磁性金属特性。宽度大于 11 的 FeTe2-ANR 仍然是铁磁性金属,而宽度较窄的则不稳定。此外,所有 MTe2 单层纳米带的磁性主要来自 3d 过渡金属原子。这些发现对于基于 MTe2 纳米带的低维自旋电子器件的应用至关重要。
{"title":"Electronic structures and magnetism of MTe2 (M = Cr, V, and Fe) monolayer nanoribbons","authors":"Wei Chen, Qi Chen, Jianmin Zhang, Yu Zheng, Ying Long","doi":"10.1063/5.0223768","DOIUrl":"https://doi.org/10.1063/5.0223768","url":null,"abstract":"Inspired by the fabrication of the transition metal dichalcogenide nanoribbons with well-defined atomically precise edges, we study the stability, electronic structures, and magnetism of MTe2 (M = Cr, V, and Fe) monolayer nanoribbons. The calculations indicate that all three types of monolayers can form structurally stable zigzag (ZNR) and armchair (ANR) nanoribbons, which significantly alter the properties of the monolayer films, as shown in Table I. For the zigzag nanoribbons, CrTe2-ZNR transitions from a non-magnetic semiconductor to a ferrimagnetic metal. VTe2-ZNR transforms from a ferromagnetic semiconductor to a ferrimagnetic metal. FeTe2-ZNR mostly maintains the characteristics of the monolayer. For the armchair nanoribbons, CrTe2-ANR exhibits ferrimagnetism. The electrical conductivity is related to the width. CrTe2-ANR with narrow width is semiconducting, while wider ones are metallic. VTe2-ANR displays ferromagnetic or ferrimagnetic metallic behavior depending on the width. FeTe2-ANR with widths larger than 11 remains ferromagnetic metal, while with narrow widths are unstable. In addition, the magnetism of all MTe2 monolayer nanoribbons primarily originates from the 3d transition metal atoms. These findings are essential for applications of MTe2 nanoribbons-based low-dimensional spintronic devices.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"5 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shaping the future of cancer treatment: The commitment of medical physicists 塑造癌症治疗的未来:医学物理学家的承诺
IF 1.6 4区 物理与天体物理 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-17 DOI: 10.1063/5.0219314
Marwan Al-Raeei
The incorporation of medical physics into the field of oncology has profoundly changed the ways in which cancer is diagnosed and treated. This article highlights the essential roles that medical physicists play in cancer care, demonstrating how principles from physics improve various aspects of oncology practices. Our analysis reveals that medical physics plays a fundamental role in optimizing various oncological procedures, thereby revolutionizing the management of cancer. Specifically, medical physicists are integral to critical areas such as radiation therapy planning, surgical navigation, and quality assurance, which collectively facilitate personalized and effective treatment strategies for patients. By working closely with healthcare professionals, medical physicists help ensure patients receive top-notch care while minimizing side effects associated with treatments. Their dedication to innovation and research is essential for improving both patient outcomes and quality of life throughout the cancer journey. The ongoing partnership between medical physicists and clinicians is instrumental in propelling advancements in oncology research and clinical practices, leveraging physics principles alongside state-of-the-art technologies to enhance cancer management. As medical physicists commit to excellence and patient-centered practices, they are at the forefront of transforming oncology care, promising improved hope and outcomes for those battling cancer. This collaborative effort ensures a bright future for cancer treatment, where the integration of physics not only optimizes therapeutic approaches but also fosters a comprehensive understanding of cancer care.
医学物理融入肿瘤学领域,深刻改变了癌症的诊断和治疗方式。这篇文章强调了医学物理学家在癌症治疗中发挥的重要作用,展示了物理学原理如何改善肿瘤学实践的各个方面。我们的分析表明,医学物理在优化各种肿瘤治疗程序方面发挥着根本性的作用,从而彻底改变了癌症的治疗方法。具体来说,医学物理学家在放射治疗规划、手术导航和质量保证等关键领域发挥着不可或缺的作用,共同促进为患者制定个性化和有效的治疗策略。通过与医疗保健专业人员密切合作,医学物理学家帮助确保患者获得一流的治疗,同时最大限度地减少与治疗相关的副作用。他们致力于创新和研究,这对于在整个癌症治疗过程中改善患者的治疗效果和生活质量至关重要。医学物理学家和临床医生之间的持续合作有助于推动肿瘤研究和临床实践的进步,利用物理学原理和最先进的技术来加强癌症管理。由于医学物理学家致力于追求卓越和以病人为中心的实践,他们站在了改变肿瘤治疗的最前沿,为那些与癌症作斗争的人们带来了更多的希望和更好的治疗效果。这种合作努力确保了癌症治疗的美好未来,物理学的整合不仅优化了治疗方法,还促进了对癌症护理的全面理解。
{"title":"Shaping the future of cancer treatment: The commitment of medical physicists","authors":"Marwan Al-Raeei","doi":"10.1063/5.0219314","DOIUrl":"https://doi.org/10.1063/5.0219314","url":null,"abstract":"The incorporation of medical physics into the field of oncology has profoundly changed the ways in which cancer is diagnosed and treated. This article highlights the essential roles that medical physicists play in cancer care, demonstrating how principles from physics improve various aspects of oncology practices. Our analysis reveals that medical physics plays a fundamental role in optimizing various oncological procedures, thereby revolutionizing the management of cancer. Specifically, medical physicists are integral to critical areas such as radiation therapy planning, surgical navigation, and quality assurance, which collectively facilitate personalized and effective treatment strategies for patients. By working closely with healthcare professionals, medical physicists help ensure patients receive top-notch care while minimizing side effects associated with treatments. Their dedication to innovation and research is essential for improving both patient outcomes and quality of life throughout the cancer journey. The ongoing partnership between medical physicists and clinicians is instrumental in propelling advancements in oncology research and clinical practices, leveraging physics principles alongside state-of-the-art technologies to enhance cancer management. As medical physicists commit to excellence and patient-centered practices, they are at the forefront of transforming oncology care, promising improved hope and outcomes for those battling cancer. This collaborative effort ensures a bright future for cancer treatment, where the integration of physics not only optimizes therapeutic approaches but also fosters a comprehensive understanding of cancer care.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"27 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the electronic structure and lithium diffusion kinetics of amorphous tungsten oxide 探索无定形氧化钨的电子结构和锂扩散动力学
IF 1.6 4区 物理与天体物理 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-17 DOI: 10.1063/5.0229132
Chao Tang, Huachen Liu, Changlong Cai
Density functional theory-based characterization of crystalline tungsten oxide has been well established. Nonetheless, there remains a partial gap in theoretical studies concerning the electrochemical characterization of amorphous tungsten oxide. The electronic structure and diffusion kinetics of amorphous tungsten oxide require a systematic theoretical study. Therefore, we employed second-generation Car–Parrinello molecular dynamics simulations and the density functional theory with HSE06 exchange–correlation hybrid functional to investigate the electronic properties and lithium kinetics of amorphous tungsten oxide (α-WOx, x = 3, 2.5, 2) models. The precise electronic properties of these structures were computed using the HSE06 hybrid functions. The diffusion properties of lithium were determined in the range of 1 × 10−7 to 5 × 10−7 cm2/s by ab initio molecular dynamics. The computational findings provide a critical atomic-scale understanding and contribute to the development of tungsten oxide-based electrochromic devices for practical applications.
基于密度泛函理论的晶体氧化钨表征方法已经成熟。然而,关于无定形氧化钨电化学特性的理论研究仍存在部分空白。非晶态氧化钨的电子结构和扩散动力学需要系统的理论研究。因此,我们采用第二代 Car-Parrinello 分子动力学模拟和密度泛函理论与 HSE06 交换相关混合函数来研究无定形氧化钨 (α-WOx, x = 3, 2.5, 2) 模型的电子特性和锂动力学。使用 HSE06 混合函数计算了这些结构的精确电子特性。利用 ab initio 分子动力学确定了锂在 1 × 10-7 至 5 × 10-7 cm2/s 范围内的扩散特性。这些计算结果提供了关键的原子尺度理解,有助于开发基于氧化钨的电致变色器件的实际应用。
{"title":"Exploring the electronic structure and lithium diffusion kinetics of amorphous tungsten oxide","authors":"Chao Tang, Huachen Liu, Changlong Cai","doi":"10.1063/5.0229132","DOIUrl":"https://doi.org/10.1063/5.0229132","url":null,"abstract":"Density functional theory-based characterization of crystalline tungsten oxide has been well established. Nonetheless, there remains a partial gap in theoretical studies concerning the electrochemical characterization of amorphous tungsten oxide. The electronic structure and diffusion kinetics of amorphous tungsten oxide require a systematic theoretical study. Therefore, we employed second-generation Car–Parrinello molecular dynamics simulations and the density functional theory with HSE06 exchange–correlation hybrid functional to investigate the electronic properties and lithium kinetics of amorphous tungsten oxide (α-WOx, x = 3, 2.5, 2) models. The precise electronic properties of these structures were computed using the HSE06 hybrid functions. The diffusion properties of lithium were determined in the range of 1 × 10−7 to 5 × 10−7 cm2/s by ab initio molecular dynamics. The computational findings provide a critical atomic-scale understanding and contribute to the development of tungsten oxide-based electrochromic devices for practical applications.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"208 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetic Alfvén solitary waves in astrophysical plasmas 天体物理等离子体中的动力学阿尔芬孤波
IF 1.6 4区 物理与天体物理 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-17 DOI: 10.1063/5.0226568
M. M. Hasan, M. R. Hossen, A. A. Mamun
The magnetospheric plasma (hot and thin) and the solar wind plasma (cold and dense) are separated by the Earth’s magnetopause, in which plasmas of both origins coexist. Different types of plasma diffusions are found due to this plasma mixing, and kinetic Alfvén solitary waves (KASWs) are one of them. In this work, a theoretical approach is taken to study the fundamental properties of heavy ion acoustic KASWs (HIAKASWs) in a magnetized plasma system whose constituents are nonextensive q-distributed two temperature electrons with dynamical heavy ions. The perturbations of the magnetized collisionless plasma system are investigated using the reductive perturbation technique to deduce the Korteweg–de Vries (K–DV) and modified K–DV (MK–DV) equations to determine the fundamental characteristics of small, but finite amplitude HIAKASWs. The presence of nonextensive electrons, magnetic field, obliquity angle (the angle between the external magnetic field and wave propagation), plasma particle number densities, and the temperature of various plasma species are observed to significantly alter the fundamental properties of HIAKASWs. The findings of our present study may be useful for comprehending the nonlinear wave properties in diverse interstellar plasma environments.
磁层等离子体(热而稀薄)和太阳风等离子体(冷而稠密)被地球磁极分隔开来,两种等离子体在磁极共存。这种等离子体混合会产生不同类型的等离子体扩散,动能阿尔芬孤波(KASWs)就是其中之一。在这项工作中,采用理论方法研究了磁化等离子体系统中重离子声学孤波(HIAKASWs)的基本特性,该系统的组成成分是非广延q分布的双温电子和动力学重离子。利用还原扰动技术研究了磁化无碰撞等离子体系统的扰动,推导出了 Korteweg-de Vries(K-DV)和修正 K-DV (MK-DV)方程,从而确定了小振幅但有限振幅 HIAKASW 的基本特征。据观察,非广延性电子的存在、磁场、斜角(外部磁场与波传播之间的夹角)、等离子体粒子数密度以及各种等离子体的温度都会显著改变 HIAKASW 的基本特性。本研究的发现可能有助于理解各种星际等离子体环境中的非线性波特性。
{"title":"Kinetic Alfvén solitary waves in astrophysical plasmas","authors":"M. M. Hasan, M. R. Hossen, A. A. Mamun","doi":"10.1063/5.0226568","DOIUrl":"https://doi.org/10.1063/5.0226568","url":null,"abstract":"The magnetospheric plasma (hot and thin) and the solar wind plasma (cold and dense) are separated by the Earth’s magnetopause, in which plasmas of both origins coexist. Different types of plasma diffusions are found due to this plasma mixing, and kinetic Alfvén solitary waves (KASWs) are one of them. In this work, a theoretical approach is taken to study the fundamental properties of heavy ion acoustic KASWs (HIAKASWs) in a magnetized plasma system whose constituents are nonextensive q-distributed two temperature electrons with dynamical heavy ions. The perturbations of the magnetized collisionless plasma system are investigated using the reductive perturbation technique to deduce the Korteweg–de Vries (K–DV) and modified K–DV (MK–DV) equations to determine the fundamental characteristics of small, but finite amplitude HIAKASWs. The presence of nonextensive electrons, magnetic field, obliquity angle (the angle between the external magnetic field and wave propagation), plasma particle number densities, and the temperature of various plasma species are observed to significantly alter the fundamental properties of HIAKASWs. The findings of our present study may be useful for comprehending the nonlinear wave properties in diverse interstellar plasma environments.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"42 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence for the quenching of rapid photoresponse by defect generation in ultraviolet illumination of CuSbS2 films 在紫外线照射 CuSbS2 薄膜时通过产生缺陷淬灭快速光响应的证据
IF 1.6 4区 物理与天体物理 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-13 DOI: 10.1063/5.0227670
Y. Takagaki
Phototransients are investigated for CuSbS2 films with varying the illumination energy. The generation and recombination of photocarriers, which are manifested as changes in the sheet conductivity of the films, take place almost instantaneously for excitation wavelengths of 970 and 633 nm. These rapid responses are, in contrast, absent for the illumination at wavelengths of 375 and 280 nm. In particular, roughly no photoconduction occurs in the case of 280 nm. The sheet conductivity develops thereby random two-level fluctuations following the illumination. Ultraviolet irradiation is thus suggested to generate crystalline defects, giving rise to the quenching of the instantaneous photoresponse caused by their trapping of the photocarriers. The photoresponse in simultaneous illumination at multiple wavelengths is dependent upon the relative intensities of the ultraviolet and visible/infrared components in a nonlinear fashion unless the photo-generated defects are overwhelmed by photocarriers.
研究了不同照明能量下 CuSbS2 薄膜的光传导性。在波长为 970 纳米和 633 纳米的激发下,光载流子的产生和重组几乎是瞬间发生的,并表现为薄膜片状电导率的变化。相反,在波长为 375 纳米和 280 纳米的光照下,则没有这些快速反应。特别是在 280 纳米波长的情况下,几乎没有发生光电导现象。因此,片状导电性在照射后会产生随机的两级波动。因此,紫外线照射会产生晶体缺陷,导致光载流子被捕获,从而熄灭瞬时光响应。在多个波长的同时照射下,光响应以非线性方式取决于紫外线和可见光/红外线成分的相对强度,除非光产生的缺陷被光载体淹没。
{"title":"Evidence for the quenching of rapid photoresponse by defect generation in ultraviolet illumination of CuSbS2 films","authors":"Y. Takagaki","doi":"10.1063/5.0227670","DOIUrl":"https://doi.org/10.1063/5.0227670","url":null,"abstract":"Phototransients are investigated for CuSbS2 films with varying the illumination energy. The generation and recombination of photocarriers, which are manifested as changes in the sheet conductivity of the films, take place almost instantaneously for excitation wavelengths of 970 and 633 nm. These rapid responses are, in contrast, absent for the illumination at wavelengths of 375 and 280 nm. In particular, roughly no photoconduction occurs in the case of 280 nm. The sheet conductivity develops thereby random two-level fluctuations following the illumination. Ultraviolet irradiation is thus suggested to generate crystalline defects, giving rise to the quenching of the instantaneous photoresponse caused by their trapping of the photocarriers. The photoresponse in simultaneous illumination at multiple wavelengths is dependent upon the relative intensities of the ultraviolet and visible/infrared components in a nonlinear fashion unless the photo-generated defects are overwhelmed by photocarriers.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"15 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parallel conducting filaments in resistive switching ZnO thin films 电阻开关氧化锌薄膜中的平行导电丝
IF 1.6 4区 物理与天体物理 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-13 DOI: 10.1063/5.0232595
Tai-Min Liu, Zong-Wei Wu, Ting-An Chien, Pin-Qian Yang, Hua-Shu Hsu, Fang-Yuh Lo
This study examines resistive switching in a Cu/ZnO/ITO structure, uncovering an anomalous phenomenon that provides insights into the mechanisms of parallel conducting filaments in ZnO thin films. The current–voltage (I–V) characteristics exhibit a sharp switch at a positive threshold voltage around 2 V, transitioning from a high resistance pristine state to a low resistance state, interpreted as the formation of a Cu filament via electrochemical metallization. However, after this forming process, the device remains in the low resistance state and cannot reset to a high resistance state in either polarity of the applied voltage, suggesting the presence of a strong, unbreakable Cu filament after the forming process. What makes this phenomenon anomalous is the observed weak bipolar resistive switching in the cycles following the forming cycle, despite the presence of the Cu filament. The I–V characteristics of forward- and reverse-bias sweeps suggest that the weak bipolar resistive switching results from an additional filament formed in parallel with the existing unbreakable Cu filament. Using a parallel conducting filaments model, the resistivity of this additional filament is calculated to be ∼10−7–10−5 Ω m, indicating that this filament is likely generated by oxygen vacancies rather than metal atoms in the ZnO films.
这项研究考察了铜/氧化锌/氧化钛结构中的电阻开关,发现了一种异常现象,为了解氧化锌薄膜中平行导电丝的机制提供了启示。电流-电压(I-V)特性在 2 V 左右的正阈值电压时出现急剧切换,从高电阻原始状态过渡到低电阻状态,这被解释为通过电化学金属化形成了铜丝。然而,在这一形成过程之后,该器件仍处于低电阻状态,无论施加哪种极性的电压,都无法复位到高电阻状态,这表明在形成过程之后,存在着坚固、牢不可破的铜丝。使这一现象反常的是,尽管存在铜丝,但在成型周期之后的周期中观察到了微弱的双极电阻开关。正向和反向偏压扫描的 I-V 特性表明,微弱的双极电阻开关是由于与现有的不易破碎铜丝平行形成的附加铜丝造成的。利用平行导电丝模型,计算出这条附加丝的电阻率为 ∼10-7-10-5 Ω m,这表明这条附加丝很可能是由氧化锌薄膜中的氧空位而不是金属原子产生的。
{"title":"Parallel conducting filaments in resistive switching ZnO thin films","authors":"Tai-Min Liu, Zong-Wei Wu, Ting-An Chien, Pin-Qian Yang, Hua-Shu Hsu, Fang-Yuh Lo","doi":"10.1063/5.0232595","DOIUrl":"https://doi.org/10.1063/5.0232595","url":null,"abstract":"This study examines resistive switching in a Cu/ZnO/ITO structure, uncovering an anomalous phenomenon that provides insights into the mechanisms of parallel conducting filaments in ZnO thin films. The current–voltage (I–V) characteristics exhibit a sharp switch at a positive threshold voltage around 2 V, transitioning from a high resistance pristine state to a low resistance state, interpreted as the formation of a Cu filament via electrochemical metallization. However, after this forming process, the device remains in the low resistance state and cannot reset to a high resistance state in either polarity of the applied voltage, suggesting the presence of a strong, unbreakable Cu filament after the forming process. What makes this phenomenon anomalous is the observed weak bipolar resistive switching in the cycles following the forming cycle, despite the presence of the Cu filament. The I–V characteristics of forward- and reverse-bias sweeps suggest that the weak bipolar resistive switching results from an additional filament formed in parallel with the existing unbreakable Cu filament. Using a parallel conducting filaments model, the resistivity of this additional filament is calculated to be ∼10−7–10−5 Ω m, indicating that this filament is likely generated by oxygen vacancies rather than metal atoms in the ZnO films.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"116 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical analysis of pantograph–catenary coupling vibration for high-speed railways 高速铁路受电弓与轨道联轴器振动的数值分析
IF 1.6 4区 物理与天体物理 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-13 DOI: 10.1063/5.0219474
Like Pan, Peihuo Peng, Liming Chen, Fan He
There is a pronounced coupling vibration between the catenary and pantograph during operation for high-speed railways. In this paper, a pantograph–catenary coupling vibration model is constructed to investigate the vibration characteristics under various working conditions. Two different types of catenaries (simple and elastic chain types) are simulated and compared using the finite element method. The pantograph is simplified into a mass–spring–damping combination member, the contact and messenger wires are set to linear beam cells, and the dropper and stitch wire are set to truss cells. The results suggest that the vibration characteristics of the two types of catenaries and pantograph exhibit different trends. The maximum stresses of the messenger wire, dropper, and contact wire do not follow a monotonically increasing trend with the train speed. The maximum stress of the messenger wire under the simple chain type of catenary is higher when the initial contact force increases from 80 to 120 N. However, the maximum stress under the elastic chain type of catenary is higher when the initial contact force is 60 or 140 N. Except for the initial contact force of 140 N, the maximum stresses of the dropper and contact wire under the simple chain type of catenary are lower than those under the elastic chain type. This work provides a valuable reference for optimizing the design of pantograph–catenary systems.
高速铁路在运行过程中,受电弓和集电弓之间会产生明显的耦合振动。本文构建了一个受电弓-导轨耦合振动模型,以研究各种工况下的振动特性。使用有限元法模拟并比较了两种不同类型的导管(简单型和弹性链型)。受电弓被简化为质量-弹簧-阻尼组合件,接触线和信使线被设置为线性梁单元,垂线和缝线被设置为桁架单元。结果表明,两种类型的导管和受电弓的振动特性呈现出不同的趋势。信使钢丝、垂管和接触钢丝的最大应力并不随列车速度呈单调增长趋势。当初始接触力从 80 牛增加到 120 牛时,简单链式导管架下信使线的最大应力较高;而当初始接触力为 60 牛或 140 牛时,弹性链式导管架下的最大应力较高。这项研究为优化受电弓-牵引系统的设计提供了有价值的参考。
{"title":"Numerical analysis of pantograph–catenary coupling vibration for high-speed railways","authors":"Like Pan, Peihuo Peng, Liming Chen, Fan He","doi":"10.1063/5.0219474","DOIUrl":"https://doi.org/10.1063/5.0219474","url":null,"abstract":"There is a pronounced coupling vibration between the catenary and pantograph during operation for high-speed railways. In this paper, a pantograph–catenary coupling vibration model is constructed to investigate the vibration characteristics under various working conditions. Two different types of catenaries (simple and elastic chain types) are simulated and compared using the finite element method. The pantograph is simplified into a mass–spring–damping combination member, the contact and messenger wires are set to linear beam cells, and the dropper and stitch wire are set to truss cells. The results suggest that the vibration characteristics of the two types of catenaries and pantograph exhibit different trends. The maximum stresses of the messenger wire, dropper, and contact wire do not follow a monotonically increasing trend with the train speed. The maximum stress of the messenger wire under the simple chain type of catenary is higher when the initial contact force increases from 80 to 120 N. However, the maximum stress under the elastic chain type of catenary is higher when the initial contact force is 60 or 140 N. Except for the initial contact force of 140 N, the maximum stresses of the dropper and contact wire under the simple chain type of catenary are lower than those under the elastic chain type. This work provides a valuable reference for optimizing the design of pantograph–catenary systems.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"208 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of metal oxides doping on the surface stability of In2O3 for CO2 hydrogenation 掺杂金属氧化物对 In2O3 在 CO2 加氢过程中表面稳定性的影响
IF 1.6 4区 物理与天体物理 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-13 DOI: 10.1063/5.0224256
Xingtang Xu, Yanwei Li, Guang Sun, Jianliang Cao, Yan Wang, Xulong Qin
The significance of maintaining the surface stability of the In2O3 catalyst in the conversion of CO2 to methanol through hydrogenation cannot be overstated. To improve surface stability, doping with metal oxides is usually employed. To explore high-efficiency In2O3 based catalysts, density functional theory calculations were utilized to explore the effects of doping CuO, Co2O3, NiO, TiO2, HfO2, Nb2O3, Ta2O5, and CeO2 on the stability of the In2O3(110) surface. It was found that in a CO atmosphere, the crucial step in determining the creation of oxygen vacancies on the In2O3 plane occurred during the desorption of CO2 from the vacancy location. The results indicate that doping CuO, Co2O3, NiO, Nb2O3, Ta2O5, and CeO2 on the In2O3(110) surface promotes the reduction process through the reaction of CO with the O atoms on the surface, resulting in reduced surface stability. Conversely, the doping of Ti and Hf can raise the reaction energy barriers for CO reacting with the O atoms on the surface and enhance CO2 molecule adsorption on vacant sites, thereby suggesting the potential of TiO2 and HfO2 as effective modifiers to improve the efficiency and durability of the In2O3 catalyst. Furthermore, it is crucial to enhance its stability by modifying the density of the electron cloud or Fermi level of the In2O3 catalyst.
在通过氢化将二氧化碳转化为甲醇的过程中,保持 In2O3 催化剂表面稳定性的重要性怎么强调都不过分。为了提高表面稳定性,通常会采用掺杂金属氧化物的方法。为了探索基于 In2O3 的高效催化剂,研究人员利用密度泛函理论计算探讨了掺杂 CuO、Co2O3、NiO、TiO2、HfO2、Nb2O3、Ta2O5 和 CeO2 对 In2O3(110) 表面稳定性的影响。研究发现,在一氧化碳气氛中,决定 In2O3 表面产生氧空位的关键步骤发生在 CO2 从空位位置解吸的过程中。结果表明,在 In2O3(110)表面掺杂 CuO、Co2O3、NiO、Nb2O3、Ta2O5 和 CeO2 会通过 CO 与表面的 O 原子反应促进还原过程,导致表面稳定性降低。相反,Ti 和 Hf 的掺杂可以提高 CO 与表面 O 原子反应的反应能垒,增强 CO2 分子在空位上的吸附,从而表明 TiO2 和 HfO2 有可能成为有效的改性剂,提高 In2O3 催化剂的效率和耐用性。此外,通过改变 In2O3 催化剂的电子云密度或费米水平来提高其稳定性也至关重要。
{"title":"The effects of metal oxides doping on the surface stability of In2O3 for CO2 hydrogenation","authors":"Xingtang Xu, Yanwei Li, Guang Sun, Jianliang Cao, Yan Wang, Xulong Qin","doi":"10.1063/5.0224256","DOIUrl":"https://doi.org/10.1063/5.0224256","url":null,"abstract":"The significance of maintaining the surface stability of the In2O3 catalyst in the conversion of CO2 to methanol through hydrogenation cannot be overstated. To improve surface stability, doping with metal oxides is usually employed. To explore high-efficiency In2O3 based catalysts, density functional theory calculations were utilized to explore the effects of doping CuO, Co2O3, NiO, TiO2, HfO2, Nb2O3, Ta2O5, and CeO2 on the stability of the In2O3(110) surface. It was found that in a CO atmosphere, the crucial step in determining the creation of oxygen vacancies on the In2O3 plane occurred during the desorption of CO2 from the vacancy location. The results indicate that doping CuO, Co2O3, NiO, Nb2O3, Ta2O5, and CeO2 on the In2O3(110) surface promotes the reduction process through the reaction of CO with the O atoms on the surface, resulting in reduced surface stability. Conversely, the doping of Ti and Hf can raise the reaction energy barriers for CO reacting with the O atoms on the surface and enhance CO2 molecule adsorption on vacant sites, thereby suggesting the potential of TiO2 and HfO2 as effective modifiers to improve the efficiency and durability of the In2O3 catalyst. Furthermore, it is crucial to enhance its stability by modifying the density of the electron cloud or Fermi level of the In2O3 catalyst.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"29 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental examination on electrochemical micro-machining of Mg–Li–Sr biomedical alloy: Application of ANOVA, Deng’s similarity, and ANFIS for effective modeling optimization 镁-锂-硒生物医用合金电化学微加工实验研究应用方差分析、邓氏相似性和 ANFIS 有效优化模型
IF 1.6 4区 物理与天体物理 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-13 DOI: 10.1063/5.0220057
V. Kavimani, P. M. Gopal, V. Sivamaran, Sameer Algburi, Debabrata Barik, Prabhu Paramasivam, Abdullah H. Alsabhan, Shamshad Alam
In this work, a newly discovered biomedical grade Magnesium–Lithium–Strontium (Mg–Li–Sr) alloy is machined using electrochemical machining technology. Two main output constraints employed on the research project to evaluate machinability are surface roughness (Ra) and material removal rate (MRR). Changing feed rate (FR), current, electrolyte concentration (EC), and voltage is required in order to carry out experimental experiments. The trials were designed using the Taguchi method. The ANOVA findings show that current is the most significant factor, after voltage as the most significant input parameter in regulating Ra and MRR. The ideal parameter configuration for the CRITIC-linked Deng’s similarity approach method was 5 V, 1 A of current, 0.4 mm/min of FR, and 20 g/l of EC. The final product was a 0.0323 mm/min MRR and a 2.61 μm surface roughness. Furthermore, the response variables are anticipated using the adaptive neuro-fuzzy Inference System, which finally results in predictions that are very similar to the experimental results.
在这项工作中,使用电化学加工技术加工了一种新发现的生物医学级镁-锂-锶(Mg-Li-Sr)合金。在该研究项目中,用于评估加工性能的两个主要输出约束条件是表面粗糙度 (Ra) 和材料去除率 (MRR)。为了进行实验,需要改变进给速度 (FR)、电流、电解液浓度 (EC) 和电压。试验采用田口方法进行设计。方差分析结果表明,电流是调节 Ra 和 MRR 最重要的输入参数,仅次于电压。CRITIC 链接邓相似性方法的理想参数配置为 5 V、1 A 电流、0.4 mm/min FR 和 20 g/l EC。最终产品的 MRR 为 0.0323 mm/min,表面粗糙度为 2.61 μm。此外,还利用自适应神经模糊推理系统对响应变量进行了预测,最终得出的预测结果与实验结果非常相似。
{"title":"Experimental examination on electrochemical micro-machining of Mg–Li–Sr biomedical alloy: Application of ANOVA, Deng’s similarity, and ANFIS for effective modeling optimization","authors":"V. Kavimani, P. M. Gopal, V. Sivamaran, Sameer Algburi, Debabrata Barik, Prabhu Paramasivam, Abdullah H. Alsabhan, Shamshad Alam","doi":"10.1063/5.0220057","DOIUrl":"https://doi.org/10.1063/5.0220057","url":null,"abstract":"In this work, a newly discovered biomedical grade Magnesium–Lithium–Strontium (Mg–Li–Sr) alloy is machined using electrochemical machining technology. Two main output constraints employed on the research project to evaluate machinability are surface roughness (Ra) and material removal rate (MRR). Changing feed rate (FR), current, electrolyte concentration (EC), and voltage is required in order to carry out experimental experiments. The trials were designed using the Taguchi method. The ANOVA findings show that current is the most significant factor, after voltage as the most significant input parameter in regulating Ra and MRR. The ideal parameter configuration for the CRITIC-linked Deng’s similarity approach method was 5 V, 1 A of current, 0.4 mm/min of FR, and 20 g/l of EC. The final product was a 0.0323 mm/min MRR and a 2.61 μm surface roughness. Furthermore, the response variables are anticipated using the adaptive neuro-fuzzy Inference System, which finally results in predictions that are very similar to the experimental results.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"15 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
AIP Advances
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1