首页 > 最新文献

Surface Engineering and Applied Electrochemistry最新文献

英文 中文
Effect of Cathode Surface Area on the Electrodeposition Rate, Composition, and Microhardness of Co–W Coatings Deposited from a Citrate Bath 阴极表面积对柠檬酸盐浴沉积的 Co-W 涂层的电沉积速率、成分和显微硬度的影响
IF 0.9 Q3 Engineering Pub Date : 2024-04-26 DOI: 10.3103/S1068375524020042
A. V. Gotelyak, A. I. Dikusar

Here, by the example of galvanostatic electrodeposition of Co–W coatings from a citrate bath, we demonstrate experimentally that when using the results on the deposition rate and the composition and properties (microhardness) of resulting coatings observed under laboratory conditions to develop this type of an electrodeposition process on a larger (industrial) scale the bath volume must be scaled in proportion to the increase in the cathode area. In this case, the current loading on the electrolyte, which is quantitatively expressed as the volume current density, does not increase.

摘要 在这里,我们以柠檬酸盐浴中的 Co-W 涂层的电静电沉积为例,通过实验证明,当利用在实验室条件下观察到的沉积速率、所得涂层的成分和特性(微硬度)方面的结果,在更大(工业)规模上开发这种类型的电沉积工艺时,浴槽体积必须与阴极面积的增加成比例。在这种情况下,电解液上的电流负荷(用体积电流密度定量表示)不会增加。
{"title":"Effect of Cathode Surface Area on the Electrodeposition Rate, Composition, and Microhardness of Co–W Coatings Deposited from a Citrate Bath","authors":"A. V. Gotelyak,&nbsp;A. I. Dikusar","doi":"10.3103/S1068375524020042","DOIUrl":"10.3103/S1068375524020042","url":null,"abstract":"<p>Here, by the example of galvanostatic electrodeposition of Co–W coatings from a citrate bath, we demonstrate experimentally that when using the results on the deposition rate and the composition and properties (microhardness) of resulting coatings observed under laboratory conditions to develop this type of an electrodeposition process on a larger (industrial) scale the bath volume must be scaled in proportion to the increase in the cathode area. In this case, the current loading on the electrolyte, which is quantitatively expressed as the volume current density, does not increase.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 2","pages":"241 - 246"},"PeriodicalIF":0.9,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140806782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetohydrodynamics with Application to the Study of Electrolysis and Turbulence 磁流体力学在电解和湍流研究中的应用
IF 0.9 Q3 Engineering Pub Date : 2024-04-26 DOI: 10.3103/S1068375524020108
I. T. Selezov, V. N. Zaichenko

The equations of magnetohydrodynamics (MHD) are presented as continual modeling for slow motions. The original equations of the MHD environment are linearized, reduced, and applied to the analysis of environments characterized by the phenomena of electrolysis and turbulence. A continual approach for electrolysis and turbulence is presented, and the real-life ongoing studies are considering local models. The formulation of the problem and its analysis are presented as the density of the MHD-field decreases from a flat wall. Experimental studies with respect to propulsion devices in sea water are characterized.

摘要 磁流体力学(MHD)方程是作为慢速运动的连续模型提出的。将 MHD 环境的原始方程线性化、简化,并应用于以电解和湍流现象为特征的环境分析。介绍了电解和湍流的连续方法,正在进行的实际研究考虑了局部模型。当 MHD 场的密度从平壁开始下降时,将介绍问题的表述及其分析。还介绍了有关海水中推进装置的实验研究。
{"title":"Magnetohydrodynamics with Application to the Study of Electrolysis and Turbulence","authors":"I. T. Selezov,&nbsp;V. N. Zaichenko","doi":"10.3103/S1068375524020108","DOIUrl":"10.3103/S1068375524020108","url":null,"abstract":"<p>The equations of magnetohydrodynamics (MHD) are presented as continual modeling for slow motions. The original equations of the MHD environment are linearized, reduced, and applied to the analysis of environments characterized by the phenomena of electrolysis and turbulence. A continual approach for electrolysis and turbulence is presented, and the real-life ongoing studies are considering local models. The formulation of the problem and its analysis are presented as the density of the MHD-field decreases from a flat wall. Experimental studies with respect to propulsion devices in sea water are characterized.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 2","pages":"256 - 259"},"PeriodicalIF":0.9,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140804664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Surface Tension of a Charged Spherical Water Droplet 带电球形水滴的动态表面张力
IF 0.9 Q3 Engineering Pub Date : 2024-04-26 DOI: 10.3103/S1068375524020054
A. I. Grigor’ev, N. Yu. Kolbneva, S. O. Shiryaeva

In asymptotic calculations of the first order of smallness in the dimensionless amplitude of water droplet oscillations, the effect of the dynamic surface tension on the oscillation parameters was investigated using a model of an ideal incompressible liquid. It was shown that the effect of the dynamic surface tension strongly manifests itself at frequencies of external influences that are inversely proportional to the water relaxation time. At such frequencies, under the action of external influences, the electrical double layer is destroyed (the ordering of water molecules in the near-surface layer is disrupted). As a result, the free energy of the surface increases, and so does the liquid surface tension. The dynamic surface tension affects the acoustic radiation from the droplet by altering the coefficient of surface tension. The contribution to the electromagnetic radiation of the oscillating droplet is made by the disruption of the order of near-surface water molecules in the electrical double layer.

摘要 在对水滴振荡无量纲振幅的一阶小值进行渐近计算时,使用理想不可压缩液体模型研究了动态表面张力对振荡参数的影响。结果表明,动态表面张力的影响在外部影响频率与水的弛豫时间成反比时表现得非常明显。在这种频率下,在外部影响的作用下,电双层被破坏(近表面层中水分子的有序性被打乱)。因此,表面自由能增加,液体表面张力也随之增加。动态表面张力通过改变表面张力系数来影响液滴的声辐射。振荡液滴的电磁辐射是由电双层中近表面水分子秩序的破坏造成的。
{"title":"Dynamic Surface Tension of a Charged Spherical Water Droplet","authors":"A. I. Grigor’ev,&nbsp;N. Yu. Kolbneva,&nbsp;S. O. Shiryaeva","doi":"10.3103/S1068375524020054","DOIUrl":"10.3103/S1068375524020054","url":null,"abstract":"<p>In asymptotic calculations of the first order of smallness in the dimensionless amplitude of water droplet oscillations, the effect of the dynamic surface tension on the oscillation parameters was investigated using a model of an ideal incompressible liquid. It was shown that the effect of the dynamic surface tension strongly manifests itself at frequencies of external influences that are inversely proportional to the water relaxation time. At such frequencies, under the action of external influences, the electrical double layer is destroyed (the ordering of water molecules in the near-surface layer is disrupted). As a result, the free energy of the surface increases, and so does the liquid surface tension. The dynamic surface tension affects the acoustic radiation from the droplet by altering the coefficient of surface tension. The contribution to the electromagnetic radiation of the oscillating droplet is made by the disruption of the order of near-surface water molecules in the electrical double layer.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 2","pages":"211 - 218"},"PeriodicalIF":0.9,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140806847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systems of Strongly Correlated Electrons Interacting with Each Other and with Phonons: Diagrammatic Approach 强相关电子相互作用和与声子相互作用的系统:图解法
IF 0.9 Q3 Engineering Pub Date : 2024-03-23 DOI: 10.3103/S1068375524010058
I. D. Chebotar’

The features of materials leading to the strong correlation effect and the phenomena realized in them are considered: the metal-insulator Mott transition and high-temperature superconductivity. The history of their study is traced. Particular attention is paid to studying the role of the interorbital correlation effect and the Hund’s coupling in multiorbital systems as well as the electron-phonon interaction in systems with strong Coulomb interaction. The development of the strong coupling diagram technique is analyzed and the results obtained based on the approach used are presented.

摘要 研究了导致强相关效应的材料特征及其实现的现象:金属-绝缘体莫特转变和高温超导。追溯了对它们的研究历史。特别注意研究多轨道系统中轨道间相关效应和亨德耦合的作用,以及具有强库仑相互作用的系统中电子-声子相互作用。分析了强耦合图技术的发展,并介绍了根据所使用的方法得出的结果。
{"title":"Systems of Strongly Correlated Electrons Interacting with Each Other and with Phonons: Diagrammatic Approach","authors":"I. D. Chebotar’","doi":"10.3103/S1068375524010058","DOIUrl":"10.3103/S1068375524010058","url":null,"abstract":"<p>The features of materials leading to the strong correlation effect and the phenomena realized in them are considered: the metal-insulator Mott transition and high-temperature superconductivity. The history of their study is traced. Particular attention is paid to studying the role of the interorbital correlation effect and the Hund’s coupling in multiorbital systems as well as the electron-phonon interaction in systems with strong Coulomb interaction. The development of the strong coupling diagram technique is analyzed and the results obtained based on the approach used are presented.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 1","pages":"94 - 108"},"PeriodicalIF":0.9,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Features of the Formation of Electrospark Coatings on the CompoNiAl-M5-3 Alloy Produced from Nickel Monoaluminide Using an Electrode Made of Zr–18% Ni Eutectic Alloy 使用 Zr-18% Ni 共晶合金电极在由一铝化镍生产的 CompoNiAl-M5-3 合金上形成电火花涂层的特点
IF 0.9 Q3 Engineering Pub Date : 2024-03-23 DOI: 10.3103/S1068375524010095
A. E. Kudryashov, F. V. Kiryukhantsev-Korneev, S. K. Mukanov, M. I. Petrzhik, E. A. Levashov

To improve the performance of the CompoNiAl-M5-3 alloy produced from nickel monoaluminide, protective coatings were applied by electrospark deposition (ESD) using electrodes made of the Zr–18%Ni eutectic alloy. The coatings were applied in an argon environment using tools for manual treatment both of vibrational and rotational types with the connection of direct and reverse polarities. It was determined that the maximum total deposition on the cathode of 11.17 × 10–4 cm3 is achieved when using a tool of the rotational type with a direct polarity of connection. The obtained coatings are characterized by 100% continuity at a thickness of 20–25 μm, hardness of 11.6–14.6 GPa, and elastic modulus of 162–174 GPa. Electrospark treatment increases the hardness of the CompoNiAl-M5-3 alloy by a factor of 1.4 to 1.8, wear resistance by factor of 3.3 to 16.2, and heat resistance at a temperature of 1150°C for 5 h decreases coefficient of friction.

摘要 为了提高由镍单铝化物制成的 CompoNiAl-M5-3 合金的性能,使用 Zr-18%Ni 共晶合金制成的电极,通过电火花沉积(ESD)技术进行了保护涂层的处理。涂层是在氩气环境中使用振动型和旋转型人工处理工具,通过正极性和反极性连接进行涂敷的。结果表明,使用正极性连接的旋转型工具时,阴极上的最大沉积总量为 11.17 × 10-4 cm3。获得的涂层在厚度为 20-25 μm 时具有 100% 的连续性,硬度为 11.6-14.6 GPa,弹性模量为 162-174 GPa。电火花处理使 CompoNiAl-M5-3 合金的硬度提高了 1.4 至 1.8 倍,耐磨性提高了 3.3 至 16.2 倍,在 1150°C 温度下 5 小时的耐热性降低了摩擦系数。
{"title":"Features of the Formation of Electrospark Coatings on the CompoNiAl-M5-3 Alloy Produced from Nickel Monoaluminide Using an Electrode Made of Zr–18% Ni Eutectic Alloy","authors":"A. E. Kudryashov,&nbsp;F. V. Kiryukhantsev-Korneev,&nbsp;S. K. Mukanov,&nbsp;M. I. Petrzhik,&nbsp;E. A. Levashov","doi":"10.3103/S1068375524010095","DOIUrl":"10.3103/S1068375524010095","url":null,"abstract":"<p>To improve the performance of the CompoNiAl-M5-3 alloy produced from nickel monoaluminide, protective coatings were applied by electrospark deposition (ESD) using electrodes made of the Zr–18%Ni eutectic alloy. The coatings were applied in an argon environment using tools for manual treatment both of vibrational and rotational types with the connection of direct and reverse polarities. It was determined that the maximum total deposition on the cathode of 11.17 × 10<sup>–4</sup> cm<sup>3</sup> is achieved when using a tool of the rotational type with a direct polarity of connection. The obtained coatings are characterized by 100% continuity at a thickness of 20–25 μm, hardness of 11.6–14.6 GPa, and elastic modulus of 162–174 GPa. Electrospark treatment increases the hardness of the CompoNiAl-M5-3 alloy by a factor of 1.4 to 1.8, wear resistance by factor of 3.3 to 16.2, and heat resistance at a temperature of 1150°C for 5 h decreases coefficient of friction.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 1","pages":"1 - 14"},"PeriodicalIF":0.9,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Heteronuclear Salicylate Complex {[FeSr2(SalH)2(Sal)2(NO3)(DMA)4]}n on Corrosion of Steel St. 3 in Water 水杨酸异核络合物 {[FeSr2(SalH)2(Sal)2(NO3)(DMA)4]}n 对 St.
IF 0.9 Q3 Engineering Pub Date : 2024-03-23 DOI: 10.3103/S1068375524010137
V. V. Parshutin, A. V. Koval’, V. V. Gorinchoi, V. I. Lozan

The corrosion process of steel St. 3 in water with the addition of a heteronuclear salicylate complex {[FeSr2(SalH)2(Sal)2(NO3)(DMA)4]}n by gravimetric, electrochemical, and physicochemical methods (X‑ray phase analysis, UV, IR and Mössbauer spectroscopy) has been studied. It has been shown that the introduction of the additive under study into a corrosive environment significantly reduces steel corrosion. Depending on the duration of the tests and the concentration of the inhibitor, the corrosion rate is reduced by 5.1–11.1 times with a degree of protection of 80.5–91.0%. A mechanism of inhibition has been proposed. The inclusion of products of interaction of ionized iron with the complex in the coating layers has been proven.

摘要 通过重量法、电化学法和物理化学法(X 射线相分析法、紫外光谱法、红外光谱法和莫斯鲍尔光谱法),研究了添加杂核水杨酸络合物 {[FeSr2(SalH)2(Sal)2(NO3)(DMA)4]}n 的 St.结果表明,在腐蚀性环境中引入所研究的添加剂可显著减少钢的腐蚀。根据试验时间的长短和抑制剂的浓度,腐蚀速度可降低 5.1-11.1 倍,保护程度为 80.5-91.0%。提出了一种抑制机制。事实证明,涂层中含有离子化铁与络合物相互作用的产物。
{"title":"Effect of Heteronuclear Salicylate Complex {[FeSr2(SalH)2(Sal)2(NO3)(DMA)4]}n on Corrosion of Steel St. 3 in Water","authors":"V. V. Parshutin,&nbsp;A. V. Koval’,&nbsp;V. V. Gorinchoi,&nbsp;V. I. Lozan","doi":"10.3103/S1068375524010137","DOIUrl":"10.3103/S1068375524010137","url":null,"abstract":"<p>The corrosion process of steel St. 3 in water with the addition of a heteronuclear salicylate complex {[FeSr<sub>2</sub>(SalH)<sub>2</sub>(Sal)<sub>2</sub>(NO<sub>3</sub>)(DMA)<sub>4</sub>]}<sub><i>n</i></sub> by gravimetric, electrochemical, and physicochemical methods (X‑ray phase analysis, UV, IR and Mössbauer spectroscopy) has been studied. It has been shown that the introduction of the additive under study into a corrosive environment significantly reduces steel corrosion. Depending on the duration of the tests and the concentration of the inhibitor, the corrosion rate is reduced by 5.1–11.1 times with a degree of protection of 80.5–91.0%. A mechanism of inhibition has been proposed. The inclusion of products of interaction of ionized iron with the complex in the coating layers has been proven.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 1","pages":"109 - 121"},"PeriodicalIF":0.9,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multivariant Method of Conductive Electric Current Treatment of Molten Metal 熔融金属导电电流处理多变量法
IF 0.9 Q3 Engineering Pub Date : 2024-03-23 DOI: 10.3103/S1068375524010150
V. N. Tsurkin, A. V. Ivanov, Yu. M. Zaporozhets, A. A. Zhdanov, N. V. Chestnykh

The prospects of utilizing electric current treatment of molten metal simultaneously with multiple types of current in foundry production were studied. This principle in combination with various designs of electrode systems allows the formation of a multivariant topology of the electromagnetic field in the molten metal, qualitatively and quantitatively shaping differently the thermomechanical load on the melt. Conditions for improving the performance of the cast metal were found. Simulation modeling methods identified treatment options capable of actively improving the incubation processes of crystallization. The results of simulation modeling were experimentally confirmed. It was determined that simultaneous treatment with two types of current at energy consumption three times lower than that in treatment with a single current source increases the tensile strength by 13% and the relative elongation by a factor of 1.5. The relative narrowing of the specimen was 4.4%, which cannot be achieved for an alloy in the Al–Si system by other treatment methods. The eutectic structure was modified, and α-Al grains acquired a rounded shape.

摘要 研究了在铸造生产中利用多种电流同时对熔融金属进行电流处理的前景。该原理与各种电极系统设计相结合,可在熔融金属中形成多变的电磁场拓扑结构,从而定性和定量地改变熔体的热机械负荷。找到了提高铸造金属性能的条件。模拟建模方法确定了能够积极改善结晶孵化过程的处理方案。实验证实了模拟建模的结果。结果表明,同时使用两种电流进行处理的能耗比使用单一电流源处理的能耗低三倍,抗拉强度提高了 13%,相对伸长率提高了 1.5 倍。试样的相对窄度为 4.4%,这是其他处理方法无法实现的。共晶结构发生了改变,α-Al 晶粒呈现圆形。
{"title":"Multivariant Method of Conductive Electric Current Treatment of Molten Metal","authors":"V. N. Tsurkin,&nbsp;A. V. Ivanov,&nbsp;Yu. M. Zaporozhets,&nbsp;A. A. Zhdanov,&nbsp;N. V. Chestnykh","doi":"10.3103/S1068375524010150","DOIUrl":"10.3103/S1068375524010150","url":null,"abstract":"<p>The prospects of utilizing electric current treatment of molten metal simultaneously with multiple types of current in foundry production were studied. This principle in combination with various designs of electrode systems allows the formation of a multivariant topology of the electromagnetic field in the molten metal, qualitatively and quantitatively shaping differently the thermomechanical load on the melt. Conditions for improving the performance of the cast metal were found. Simulation modeling methods identified treatment options capable of actively improving the incubation processes of crystallization. The results of simulation modeling were experimentally confirmed. It was determined that simultaneous treatment with two types of current at energy consumption three times lower than that in treatment with a single current source increases the tensile strength by 13% and the relative elongation by a factor of 1.5. The relative narrowing of the specimen was 4.4%, which cannot be achieved for an alloy in the Al–Si system by other treatment methods. The eutectic structure was modified, and α-Al grains acquired a rounded shape.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 1","pages":"31 - 41"},"PeriodicalIF":0.9,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Effect of Particles on the Electrical Conductivity of Liquid Dielectrics 颗粒对液体电介质导电性的影响
IF 0.9 Q3 Engineering Pub Date : 2024-03-23 DOI: 10.3103/S1068375524010071
S. M. Korobeynikov, V. E. Shevchenko, V. A. Loman, A. V. Ridel’

In this paper, an attempt to evaluate the effect of particles on the electrical conductivity of liquid dielectrics is made. For this purpose, a conductivity model is formulated taking into account the presence of relatively large charged microparticles in the dielectric. Based on calculations using the model, a comparative assessment of electrical conductivity was carried out. It is shown that in sufficient quantities, particles can significantly increase the electrical conductivity when forming double electric layers near their surface.

摘要 本文试图评估微粒对液体电介质导电性的影响。为此,考虑到电介质中存在相对较大的带电微粒,建立了一个电导率模型。根据该模型的计算结果,对导电率进行了比较评估。结果表明,如果微粒数量足够多,在其表面附近形成双电层时,可以显著提高导电率。
{"title":"On the Effect of Particles on the Electrical Conductivity of Liquid Dielectrics","authors":"S. M. Korobeynikov,&nbsp;V. E. Shevchenko,&nbsp;V. A. Loman,&nbsp;A. V. Ridel’","doi":"10.3103/S1068375524010071","DOIUrl":"10.3103/S1068375524010071","url":null,"abstract":"<p>In this paper, an attempt to evaluate the effect of particles on the electrical conductivity of liquid dielectrics is made. For this purpose, a conductivity model is formulated taking into account the presence of relatively large charged microparticles in the dielectric. Based on calculations using the model, a comparative assessment of electrical conductivity was carried out. It is shown that in sufficient quantities, particles can significantly increase the electrical conductivity when forming double electric layers near their surface.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 1","pages":"89 - 93"},"PeriodicalIF":0.9,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Wear Behavior and Hardness of D5 Cold Work Tool Steel through TiCrN Multilayer Nanocoating via Physical Vapor Deposition 通过物理气相沉积 TiCrN 多层纳米涂层改善 D5 冷作工具钢的磨损性能和硬度
IF 0.9 Q3 Engineering Pub Date : 2024-03-23 DOI: 10.3103/S1068375524010113
Amirhossein Meysami, Reza Amini Najafabadi, Towhid Yosefnejad, Taghi Isfahani

The purpose of this research was to enhance the wear behavior and hardness of cold work D5 tool steel by depositing a TiCrN multilayer nanocoating through the physical vapor deposition with a cathodic arc. A comparison was made between the properties of the applied coatings and the thin-film TiN and CrN nanolayer coatings produced using the same method. Various tests, including micro-hardness tests, surface wear tests, and corrosion examinations using the Tafel test, were conducted. The coating surfaces and the wear lines were analyzed using field emission scanning electron microscopy with energy dispersive X-ray spectroscopy. The results indicated that the TiN thin-film coating, the TiCrN multilayer nanocoating and the CrN coating exhibited higher hardness of 226, 205, and 165 HV, respectively than the less coated sample (101 HV). Additionally, friction coefficients were measured and found to be 0.35, 0.3, and 0.27 for TiN, TiCrN, and CrN coatings, respectively. Furthermore, the corrosion test results demonstrated that the TiCrN multilayer coating exhibited excellent corrosion resistance. The analysis of wear surfaces revealed abrasion wear mechanisms for the TiN and CrN coatings, while fatigue wear mechanisms were observed for the TiCrN coating. Those findings suggest that the TiCrN multilayer nanocoating has potential applications in the production of tool steel pieces, complementary parts, and machine tool components.

摘要 本研究的目的是通过阴极电弧物理气相沉积法沉积 TiCrN 多层纳米涂层,从而提高冷作 D5 工具钢的磨损性能和硬度。比较了所应用涂层的性能和使用相同方法生产的薄膜 TiN 和 CrN 纳米层涂层的性能。进行了各种测试,包括显微硬度测试、表面磨损测试和使用 Tafel 试验进行的腐蚀检测。使用场发射扫描电子显微镜和能量色散 X 射线光谱分析了涂层表面和磨损线。结果表明,TiN 薄膜涂层、TiCrN 多层纳米涂层和 CrN 涂层的硬度分别为 226、205 和 165 HV,高于涂层较少的样品(101 HV)。此外,经测量发现,TiN、TiCrN 和 CrN 涂层的摩擦系数分别为 0.35、0.3 和 0.27。此外,腐蚀测试结果表明,TiCrN 多层涂层具有优异的耐腐蚀性。对磨损表面的分析表明,TiN 和 CrN 涂层具有磨损机制,而 TiCrN 涂层则具有疲劳磨损机制。这些研究结果表明,TiCrN 多层纳米涂层在工具钢部件、互补部件和机床部件的生产中具有潜在的应用价值。
{"title":"Enhancing Wear Behavior and Hardness of D5 Cold Work Tool Steel through TiCrN Multilayer Nanocoating via Physical Vapor Deposition","authors":"Amirhossein Meysami,&nbsp;Reza Amini Najafabadi,&nbsp;Towhid Yosefnejad,&nbsp;Taghi Isfahani","doi":"10.3103/S1068375524010113","DOIUrl":"10.3103/S1068375524010113","url":null,"abstract":"<p>The purpose of this research was to enhance the wear behavior and hardness of cold work D5 tool steel by depositing a TiCrN multilayer nanocoating through the physical vapor deposition with a cathodic arc. A comparison was made between the properties of the applied coatings and the thin-film TiN and CrN nanolayer coatings produced using the same method. Various tests, including micro-hardness tests, surface wear tests, and corrosion examinations using the Tafel test, were conducted. The coating surfaces and the wear lines were analyzed using field emission scanning electron microscopy with energy dispersive X-ray spectroscopy. The results indicated that the TiN thin-film coating, the TiCrN multilayer nanocoating and the CrN coating exhibited higher hardness of 226, 205, and 165 HV, respectively than the less coated sample (101 HV). Additionally, friction coefficients were measured and found to be 0.35, 0.3, and 0.27 for TiN, TiCrN, and CrN coatings, respectively. Furthermore, the corrosion test results demonstrated that the TiCrN multilayer coating exhibited excellent corrosion resistance. The analysis of wear surfaces revealed abrasion wear mechanisms for the TiN and CrN coatings, while fatigue wear mechanisms were observed for the TiCrN coating. Those findings suggest that the TiCrN multilayer nanocoating has potential applications in the production of tool steel pieces, complementary parts, and machine tool components.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 1","pages":"58 - 68"},"PeriodicalIF":0.9,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of Wettability Behavior of Water Nanodroplets on Platinum Surface by Molecular Dynamics Simulation 通过分子动力学模拟研究纳米水滴在铂表面的润湿行为
IF 0.9 Q3 Engineering Pub Date : 2024-03-23 DOI: 10.3103/S1068375524010101
Mukesh Kumar, S. K. Tamang, R. Thanigaivelan, M. Dabi

The present paper deals with a comprehensive investigation of the wettability of the platinum surface when subjected to water nanodroplets using molecular dynamics simulation. To evaluate the wettability of a solid-liquid interface, the contact angle was analyzed varied with respect to time, temperature, and energy between the atoms and the surfaces using large-scale atomic/molecular massively parallel simulator. It is worth noting here that the research reveals a significant change in the contact angle which goes from a prominent 147.158° to a more favorable 123.65° in an incredibly brief period of 2 to 200 fs. That dynamic change highlights the platinum surface significant improvement in wettability and sheds light on the kinetics of solid-liquid interactions. The result also shows that the ambient temperature reduced from 320 to 285.5 K, and the droplet temperature increased from 2.43 to 170 K in the same temperature range along with a decrease in the total energy. This study emphasizes the progressive aspect of wettability by revealing that, as time increases, the contact angle consistently reduces. This shows the perspective on how the platinum surface becomes increasingly amenable to wetting by H2O nanodroplets.

摘要 本文利用分子动力学模拟对铂金表面在纳米水滴作用下的润湿性进行了全面研究。为了评估固液界面的润湿性,利用大规模原子/分子大规模并行模拟器分析了原子和表面之间的接触角随时间、温度和能量的变化。值得注意的是,研究显示接触角发生了显著变化,在令人难以置信的2到200 fs的短暂时间内,接触角从突出的147.158°变为更有利的123.65°。这种动态变化凸显了铂金表面润湿性的显著改善,并揭示了固液相互作用的动力学原理。结果还显示,在相同的温度范围内,环境温度从 320 K 降至 285.5 K,液滴温度从 2.43 K 升至 170 K,总能量也随之降低。这项研究强调了润湿性的渐进性,揭示了随着时间的增加,接触角会持续减小。这从一个角度说明了铂表面是如何越来越容易被 H2O 纳米液滴润湿的。
{"title":"Study of Wettability Behavior of Water Nanodroplets on Platinum Surface by Molecular Dynamics Simulation","authors":"Mukesh Kumar,&nbsp;S. K. Tamang,&nbsp;R. Thanigaivelan,&nbsp;M. Dabi","doi":"10.3103/S1068375524010101","DOIUrl":"10.3103/S1068375524010101","url":null,"abstract":"<p>The present paper deals with a comprehensive investigation of the wettability of the platinum surface when subjected to water nanodroplets using molecular dynamics simulation. To evaluate the wettability of a solid-liquid interface, the contact angle was analyzed varied with respect to time, temperature, and energy between the atoms and the surfaces using large-scale atomic/molecular massively parallel simulator. It is worth noting here that the research reveals a significant change in the contact angle which goes from a prominent 147.158° to a more favorable 123.65° in an incredibly brief period of 2 to 200 fs. That dynamic change highlights the platinum surface significant improvement in wettability and sheds light on the kinetics of solid-liquid interactions. The result also shows that the ambient temperature reduced from 320 to 285.5 K, and the droplet temperature increased from 2.43 to 170 K in the same temperature range along with a decrease in the total energy. This study emphasizes the progressive aspect of wettability by revealing that, as time increases, the contact angle consistently reduces. This shows the perspective on how the platinum surface becomes increasingly amenable to wetting by H<sub>2</sub>O nanodroplets.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 1","pages":"50 - 57"},"PeriodicalIF":0.9,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Surface Engineering and Applied Electrochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1