Petruta Gurban, Cristina Mambet, Anca Botezatu, Laura G. Necula, Lilia Matei, Ana Iulia Neagu, Ioana Pitica, Marius Ataman, Aurelia Tatic, Alexandru Bardas, Mihnea A. Gaman, Camelia Dobrea, Mihaela Dragomir, Cecilia Ghimici, Silvana Angelescu, Doina Barbu, Oana Stanca, Marina Danila, Nicoleta Berbec, Andrei Colita, Ana Maria Vladareanu, Saviana Nedeianu, Mihaela Chivu-Economescu, Coralia Bleotu, Daniel Coriu, Elise Sepulchre, Gabriela Anton, Carmen C. Diaconu, Stefan N. Constantinescu
<p><i>BCR::ABL1</i>-negative myeloproliferative neoplasms (MPNs) can evolve to secondary acute myeloid leukemia (sAML) or blast-phase (BP) MPN, a very severe condition with lack of effective therapy.<span><sup>1</sup></span> Leukemic transformation (LT) of MPNs displays a variable incidence according to MPN phenotype: 9%–13% in primary myelofibrosis (PMF), 3%–7% in polycythemia vera (PV), and 1%–4% in essential thrombocythemia (ET).<span><sup>1</sup></span> Here, we investigated the mutational landscape, copy number variations (CNVs), and uniparental disomy (UPD) events in BP-MPN cases that were diagnosed over a 6-year period of monitoring in three different hematology units (Fundeni Clinical Institute, Coltea Hospital and Emergency University Hospitals, Bucharest, Romania) and the patterns of clonal evolution in a subset of patients with available paired chronic phase (CP)-BP DNA samples.</p><p>The study was approved by the local ethics committee (No. 136/06.02.2017 rev. no.131/18.01.2019) and was performed in conformity with the Declaration of Helsinki. A written informed consent was provided by each patient at collection of samples that were referred to Stefan S Nicolau Institute of Virology, Romania, for molecular analysis. Clinical, morphological, and immunophenotypic data were provided from the medical records for all recruited patients. Peripheral blood or bone marrow (BM) mononuclear cells were isolated and processed to obtain various cell fractions. CD3+ T cells were used as reference for germline mutations. Molecular testing for MPN-driver mutations, targeted next-generation sequencing (NGS), whole-exome sequencing (WES), single nucleotide polymorphism (SNP) microarray analysis, and multiplex ligation-dependent probe amplification (MLPA) were performed as described by manufacturers (see Supplemental file; Data S1 for a complete description of methods).</p><p>A total of 33 patients (median age, 63 years; 57.6% males) were diagnosed with BP-MPN between 2017 and 2023, in the above-mentioned centers, including 20 post-PMF (60.4%), and 13 post-ET/PV (39.4%) cases (Table S1). A prior stage of secondary myelofibrosis was confirmed by BM biopsy in 8 out of 13 post-ET/PV AML (61.5%) patients. According to morphologic and immunophenotypic data, sAML cases were classified as AML with myelodysplasia-related changes (<i>n</i> = 4, 12.1%) and AML, not otherwise specified (<i>n</i> = 29, 87.9%), as follows: AML with minimal differentiation (<i>n</i> = 6, 18.2%), AML without maturation (<i>n</i> = 12, 36.4%), acute myelomonocytic leukemia (<i>n</i> = 6, 18.2%), acute monocytic leukemia (<i>n</i> = 1, 3%), pure erythroid leukemia (<i>n</i> = 1, 3%), and acute megakaryoblastic leukemia (<i>n</i> = 3, 9.1%). Concerning the MPN drivers detected at CP, 60.6% of patients carried <i>JAK2</i> V617F mutation, 21.2% harbored calreticulin (<i>CALR</i>) mutations (5 type1/type 1-like, 2 type2/type-2 like), and 18.2% were classified as triple-negative (TN-MPNs). We
{"title":"Dominance of mutations in epigenetic regulators and a diversity of signaling alterations in blast-phase BCR::ABL1-negative myeloproliferative neoplasms","authors":"Petruta Gurban, Cristina Mambet, Anca Botezatu, Laura G. Necula, Lilia Matei, Ana Iulia Neagu, Ioana Pitica, Marius Ataman, Aurelia Tatic, Alexandru Bardas, Mihnea A. Gaman, Camelia Dobrea, Mihaela Dragomir, Cecilia Ghimici, Silvana Angelescu, Doina Barbu, Oana Stanca, Marina Danila, Nicoleta Berbec, Andrei Colita, Ana Maria Vladareanu, Saviana Nedeianu, Mihaela Chivu-Economescu, Coralia Bleotu, Daniel Coriu, Elise Sepulchre, Gabriela Anton, Carmen C. Diaconu, Stefan N. Constantinescu","doi":"10.1002/ajh.27503","DOIUrl":"10.1002/ajh.27503","url":null,"abstract":"<p><i>BCR::ABL1</i>-negative myeloproliferative neoplasms (MPNs) can evolve to secondary acute myeloid leukemia (sAML) or blast-phase (BP) MPN, a very severe condition with lack of effective therapy.<span><sup>1</sup></span> Leukemic transformation (LT) of MPNs displays a variable incidence according to MPN phenotype: 9%–13% in primary myelofibrosis (PMF), 3%–7% in polycythemia vera (PV), and 1%–4% in essential thrombocythemia (ET).<span><sup>1</sup></span> Here, we investigated the mutational landscape, copy number variations (CNVs), and uniparental disomy (UPD) events in BP-MPN cases that were diagnosed over a 6-year period of monitoring in three different hematology units (Fundeni Clinical Institute, Coltea Hospital and Emergency University Hospitals, Bucharest, Romania) and the patterns of clonal evolution in a subset of patients with available paired chronic phase (CP)-BP DNA samples.</p><p>The study was approved by the local ethics committee (No. 136/06.02.2017 rev. no.131/18.01.2019) and was performed in conformity with the Declaration of Helsinki. A written informed consent was provided by each patient at collection of samples that were referred to Stefan S Nicolau Institute of Virology, Romania, for molecular analysis. Clinical, morphological, and immunophenotypic data were provided from the medical records for all recruited patients. Peripheral blood or bone marrow (BM) mononuclear cells were isolated and processed to obtain various cell fractions. CD3+ T cells were used as reference for germline mutations. Molecular testing for MPN-driver mutations, targeted next-generation sequencing (NGS), whole-exome sequencing (WES), single nucleotide polymorphism (SNP) microarray analysis, and multiplex ligation-dependent probe amplification (MLPA) were performed as described by manufacturers (see Supplemental file; Data S1 for a complete description of methods).</p><p>A total of 33 patients (median age, 63 years; 57.6% males) were diagnosed with BP-MPN between 2017 and 2023, in the above-mentioned centers, including 20 post-PMF (60.4%), and 13 post-ET/PV (39.4%) cases (Table S1). A prior stage of secondary myelofibrosis was confirmed by BM biopsy in 8 out of 13 post-ET/PV AML (61.5%) patients. According to morphologic and immunophenotypic data, sAML cases were classified as AML with myelodysplasia-related changes (<i>n</i> = 4, 12.1%) and AML, not otherwise specified (<i>n</i> = 29, 87.9%), as follows: AML with minimal differentiation (<i>n</i> = 6, 18.2%), AML without maturation (<i>n</i> = 12, 36.4%), acute myelomonocytic leukemia (<i>n</i> = 6, 18.2%), acute monocytic leukemia (<i>n</i> = 1, 3%), pure erythroid leukemia (<i>n</i> = 1, 3%), and acute megakaryoblastic leukemia (<i>n</i> = 3, 9.1%). Concerning the MPN drivers detected at CP, 60.6% of patients carried <i>JAK2</i> V617F mutation, 21.2% harbored calreticulin (<i>CALR</i>) mutations (5 type1/type 1-like, 2 type2/type-2 like), and 18.2% were classified as triple-negative (TN-MPNs). We","PeriodicalId":7724,"journal":{"name":"American Journal of Hematology","volume":"100 1","pages":"168-171"},"PeriodicalIF":10.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajh.27503","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yoshito Nishimura, Thomas Atwell, Matthew Callstrom, Patrick McGarrah, Matthew Howard, Rebecca L. King, Angela Dispenzieri
Laboratory findings and timeline of treatments. Day 0 is the day of the initial consult at our institution. CRP, C-reactive protein; IgG, immunoglobulin G.