S. R. Seyyedi Birjand, R. Sabbaghzadeh, Maliheh Azadparvar, H. A. Rahnamaye Aliabad
The biophysical properties of metoprolol are investigated by the full potential-linearized augmented plane wave method and molecular docking and molecular dynamic approaches. The exchange–correlation potentials are calculated by the Perdew–Burke–Ernzerhof generalized gradient approximation as implemented in the WIEN2k package. The electronic results show the insulator nature of metoprolol with the indirect bandgap of 3.74 eV between HOMO and LUMO states. In the density of state spectra, the p state of O, C, and N elements confirm the stability of metoprolol. Metoprolol exhibits a metallic behavior in the z direction, while it has a dielectric behavior in the x and y directions. The static refractive indices are obtained 1.49, 1.53, and 1.63 in the x, y, and z directions, respectively. It was found that the maximum reflectivity occurs at the ultraviolet region in the z-direction. The calculated absorption spectra also confirm the other’s experimental results. The obtained results of molecular docking indicate the formation of hydrogen bonds between metoprolol and the beta-2 adrenergic receptors, and molecular dynamics showed a human beta-2 adrenoceptor either in its free state or in complex with a metoprolol molecule. The calculated binding energies of elements by molecular docking and the other biological properties of metoprolol by molecular dynamic are in close agreement with obtained Density Functional Theory (DFT) results for Pharmacia applications.
采用全电位线性化增强平面波法以及分子对接和分子动力学方法研究了美托洛尔的生物物理特性。交换相关电势是通过 WIEN2k 软件包中实现的 Perdew-Burke-Ernzerhof 广义梯度近似法计算得出的。电子结果显示美托洛尔具有绝缘体性质,其 HOMO 和 LUMO 态之间的间接带隙为 3.74 eV。在状态密度谱图中,O、C 和 N 元素的 p 态证实了美托洛尔的稳定性。美托洛尔在 z 方向上表现出金属特性,而在 x 和 y 方向上则表现出介电特性。在 x、y 和 z 方向上的静态折射率分别为 1.49、1.53 和 1.63。研究发现,最大反射率出现在 z 方向的紫外线区域。计算得出的吸收光谱也证实了其他实验结果。分子对接结果表明,美托洛尔与 beta-2 肾上腺素能受体之间形成了氢键,分子动力学结果显示,人 beta-2 肾上腺素受体处于自由状态或与美托洛尔分子复合。通过分子对接计算出的元素结合能以及通过分子动力学计算出的美托洛尔的其他生物特性与在药典应用中获得的密度泛函理论(DFT)结果非常吻合。
{"title":"Comparative bioengineering and optoelectronic properties of metoprolol by DFT, molecular docking, and molecular dynamic approaches","authors":"S. R. Seyyedi Birjand, R. Sabbaghzadeh, Maliheh Azadparvar, H. A. Rahnamaye Aliabad","doi":"10.1063/5.0215159","DOIUrl":"https://doi.org/10.1063/5.0215159","url":null,"abstract":"The biophysical properties of metoprolol are investigated by the full potential-linearized augmented plane wave method and molecular docking and molecular dynamic approaches. The exchange–correlation potentials are calculated by the Perdew–Burke–Ernzerhof generalized gradient approximation as implemented in the WIEN2k package. The electronic results show the insulator nature of metoprolol with the indirect bandgap of 3.74 eV between HOMO and LUMO states. In the density of state spectra, the p state of O, C, and N elements confirm the stability of metoprolol. Metoprolol exhibits a metallic behavior in the z direction, while it has a dielectric behavior in the x and y directions. The static refractive indices are obtained 1.49, 1.53, and 1.63 in the x, y, and z directions, respectively. It was found that the maximum reflectivity occurs at the ultraviolet region in the z-direction. The calculated absorption spectra also confirm the other’s experimental results. The obtained results of molecular docking indicate the formation of hydrogen bonds between metoprolol and the beta-2 adrenergic receptors, and molecular dynamics showed a human beta-2 adrenoceptor either in its free state or in complex with a metoprolol molecule. The calculated binding energies of elements by molecular docking and the other biological properties of metoprolol by molecular dynamic are in close agreement with obtained Density Functional Theory (DFT) results for Pharmacia applications.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"3 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ning Xu, Wen-Ping Xu, Xin Fu, Rui Su, Wen-Yu Chen, Ying-Nan Shen, Jin Luo
In this study, the dynamic process of a droplet moving with a substrate until blocked by air flow is investigated experimentally and theoretically. A sequence of experiments has been conducted to investigate the impacts of wetting properties, droplet volumes, air flow velocities, and droplet velocities. The substrate is driven by a linear motion motor to ensure the droplet moves at a certain velocity alongside the substrate. The air flow that is vertically injected from the nozzles toward the substrate is known as an impinging jet. After the air flow impacts the substrate, it will blow horizontally. When the direction of air flow is opposite to that of the droplet movement, a force will be exerted on the surface of the droplet. This action incurs the deformation of the droplet and the cessation of its movement, eventually resulting in an equilibrium state. The droplet shape and motion processes are recorded by a high-speed camera. A mathematical model considering the effect of droplet contact angle, droplet size, droplet moving velocity, and air flow velocity is established in the state of equilibrium. Correlation factors are used in the model for the drag coefficient and air average velocity acting on the droplet. It is found that the air flow rate required to stop the motion of the droplet increases with the droplet moving velocity and the droplet size but reduces with the increase in the static contact angle. The mathematical model, when equipped with suitable correlation factors, exhibits good agreement with experimental data and could potentially be utilized as a predictor of critical velocity for the cessation of the droplet motion.
{"title":"Experimental and theoretical study on the ceasing motion of a droplet manipulated by air-blowing nozzle","authors":"Ning Xu, Wen-Ping Xu, Xin Fu, Rui Su, Wen-Yu Chen, Ying-Nan Shen, Jin Luo","doi":"10.1063/5.0208630","DOIUrl":"https://doi.org/10.1063/5.0208630","url":null,"abstract":"In this study, the dynamic process of a droplet moving with a substrate until blocked by air flow is investigated experimentally and theoretically. A sequence of experiments has been conducted to investigate the impacts of wetting properties, droplet volumes, air flow velocities, and droplet velocities. The substrate is driven by a linear motion motor to ensure the droplet moves at a certain velocity alongside the substrate. The air flow that is vertically injected from the nozzles toward the substrate is known as an impinging jet. After the air flow impacts the substrate, it will blow horizontally. When the direction of air flow is opposite to that of the droplet movement, a force will be exerted on the surface of the droplet. This action incurs the deformation of the droplet and the cessation of its movement, eventually resulting in an equilibrium state. The droplet shape and motion processes are recorded by a high-speed camera. A mathematical model considering the effect of droplet contact angle, droplet size, droplet moving velocity, and air flow velocity is established in the state of equilibrium. Correlation factors are used in the model for the drag coefficient and air average velocity acting on the droplet. It is found that the air flow rate required to stop the motion of the droplet increases with the droplet moving velocity and the droplet size but reduces with the increase in the static contact angle. The mathematical model, when equipped with suitable correlation factors, exhibits good agreement with experimental data and could potentially be utilized as a predictor of critical velocity for the cessation of the droplet motion.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"100 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tongzhao Zhang, Zhiqiang Liu, Yongsheng He, Hongguang Ji, Yichao Zhao, Zhaoyang Song
The acoustic emission (AE) characteristic signal can reveal the mechanical properties of rock materials and the development characteristics of internal microcracks. Rocks with different mineral development characteristics produce different AE signals during fracture. This study selected variable metagabbros with varying feldspathic development for AE tests under splitting load. The results demonstrated that the characteristics of AE ringing counts during the Brazilian fracture of metagabbro were closely correlated with the content of felsic minerals. The cumulative AE ringing count of metagabbros with feldspar nondevelopment exceeded 250 000, while those of metagabbros with feldspar development did not reach 200 000. As the feldspathic mineral content increases, the AE ringing counts of metagabbro exhibit an increasing trend in the high-energy (1e6–+∞ aJ) and high-amplitude (90–100 dB) intervals. With the development of feldspar minerals, the fracture mode of metagabbro gradually changed from shear failure to tensile failure. The higher the development of felsic minerals, the higher the stress level corresponding to the maximum fractal dimension, the greater the energy released by rock failure, and the more severe the damage. This study is of great significance for revealing the mechanism of rock rupture.
{"title":"Research on acoustic emission characteristics of metagabbros with different felsic development under splitting load","authors":"Tongzhao Zhang, Zhiqiang Liu, Yongsheng He, Hongguang Ji, Yichao Zhao, Zhaoyang Song","doi":"10.1063/5.0226321","DOIUrl":"https://doi.org/10.1063/5.0226321","url":null,"abstract":"The acoustic emission (AE) characteristic signal can reveal the mechanical properties of rock materials and the development characteristics of internal microcracks. Rocks with different mineral development characteristics produce different AE signals during fracture. This study selected variable metagabbros with varying feldspathic development for AE tests under splitting load. The results demonstrated that the characteristics of AE ringing counts during the Brazilian fracture of metagabbro were closely correlated with the content of felsic minerals. The cumulative AE ringing count of metagabbros with feldspar nondevelopment exceeded 250 000, while those of metagabbros with feldspar development did not reach 200 000. As the feldspathic mineral content increases, the AE ringing counts of metagabbro exhibit an increasing trend in the high-energy (1e6–+∞ aJ) and high-amplitude (90–100 dB) intervals. With the development of feldspar minerals, the fracture mode of metagabbro gradually changed from shear failure to tensile failure. The higher the development of felsic minerals, the higher the stress level corresponding to the maximum fractal dimension, the greater the energy released by rock failure, and the more severe the damage. This study is of great significance for revealing the mechanism of rock rupture.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"6 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Accurate estimation of the State of Health (SOH) of batteries is important for intelligent battery management in energy storage systems. To solve the problems of poor quality of data features as well as the difficulty of model parameter adjustment, this study proposes a method for estimating the SOH of lithium batteries based on denoising battery health features and an improved Long Short-Term Memory (LSTM) neural network. First, in this study, three health features related to SOH decrease were selected from the battery charge/discharge data, and the singular value decomposition technique was applied to the noise reduction of the features to improve their correlation with the SOH. Then, the whale optimization algorithm is improved using cubic chaotic mapping to enhance its global optimization-seeking capability. Then, the Improved Whale Optimization Algorithm (IWOA) is used to optimize the model parameters of LSTM, and the IWOA-LSTM model is applied to the battery SOH estimation. Finally, the model proposed in this research is validated against the Center for Advanced Life Cycle Engineering (CALCE) battery dataset. The experimental results show that the prediction error of battery SOH by the method proposed in this study is less than 0.96%, and the prediction error is reduced by 49.42% compared to its baseline model. The method presented in the article achieves accurate estimation of the SOH, providing a reference for practical engineering applications.
{"title":"Energy storage battery state of health estimation based on singular value decomposition for noise reduction and improved LSTM neural network","authors":"Tao Chen, Shaohong Zheng, Linjia Xie, Xiaofei Sui, Fang Guo, Wencan Zhang","doi":"10.1063/5.0217697","DOIUrl":"https://doi.org/10.1063/5.0217697","url":null,"abstract":"Accurate estimation of the State of Health (SOH) of batteries is important for intelligent battery management in energy storage systems. To solve the problems of poor quality of data features as well as the difficulty of model parameter adjustment, this study proposes a method for estimating the SOH of lithium batteries based on denoising battery health features and an improved Long Short-Term Memory (LSTM) neural network. First, in this study, three health features related to SOH decrease were selected from the battery charge/discharge data, and the singular value decomposition technique was applied to the noise reduction of the features to improve their correlation with the SOH. Then, the whale optimization algorithm is improved using cubic chaotic mapping to enhance its global optimization-seeking capability. Then, the Improved Whale Optimization Algorithm (IWOA) is used to optimize the model parameters of LSTM, and the IWOA-LSTM model is applied to the battery SOH estimation. Finally, the model proposed in this research is validated against the Center for Advanced Life Cycle Engineering (CALCE) battery dataset. The experimental results show that the prediction error of battery SOH by the method proposed in this study is less than 0.96%, and the prediction error is reduced by 49.42% compared to its baseline model. The method presented in the article achieves accurate estimation of the SOH, providing a reference for practical engineering applications.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"158 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In conditions of low visibility, the scattering effect of atmospheric particles can result in images captured by cameras exhibiting a number of problems, including reduced contrast, color distortion, and blurred details. These issues can have a significant impact on the clarity and recognition of the images. In response to these issues, this study combines atmospheric scattering models with wavelet transform, introduces non-blind deconvolution algorithms and, finally, designs a special gamma correction function to ultimately develop a new foggy image restoration model. The relevant outcomes showed that when the dehazing model processed most image samples, its edge preservation was mainly concentrated in a relatively high range, namely [0.80, 0.96]. From the perspective of the structural similarity index, the discrete wavelet transform achieved the highest value of 0.8264. In addition, the peak signal-to-noise ratio of the improved gamma correction function was 18.346. The proposed algorithm for restoring foggy images has the advantages of high clarity, strong color restoration ability, and fast restoration speed, providing more reliable and efficient image data support for applications in related fields.
{"title":"Restoration of misty images based on wavelet transform and atmospheric scattering model","authors":"Pengcheng Liu","doi":"10.1063/5.0219235","DOIUrl":"https://doi.org/10.1063/5.0219235","url":null,"abstract":"In conditions of low visibility, the scattering effect of atmospheric particles can result in images captured by cameras exhibiting a number of problems, including reduced contrast, color distortion, and blurred details. These issues can have a significant impact on the clarity and recognition of the images. In response to these issues, this study combines atmospheric scattering models with wavelet transform, introduces non-blind deconvolution algorithms and, finally, designs a special gamma correction function to ultimately develop a new foggy image restoration model. The relevant outcomes showed that when the dehazing model processed most image samples, its edge preservation was mainly concentrated in a relatively high range, namely [0.80, 0.96]. From the perspective of the structural similarity index, the discrete wavelet transform achieved the highest value of 0.8264. In addition, the peak signal-to-noise ratio of the improved gamma correction function was 18.346. The proposed algorithm for restoring foggy images has the advantages of high clarity, strong color restoration ability, and fast restoration speed, providing more reliable and efficient image data support for applications in related fields.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"7 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Accurate prediction of the remaining useful life (RUL) of energy storage batteries plays a significant role in ensuring the safe and reliable operation of battery energy storage systems. This paper proposes an RUL prediction framework for energy storage batteries based on INGO-BiLSTM-TPA. First, the battery’s indirect health index is extracted by combining principal component analysis and the Pearson correlation coefficient in the battery charge/discharge cycle data. Second, for the problem that the Northern Goshawk Optimization (NGO) algorithm is prone to falling into local optimum, the Gaussian variation mechanism and nonlinear hunting radius are introduced to improve the NGO algorithm, and the Improved Northern Goshawk Optimization (INGO) algorithm is proposed. Finally, the temporal pattern attention (TPA) mechanism is introduced in the bi-directional long short-term memory (BiLSTM), which makes the model weighted to focus on the features of important time steps, and the INGO algorithm is applied to it to build the RUL prediction framework. Based on the CALCE battery dataset, the root-mean-square error (RMSE) of RUL prediction based on the proposed framework is controlled within 1.3%, which provides better prediction accuracy and generalization.
{"title":"A novel hybrid framework for predicting the remaining useful life of energy storage batteries","authors":"Yuheng Yin, Minghui Yang, Jiahao Song","doi":"10.1063/5.0221822","DOIUrl":"https://doi.org/10.1063/5.0221822","url":null,"abstract":"Accurate prediction of the remaining useful life (RUL) of energy storage batteries plays a significant role in ensuring the safe and reliable operation of battery energy storage systems. This paper proposes an RUL prediction framework for energy storage batteries based on INGO-BiLSTM-TPA. First, the battery’s indirect health index is extracted by combining principal component analysis and the Pearson correlation coefficient in the battery charge/discharge cycle data. Second, for the problem that the Northern Goshawk Optimization (NGO) algorithm is prone to falling into local optimum, the Gaussian variation mechanism and nonlinear hunting radius are introduced to improve the NGO algorithm, and the Improved Northern Goshawk Optimization (INGO) algorithm is proposed. Finally, the temporal pattern attention (TPA) mechanism is introduced in the bi-directional long short-term memory (BiLSTM), which makes the model weighted to focus on the features of important time steps, and the INGO algorithm is applied to it to build the RUL prediction framework. Based on the CALCE battery dataset, the root-mean-square error (RMSE) of RUL prediction based on the proposed framework is controlled within 1.3%, which provides better prediction accuracy and generalization.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"26 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pham Van Thach, Satoshi Sumi, Kenji Tanabe, Hiroyuki Awano
We investigated current-induced domain wall motion (CIDWM) driven by spin–orbit torque and Dzyaloshinskii–Moriya interaction (DMI) in ferrimagnetic Pt/GdFeCo/SiN and Rh/GdFeCo/SiN wires with perpendicular magnetic anisotropy at room temperature. We found that CIDWM in the Pt/GdFeCo wire exhibits nearly two times smaller in critical current density and about four times larger in DW mobility compared to the Rh/GdFeCo wire. By measuring the CIDWM under a longitudinal in-plane magnetic field, the DMI constant (D) was estimated for both wires. The estimated value of D for the Pt/GdFeCo wire is approximately seven times larger than the Rh/GdFeCo wire. It indicated that the Pt/GdFeCo wire revealed the CIDWM with much higher efficiency, mainly attributed to the much larger DMI, which may come from significantly stronger interfacial heavy metal/ferrimagnet hybridization in the Pt/GdFeCo wire.
{"title":"Current-induced domain wall motion driven by spin–orbit torque and Dzyaloshinskii–Moriya interaction in Pt/GdFeCo and Rh/GdFeCo wires","authors":"Pham Van Thach, Satoshi Sumi, Kenji Tanabe, Hiroyuki Awano","doi":"10.1063/5.0210487","DOIUrl":"https://doi.org/10.1063/5.0210487","url":null,"abstract":"We investigated current-induced domain wall motion (CIDWM) driven by spin–orbit torque and Dzyaloshinskii–Moriya interaction (DMI) in ferrimagnetic Pt/GdFeCo/SiN and Rh/GdFeCo/SiN wires with perpendicular magnetic anisotropy at room temperature. We found that CIDWM in the Pt/GdFeCo wire exhibits nearly two times smaller in critical current density and about four times larger in DW mobility compared to the Rh/GdFeCo wire. By measuring the CIDWM under a longitudinal in-plane magnetic field, the DMI constant (D) was estimated for both wires. The estimated value of D for the Pt/GdFeCo wire is approximately seven times larger than the Rh/GdFeCo wire. It indicated that the Pt/GdFeCo wire revealed the CIDWM with much higher efficiency, mainly attributed to the much larger DMI, which may come from significantly stronger interfacial heavy metal/ferrimagnet hybridization in the Pt/GdFeCo wire.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"230 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rohan Kumar, Muhammad Asim, Ammara Kanwal, Muhammad Jawad, Mohsin Pervez
Despite efforts made over the past two decades, Pakistan continues to face electricity crises. The heavy reliance on fossil fuels, which make up 60% of the country’s energy mix, has raised concerns about energy security and environmental degradation due to greenhouse gas (GHG) emissions. Developing effective electricity generation scenarios has been challenging for policymakers and researchers, despite the steady increase in electricity demand. The LEAP software was used in this study to forecast the country’s power demand, and four supply-side scenarios were constructed and examined for the years 2018 through 2040. These scenarios include a baseline scenario, a renewable energy scenario, a more renewable energy scenario, and a near-zero emission scenario, focusing on electricity generation and carbon emissions. The study’s findings, projecting into 2040, indicate that the renewable energy scenarios are environmentally sustainable, with lower GHG emissions compared to the baseline scenario. According to the findings of this study, it is projected that around 615 TWh (terawatt-hours) of renewable energy and nuclear energy will be necessary by the year 2040. The anticipated contributions include 393 TWh from hydroelectric energy, 57 TWh from wind energy, 41 TWh from solar energy, and 62 TWh from other renewable sources. The surge in renewable energy is forecasted to bring near-zero CO2 emissions by 2040, a pivotal step toward a sustainable energy future. A projected energy generation of 615 TWh is expected, which adequately meets the country’s energy demand. Transition to renewable energy is critical for addressing Pakistan’s increasing electricity demands, emphasizing both energy security and environmental sustainability.
{"title":"Toward a renewable future: Attaining 100% renewable electricity generation through sustainable transition","authors":"Rohan Kumar, Muhammad Asim, Ammara Kanwal, Muhammad Jawad, Mohsin Pervez","doi":"10.1063/5.0208838","DOIUrl":"https://doi.org/10.1063/5.0208838","url":null,"abstract":"Despite efforts made over the past two decades, Pakistan continues to face electricity crises. The heavy reliance on fossil fuels, which make up 60% of the country’s energy mix, has raised concerns about energy security and environmental degradation due to greenhouse gas (GHG) emissions. Developing effective electricity generation scenarios has been challenging for policymakers and researchers, despite the steady increase in electricity demand. The LEAP software was used in this study to forecast the country’s power demand, and four supply-side scenarios were constructed and examined for the years 2018 through 2040. These scenarios include a baseline scenario, a renewable energy scenario, a more renewable energy scenario, and a near-zero emission scenario, focusing on electricity generation and carbon emissions. The study’s findings, projecting into 2040, indicate that the renewable energy scenarios are environmentally sustainable, with lower GHG emissions compared to the baseline scenario. According to the findings of this study, it is projected that around 615 TWh (terawatt-hours) of renewable energy and nuclear energy will be necessary by the year 2040. The anticipated contributions include 393 TWh from hydroelectric energy, 57 TWh from wind energy, 41 TWh from solar energy, and 62 TWh from other renewable sources. The surge in renewable energy is forecasted to bring near-zero CO2 emissions by 2040, a pivotal step toward a sustainable energy future. A projected energy generation of 615 TWh is expected, which adequately meets the country’s energy demand. Transition to renewable energy is critical for addressing Pakistan’s increasing electricity demands, emphasizing both energy security and environmental sustainability.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"29 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Extracellular diffusion coupled with degradation is considered a dominant mechanism behind the establishment of morphogen gradients. However, the fundamental nature of these biophysical processes, visa viz, the Bicoid (Bcd) morphogen gradient, remains unclear. Fluorescence correlation spectroscopy has recently revealed multiple modes of Bcd transport at different spatial and temporal locations across the embryo. Here, we show that these observations are best fitted by a model fundamentally based on quantum mechanics. It is thus hypothesized that the transient quantum coherences in collaboration with unitary noise are responsible for the observed dynamics and relaxation to a non-equilibrium steady-state of the Bcd morphogen gradient. Furthermore, simulating the associated probability distribution for the model shows that the observed non-zero concentration of the Bcd molecules in the posterior-most parts of the embryo is a result of non-Gaussian distribution characteristic to quantum evolution. We conclude that with the Bcd gradient being essentially a one-dimensional problem, a simple one-dimensional model suffices for its analysis.
{"title":"Multiple dynamic modes of Bicoid morphogen gradient are explained by a quantum-classical model","authors":"Irfan Lone, Carl O. Trindle","doi":"10.1063/5.0221207","DOIUrl":"https://doi.org/10.1063/5.0221207","url":null,"abstract":"Extracellular diffusion coupled with degradation is considered a dominant mechanism behind the establishment of morphogen gradients. However, the fundamental nature of these biophysical processes, visa viz, the Bicoid (Bcd) morphogen gradient, remains unclear. Fluorescence correlation spectroscopy has recently revealed multiple modes of Bcd transport at different spatial and temporal locations across the embryo. Here, we show that these observations are best fitted by a model fundamentally based on quantum mechanics. It is thus hypothesized that the transient quantum coherences in collaboration with unitary noise are responsible for the observed dynamics and relaxation to a non-equilibrium steady-state of the Bcd morphogen gradient. Furthermore, simulating the associated probability distribution for the model shows that the observed non-zero concentration of the Bcd molecules in the posterior-most parts of the embryo is a result of non-Gaussian distribution characteristic to quantum evolution. We conclude that with the Bcd gradient being essentially a one-dimensional problem, a simple one-dimensional model suffices for its analysis.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"20 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Veerappan, Kamaraj Logesh, V. Mohanavel, M. Ravichandran, Ahmed Ahmed Ibrahim, Salahuddin Khan, S. Suresh Kumar, Sathish Kannan, Jayant Giri
Waspaloy, a nickel-based super alloy, has much potential in gas turbine component production. Machining this type of material using the traditional manufacturing method is very hard. Hence, electrical discharge machining (EDM) was selected for the investigation of the machining characteristics of Waspaloy by choosing the control parameters, namely, current, voltage, pulse on time, pulse off time, and spark gap. Gray relational analysis is carried out using 18 experiments according to an orthogonal array (L18) to determine the gray relation grade for this machining process with multiple machining characteristics such as material removal rate (MR), tool wear rate (TW), and surface roughness (SR). The significant objective of the multi objective optimization to attain high MR, low TW, and low SR is found out. From gray relation optimization, the optimum machining conditions for EDM, namely, current: 26 A, voltage: 200 V, pulse on time: 120 μs, pulse on time: 10 μs, and spark gap: 0.15 m, have been identified. The foremost parameter affecting the responses was found to be peak current.
{"title":"Investigation on materials removal rate and surface roughness of temperature resisted Waspaloy during electric spark machining utilizing gray relational analysis","authors":"G. Veerappan, Kamaraj Logesh, V. Mohanavel, M. Ravichandran, Ahmed Ahmed Ibrahim, Salahuddin Khan, S. Suresh Kumar, Sathish Kannan, Jayant Giri","doi":"10.1063/5.0220951","DOIUrl":"https://doi.org/10.1063/5.0220951","url":null,"abstract":"Waspaloy, a nickel-based super alloy, has much potential in gas turbine component production. Machining this type of material using the traditional manufacturing method is very hard. Hence, electrical discharge machining (EDM) was selected for the investigation of the machining characteristics of Waspaloy by choosing the control parameters, namely, current, voltage, pulse on time, pulse off time, and spark gap. Gray relational analysis is carried out using 18 experiments according to an orthogonal array (L18) to determine the gray relation grade for this machining process with multiple machining characteristics such as material removal rate (MR), tool wear rate (TW), and surface roughness (SR). The significant objective of the multi objective optimization to attain high MR, low TW, and low SR is found out. From gray relation optimization, the optimum machining conditions for EDM, namely, current: 26 A, voltage: 200 V, pulse on time: 120 μs, pulse on time: 10 μs, and spark gap: 0.15 m, have been identified. The foremost parameter affecting the responses was found to be peak current.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"41 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}