Pub Date : 2024-06-21DOI: 10.1016/j.ab.2024.115595
Kanwal Hussain , Rafiq Ahmad , Sohail Hassan , Muhammad Y. Khan , Akil Ahmad , Mohammed B. Alshammari , Muhammad S. Ali , Saeed A. Lakho , Byeong-Il Lee
Monitoring pharmaceutical drugs in various mediums is crucial to mitigate adverse effects. This study presents a chemical sensor using an oval-like zinc oxide (ZnO) nanostructure for electrochemical detection of nalbuphine. The ZnO nanostructure, produced via an efficient sol-gel technique, was extensively characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV–visible spectrophotometry, and fourier transform infrared spectroscopy (FTIR). A slurry of the ZnO nanostructure in a binder was applied to a glassy carbon electrode (GCE). The sensor's responsiveness to nalbuphine was assessed using linear sweep voltammetry (LSV), achieving optimal performance by fine-tuning the pH. The sensor demonstrated a proportional response to nalbuphine concentrations up to 150.0 nM with a good regression coefficient (R2) and a detection limit of 6.20 nM (S/N ratio of 3). Selectivity was validated against various interfering substances, and efficacy was confirmed through real sample analysis, highlighting the sensor's successful application for nalbuphine detection.
{"title":"Electrochemical detection of nalbuphine drug using oval-like ZnO nanostructure-based sensor","authors":"Kanwal Hussain , Rafiq Ahmad , Sohail Hassan , Muhammad Y. Khan , Akil Ahmad , Mohammed B. Alshammari , Muhammad S. Ali , Saeed A. Lakho , Byeong-Il Lee","doi":"10.1016/j.ab.2024.115595","DOIUrl":"10.1016/j.ab.2024.115595","url":null,"abstract":"<div><p>Monitoring pharmaceutical drugs in various mediums is crucial to mitigate adverse effects. This study presents a chemical sensor using an oval-like zinc oxide (ZnO) nanostructure for electrochemical detection of nalbuphine. The ZnO nanostructure, produced via an efficient sol-gel technique, was extensively characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV–visible spectrophotometry, and fourier transform infrared spectroscopy (FTIR). A slurry of the ZnO nanostructure in a binder was applied to a glassy carbon electrode (GCE). The sensor's responsiveness to nalbuphine was assessed using linear sweep voltammetry (LSV), achieving optimal performance by fine-tuning the pH. The sensor demonstrated a proportional response to nalbuphine concentrations up to 150.0 nM with a good regression coefficient (R<sup>2</sup>) and a detection limit of 6.20 nM (S/N ratio of 3). Selectivity was validated against various interfering substances, and efficacy was confirmed through real sample analysis, highlighting the sensor's successful application for nalbuphine detection.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"693 ","pages":"Article 115595"},"PeriodicalIF":2.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The development of a sensitive and isothermal technique with a greatly enhanced miRNA detection signal is still technically problematic due to the low abundance of miRNA and high sequence similarities with homologous miRNAs. Herein, we propose a novel fluorescence approach for sensitive and reliable miRNA detection by integrating the palindrome sequence mediated target recycling with self-priming assisted signal reaction. In this method, a dual toehold DNA nano-probe (HT) with two functional arms is designed to mediate specific target recognition and signal amplification. In the presence of target miRNA, it binds to the recognition module of HT probe, releasing the “2” sequence to initiate strand displacement amplification (SDA) and a self-priming-induced signal reaction. Based on the elegant design, the proposed method exhibits a wide linear response range exceeding five orders of magnitude and a low limit of detection of 0.96 fM according to the 3δ rule. The non-specific signal is below 5 % for non-target miRNA detection. Taking the merits of excellent sensitivity, desirable specificity, and superior anti-interference ability, the proposed approach shows a promising prospect for detecting miRNAs in complicated biological environments and early diagnosis of diseases.
{"title":"Palindrome sequence mediated target recycling integrating with self-priming assisted signal reaction for sensitive miRNA detection","authors":"Linling Xu , Fengrong Yuan , Ling Wang , Ting Peng","doi":"10.1016/j.ab.2024.115594","DOIUrl":"10.1016/j.ab.2024.115594","url":null,"abstract":"<div><p>The development of a sensitive and isothermal technique with a greatly enhanced miRNA detection signal is still technically problematic due to the low abundance of miRNA and high sequence similarities with homologous miRNAs. Herein, we propose a novel fluorescence approach for sensitive and reliable miRNA detection by integrating the palindrome sequence mediated target recycling with self-priming assisted signal reaction. In this method, a dual toehold DNA nano-probe (HT) with two functional arms is designed to mediate specific target recognition and signal amplification. In the presence of target miRNA, it binds to the recognition module of HT probe, releasing the “2” sequence to initiate strand displacement amplification (SDA) and a self-priming-induced signal reaction. Based on the elegant design, the proposed method exhibits a wide linear response range exceeding five orders of magnitude and a low limit of detection of 0.96 fM according to the 3δ rule. The non-specific signal is below 5 % for non-target miRNA detection. Taking the merits of excellent sensitivity, desirable specificity, and superior anti-interference ability, the proposed approach shows a promising prospect for detecting miRNAs in complicated biological environments and early diagnosis of diseases.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"693 ","pages":"Article 115594"},"PeriodicalIF":2.6,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141426159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-15DOI: 10.1016/j.ab.2024.115593
Zhijun Jiang, Zhiyuan Liu
MicroRNA (miRNA) is a pivotal biomarker in the diagnosis of various cancers, including bladder cancer (BCa). Despite their significance, the low abundance of miRNA presents a substantial challenge for sensitive and reliable detection. We introduce an innovative, highly sensitive assay for miRNA expression quantification that is both enzyme-free and portable. This method leverages the synergy of target recycling and entropy-driven assembly (EDA) for enhanced sensitivity and specificity. The proposed method possesses several advantages, including i) dual signal amplification through target recycling and EDA, which significantly boosts sensitivity with a lower limit of detection of 2.54 fM; ii) elimination of enzyme requirements, resulting in a cost-effective and stable signal amplification process; and iii) utilization of a personal glucose meter (PGM) for signal recording, rendering the method portable and adaptable to diverse settings. In summary, this PGM-based approach holds promising potential for clinical molecular diagnostics, offering a practical and efficient solution for miRNA analysis in cancer detection.
{"title":"Target recycle initiated entropy driven assembly strategy for sensitive, enzyme-free, and portable miRNA detection","authors":"Zhijun Jiang, Zhiyuan Liu","doi":"10.1016/j.ab.2024.115593","DOIUrl":"https://doi.org/10.1016/j.ab.2024.115593","url":null,"abstract":"<div><p>MicroRNA (miRNA) is a pivotal biomarker in the diagnosis of various cancers, including bladder cancer (BCa). Despite their significance, the low abundance of miRNA presents a substantial challenge for sensitive and reliable detection. We introduce an innovative, highly sensitive assay for miRNA expression quantification that is both enzyme-free and portable. This method leverages the synergy of target recycling and entropy-driven assembly (EDA) for enhanced sensitivity and specificity. The proposed method possesses several advantages, including i) dual signal amplification through target recycling and EDA, which significantly boosts sensitivity with a lower limit of detection of 2.54 fM; ii) elimination of enzyme requirements, resulting in a cost-effective and stable signal amplification process; and iii) utilization of a personal glucose meter (PGM) for signal recording, rendering the method portable and adaptable to diverse settings. In summary, this PGM-based approach holds promising potential for clinical molecular diagnostics, offering a practical and efficient solution for miRNA analysis in cancer detection.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"693 ","pages":"Article 115593"},"PeriodicalIF":2.9,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141333036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1016/j.ab.2024.115592
Haotian Zhang , Jun Xu , Shiwen Liu , Hongbo Li , Lianlian Xu , Suqin Wang
In numerous malignancies, miRNA-155 is overexpressed and has oncogenic activity because it is one of the most efficient microRNAs for inhibiting apoptosis in human cancer cells. As a result, the highest sensitive detection of the miRNA-155 gene is a technological instrument that can enable early cancer screening. In this study, a miRNA-155 biosensor was created to create a hairpin probe that can bind to the miRNA-155 gene using lambda nucleic acid exonuclease, which can cut the 5′ phosphorylated double strand, and by the DNA probe is recognized by the Cas12a enzyme, which then activates Cas12a to catalyze trans-cutting produces strong fluorescence. Research finding, the target concentration's logarithm and corresponding fluorescence intensity have a strong linear connection, and the limit of detection (LOD) of the sensing system was determined to be 8.3 pM. In addition, the biosensor displayed exceptional specificity, low false-positive signal, and high sensitivity in detecting the miRNA-155 gene in serum samples. This study's creation of a biosensor that has high sensitivity, good selectivity, and is simple to operate provides promising opportunities for research into biosensor design and early cancer detection.
{"title":"Detection of MicroRNA-155 based on lambda exonuclease selective digestion and CRISPR/cas12a-assisted amplification","authors":"Haotian Zhang , Jun Xu , Shiwen Liu , Hongbo Li , Lianlian Xu , Suqin Wang","doi":"10.1016/j.ab.2024.115592","DOIUrl":"10.1016/j.ab.2024.115592","url":null,"abstract":"<div><p>In numerous malignancies, miRNA-155 is overexpressed and has oncogenic activity because it is one of the most efficient microRNAs for inhibiting apoptosis in human cancer cells. As a result, the highest sensitive detection of the miRNA-155 gene is a technological instrument that can enable early cancer screening. In this study, a miRNA-155 biosensor was created to create a hairpin probe that can bind to the miRNA-155 gene using lambda nucleic acid exonuclease, which can cut the 5′ phosphorylated double strand, and by the DNA probe is recognized by the Cas12a enzyme, which then activates Cas12a to catalyze <em>trans</em>-cutting produces strong fluorescence. Research finding, the target concentration's logarithm and corresponding fluorescence intensity have a strong linear connection, and the limit of detection (LOD) of the sensing system was determined to be 8.3 pM. In addition, the biosensor displayed exceptional specificity, low false-positive signal, and high sensitivity in detecting the miRNA-155 gene in serum samples. This study's creation of a biosensor that has high sensitivity, good selectivity, and is simple to operate provides promising opportunities for research into biosensor design and early cancer detection.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"693 ","pages":"Article 115592"},"PeriodicalIF":2.6,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.1016/j.ab.2024.115585
Ciarán Buckley , Silvia Millán-Martín , Sara Carillo , Florian Füssl , Ciara MacHale , Jonathan Bones
Over the past few years, the implementation of mass spectrometry (MS) in QC laboratories has become a more common occurrence. The multi-attribute method (MAM), and emerging intact multi-attribute method (iMAM), are powerful analytical tools utilising liquid chromatography−mass spectrometry (LC-MS) methods that enable the monitoring of critical quality attributes (CQAs) in biotherapeutic proteins in compliant settings. Both MAM and iMAM are intended to replace or supplement several conventional assays with a single LC-MS method utilising MS data in combination with robust, semi-automated data processing workflows. MAM and iMAM workflows can also be implemented into current Good Manufacturing Practices environments due to the availability of CFR 11 compliant chromatography data system software. In this study, MAM and iMAM are employed for the analysis of 4 batches of a glucagon-like peptide-Fc fusion protein. MAM approach involved a first the discovery phase for the identification of CQAs and second, the target monitoring phase of the selected CQAs in other samples. New peak detection was performed on the data set to determine the appearance, absence or change of any peak. For native iMAM workflow both size exclusion and strong cation exchange chromatography were optimized for the identification and monitoring of CQAs at the intact level.
{"title":"Implementation of a LC-MS based multi-attribute method (MAM) and intact multi-attribute method (iMAM) workflow for the characterisation of a GLP-Fc fusion protein","authors":"Ciarán Buckley , Silvia Millán-Martín , Sara Carillo , Florian Füssl , Ciara MacHale , Jonathan Bones","doi":"10.1016/j.ab.2024.115585","DOIUrl":"10.1016/j.ab.2024.115585","url":null,"abstract":"<div><p>Over the past few years, the implementation of mass spectrometry (MS) in QC laboratories has become a more common occurrence. The multi-attribute method (MAM), and emerging intact multi-attribute method (iMAM), are powerful analytical tools utilising liquid chromatography−mass spectrometry (LC-MS) methods that enable the monitoring of critical quality attributes (CQAs) in biotherapeutic proteins in compliant settings. Both MAM and iMAM are intended to replace or supplement several conventional assays with a single LC-MS method utilising MS data in combination with robust, semi-automated data processing workflows. MAM and iMAM workflows can also be implemented into current Good Manufacturing Practices environments due to the availability of CFR 11 compliant chromatography data system software. In this study, MAM and iMAM are employed for the analysis of 4 batches of a glucagon-like peptide-Fc fusion protein. MAM approach involved a first the discovery phase for the identification of CQAs and second, the target monitoring phase of the selected CQAs in other samples<em>.</em> New peak detection was performed on the data set to determine the appearance, absence or change of any peak. For native iMAM workflow both size exclusion and strong cation exchange chromatography were optimized for the identification and monitoring of CQAs at the intact level.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"693 ","pages":"Article 115585"},"PeriodicalIF":2.9,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0003269724001295/pdfft?md5=e0ca18d3439a327f787b3a911c30949e&pid=1-s2.0-S0003269724001295-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141293019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.1016/j.ab.2024.115584
Jiafeng Jin , Wei Chen , Chongxin Xu , Ofentse Jacob Pooe , Yajing Xie , Cheng Shen , Meng Meng , Qin Zhu , Xiao Zhang , Xianjin Liu , Yuan Liu
Using the amino acid sequences and analysis of selected known structures of Bt Cry toxins, Cry1Ab, Cry1Ac, Cry1Ah, Cry1B, Cry1C and Cry1F we specifically designed immunogens. After antibodies selection, broad-spectrum polyclonal antibodies (pAbs) and monoclonal antibody (namely 1A0-mAb) were obtained from rabbit and mouse, respectively. The produced pAbs displayed broad spectrum activity by recognizing Cry1 toxin, Cry2Aa, Cry2Ab and Cry3Aa with half maximal inhibitory concentration (IC50) values of 0.12–9.86 μg/mL. Similarly, 1A0-mAb showed broad spectrum activity, recognizing all of the above Cry protein (IC50 values of 4.66–20.46 μg/mL) with the exception of Cry2Aa. Using optimizations studies, 1A10-mAb was used as a capture antibody and pAbs as detection antibody. Double antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) were established for Cry1 toxin, Cry2Ab and Cry3Aa with the limit of detection (LOD) values of 2.36–36.37 ng/mL, respectively. The present DAS-ELISAs had good accuracy and precisions for the determination of Cry toxin spiked tap water, corn, rice, soybeans and soil samples. In conclusion, the present study has successfully obtained broad-spectrum pAbs and mAb. Furthermore, the generated pAbs- and mAb-based DAS-ELISAs protocol can potentially be used for the broad-spectrum monitoring of eight common subtypes of Bt Cry toxins residues in food and environmental samples.
{"title":"Rational design and application of broad-spectrum antibodies for Bt Cry toxins determination","authors":"Jiafeng Jin , Wei Chen , Chongxin Xu , Ofentse Jacob Pooe , Yajing Xie , Cheng Shen , Meng Meng , Qin Zhu , Xiao Zhang , Xianjin Liu , Yuan Liu","doi":"10.1016/j.ab.2024.115584","DOIUrl":"10.1016/j.ab.2024.115584","url":null,"abstract":"<div><p>Using the amino acid sequences and analysis of selected known structures of Bt Cry toxins, Cry1Ab, Cry1Ac, Cry1Ah, Cry1B, Cry1C and Cry1F we specifically designed immunogens. After antibodies selection, broad-spectrum polyclonal antibodies (pAbs) and monoclonal antibody (namely 1A0-mAb) were obtained from rabbit and mouse, respectively. The produced pAbs displayed broad spectrum activity by recognizing Cry1 toxin, Cry2Aa, Cry2Ab and Cry3Aa with half maximal inhibitory concentration (IC<sub>50</sub>) values of 0.12–9.86 μg/mL. Similarly, 1A0-mAb showed broad spectrum activity, recognizing all of the above Cry protein (IC<sub>50</sub> values of 4.66–20.46 μg/mL) with the exception of Cry2Aa. Using optimizations studies, 1A10-mAb was used as a capture antibody and pAbs as detection antibody. Double antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) were established for Cry1 toxin, Cry2Ab and Cry3Aa with the limit of detection (LOD) values of 2.36–36.37 ng/mL, respectively. The present DAS-ELISAs had good accuracy and precisions for the determination of Cry toxin spiked tap water, corn, rice, soybeans and soil samples. In conclusion, the present study has successfully obtained broad-spectrum pAbs and mAb. Furthermore, the generated pAbs- and mAb-based DAS-ELISAs protocol can potentially be used for the broad-spectrum monitoring of eight common subtypes of Bt Cry toxins residues in food and environmental samples.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"693 ","pages":"Article 115584"},"PeriodicalIF":2.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141278867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.1016/j.ab.2024.115583
Yafei Tian, Yujiao Zhang, Xueyun Lu, Dan Xiao, Cuisong Zhou
Multiplex detection can enhance diagnostic precision and improve diagnostic efficiency, providing important assistance for epidemiological investigation and epidemic prevention. There is a great need for multi-detection sensing platforms to accurately diagnose diseases. Herein, we reported a μPAD-based chemiluminescence (CL) assay for ultrasensitive multiplex detection of AIV biomarkers, based on three DNAzyme/Lum/PEI/CaCO3. Three time-resolved CL signals were sequentially generated with detection limits of 0.32, 0.34, and 0.29 pM for H1N1, H7N9, and H5N1, respectively, and with excellent selectivity against interfering DNA. The recovery test in human serum displayed satisfactory analysis capabilities for complex biological samples. The μPAD-based CL assay achieved multiplex detection within 70 s, with a high time resolution of 20 s. The proposed strategy has the advantages of low cost, high sensitivity, good selectivity, and wide time resolution, the μPAD-based CL assay has shown great potential in the early and accurate diagnosis of diseases.
{"title":"Microfluidic paper-based chemiluminescence sensing platform based on functionalized CaCO3 for time-resolved multiplex detection of avian influenza virus biomarkers","authors":"Yafei Tian, Yujiao Zhang, Xueyun Lu, Dan Xiao, Cuisong Zhou","doi":"10.1016/j.ab.2024.115583","DOIUrl":"10.1016/j.ab.2024.115583","url":null,"abstract":"<div><p>Multiplex detection can enhance diagnostic precision and improve diagnostic efficiency, providing important assistance for epidemiological investigation and epidemic prevention. There is a great need for multi-detection sensing platforms to accurately diagnose diseases. Herein, we reported a μPAD-based chemiluminescence (CL) assay for ultrasensitive multiplex detection of AIV biomarkers, based on three DNAzyme/Lum/PEI/CaCO<sub>3</sub>. Three time-resolved CL signals were sequentially generated with detection limits of 0.32, 0.34, and 0.29 pM for H1N1, H7N9, and H5N1, respectively, and with excellent selectivity against interfering DNA. The recovery test in human serum displayed satisfactory analysis capabilities for complex biological samples. The μPAD-based CL assay achieved multiplex detection within 70 s, with a high time resolution of 20 s. The proposed strategy has the advantages of low cost, high sensitivity, good selectivity, and wide time resolution, the μPAD-based CL assay has shown great potential in the early and accurate diagnosis of diseases.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"693 ","pages":"Article 115583"},"PeriodicalIF":2.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Progress has been made studying cell-cell signaling communication processes. However, due to limitations of current sensors on time and spatial resolution, the role of many extracellular analytes is still unknown. A single walled carbon nanotube (SWNT) platform was previously developed based on the avidin-biotin immobilization of SWNT to a glass substrate. The SWNT platform provides real time feedback about analyte concentration and has a high concentration of evenly distributed sensors, both of which are essential for the study of extracellular analytes. Unfortunately, this initial SWNT platform is synthesized through unsterile conditions and cannot be sterilized post-production due to the delicate nature of the sensors, making it unsuitable for in vitro work. Herein the multiple-step process for SWNT immobilization is modified and the platform's biocompatibility is assessed in terms of sterility, cytotoxicity, cell proliferation, and cell morphology through comparison with non-sensors controls. The results demonstrate the SWNT platform's sterility and lack of toxicity over 72 h. The proliferation rate and morphology profiles for cells growing on the SWNT platform are similar to those grown on tissue culture substrates. This novel nano-sensor platform preserves cell health and cell functionality over time, offering opportunities to study extracellular analytes gradients in cellular communication.
{"title":"Development of sterile platform for quantification of extracellular analytes via single walled carbon nanotubes","authors":"Ivon Acosta-Ramirez , Carley Conover , Jacob Larsen , Portia N.A. Plange , Ufuk Kilic , Becca Muller , Nicole M. Iverson","doi":"10.1016/j.ab.2024.115582","DOIUrl":"10.1016/j.ab.2024.115582","url":null,"abstract":"<div><p>Progress has been made studying cell-cell signaling communication processes. However, due to limitations of current sensors on time and spatial resolution, the role of many extracellular analytes is still unknown. A single walled carbon nanotube (SWNT) platform was previously developed based on the avidin-biotin immobilization of SWNT to a glass substrate. The SWNT platform provides real time feedback about analyte concentration and has a high concentration of evenly distributed sensors, both of which are essential for the study of extracellular analytes. Unfortunately, this initial SWNT platform is synthesized through unsterile conditions and cannot be sterilized post-production due to the delicate nature of the sensors, making it unsuitable for in vitro work. Herein the multiple-step process for SWNT immobilization is modified and the platform's biocompatibility is assessed in terms of sterility, cytotoxicity, cell proliferation, and cell morphology through comparison with non-sensors controls. The results demonstrate the SWNT platform's sterility and lack of toxicity over 72 h. The proliferation rate and morphology profiles for cells growing on the SWNT platform are similar to those grown on tissue culture substrates. This novel nano-sensor platform preserves cell health and cell functionality over time, offering opportunities to study extracellular analytes gradients in cellular communication.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"693 ","pages":"Article 115582"},"PeriodicalIF":2.9,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31DOI: 10.1016/j.ab.2024.115580
Arkajyoti Dutta , Zoltan Szekely , Hakan Guven , Xiao-Ping Li , John E. McLaughlin , Nilgun E. Tumer
Ricin is one of the most toxic substances known and a type B biothreat agent. Shiga toxins (Stxs) produced by E. coli (STEC) and Shigella dysenteriae are foodborne pathogens. There is no effective therapy against ricin or STEC and there is an urgent need for inhibitors. Ricin toxin A subunit (RTA) and A1 subunit of Stx2a (Stx2A1) bind to the C-terminal domain (CTD) of the ribosomal P-stalk proteins to depurinate the sarcin/ricin loop. Modulation of toxin-ribosome interactions has not been explored as a strategy for inhibition. Therefore, development of assays that detect inhibitors targeting toxin-ribosome interactions remains a critical need. Here we describe a fluorescence anisotropy (FA)-based competitive binding assay using a BODIPY-TMR labeled 11-mer peptide (P11) derived from the P-stalk CTD to measure the binding affinity of peptides ranging from 3 to 11 amino acids for the P-stalk pocket of RTA and Stx2A1. Comparison of the affinity with the surface plasmon resonance (SPR) assay indicated that although the rank order was the same by both methods, the FA assay could differentiate better between peptides that show nonspecific interactions by SPR. The FA assay detects only interactions that compete with the labeled P11 and can validate inhibitor specificity and mechanism of action.
蓖麻毒素是已知毒性最强的物质之一,属于 B 类生物威胁剂。由大肠杆菌(STEC)和志贺痢疾杆菌产生的志贺毒素(Stxs)是食源性病原体。目前还没有针对蓖麻毒素或 STEC 的有效疗法,因此迫切需要抑制剂。蓖麻毒素 A 亚基(RTA)和 Stx2a 的 A1 亚基(Stx2A1)与核糖体 P-茎蛋白的 C 端结构域(CTD)结合,使沙丁鱼毒素/蓖麻毒素环脱硫。毒素与核糖体之间的相互作用尚未作为一种抑制策略加以研究。因此,开发能检测毒素-核糖体相互作用抑制剂的检测方法仍是一项迫切需要。在这里,我们描述了一种基于荧光各向异性(FA)的竞争性结合试验,该试验使用了一种来自 P-stalk CTD 的 BODIPY-TMR 标记的 11-mer肽(P11)来测量 3-11 个氨基酸的肽与 RTA 和 Stx2A1 的 P-stalk 口袋的结合亲和力。亲和力与表面等离子体共振(SPR)检测法的比较表明,虽然两种方法的排序相同,但 FA 检测法能更好地区分 SPR 检测法显示出非特异性相互作用的肽段。FA 检测法只检测与标记的 P11 竞争的相互作用,可以验证抑制剂的特异性和作用机制。
{"title":"A fluorescence anisotropy-based competition assay to identify inhibitors against ricin and Shiga toxin ribosome interactions","authors":"Arkajyoti Dutta , Zoltan Szekely , Hakan Guven , Xiao-Ping Li , John E. McLaughlin , Nilgun E. Tumer","doi":"10.1016/j.ab.2024.115580","DOIUrl":"10.1016/j.ab.2024.115580","url":null,"abstract":"<div><p>Ricin is one of the most toxic substances known and a type B biothreat agent. Shiga toxins (Stxs) produced by <em>E. coli</em> (STEC) and <em>Shigella dysenteriae</em> are foodborne pathogens. There is no effective therapy against ricin or STEC and there is an urgent need for inhibitors. Ricin toxin A subunit (RTA) and A1 subunit of Stx2a (Stx2A1) bind to the C-terminal domain (CTD) of the ribosomal P-stalk proteins to depurinate the sarcin/ricin loop. Modulation of toxin-ribosome interactions has not been explored as a strategy for inhibition. Therefore, development of assays that detect inhibitors targeting toxin-ribosome interactions remains a critical need. Here we describe a fluorescence anisotropy (FA)-based competitive binding assay using a BODIPY-TMR labeled 11-mer peptide (P11) derived from the P-stalk CTD to measure the binding affinity of peptides ranging from 3 to 11 amino acids for the P-stalk pocket of RTA and Stx2A1. Comparison of the affinity with the surface plasmon resonance (SPR) assay indicated that although the rank order was the same by both methods, the FA assay could differentiate better between peptides that show nonspecific interactions by SPR. The FA assay detects only interactions that compete with the labeled P11 and can validate inhibitor specificity and mechanism of action.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"692 ","pages":"Article 115580"},"PeriodicalIF":2.9,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0003269724001246/pdfft?md5=a6c263d17695c84cc0f06483b236bcd5&pid=1-s2.0-S0003269724001246-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-28DOI: 10.1016/j.ab.2024.115581
Fina Amreta Laksmi , Kartika Sari Dewi , Isa Nuryana , Siti Eka Yulianti , Kharisma Panji Ramadhan , Moch Irfan Hadi , Yudhi Nugraha
A DNA polymerase from Thermus aquaticus remains the most popular among DNA polymerases. It was widely applied in various fields involving the application of polymerase chain reaction (PCR), implying the high commercial value of this enzyme. For this reason, an attempt to obtain a high yield of Taq DNA polymerase is continuously conducted. In this study, the l-rhamnose-inducible promoter rhaBAD was utilized due to its ability to produce recombinant protein under tight control in E. coli expression system. Instead of full-length Taq polymerase, an N-terminal deletion of Taq polymerase was selected. To obtain a high-level expression, we attempted to optimize the codon by reducing the rare codon and GC content, and in a second attempt, we optimized the culture conditions for protein expression. The production of Taq polymerase using the optimum culture condition improved the level of expression by up to 3-fold. This approach further proved that a high level of recombinant protein expression could be achieved by yielding a purified Taq polymerase of about 8.5 mg/L of culture. This is the first research publication on the production of Taq polymerase with N-terminal deletion in E. coli with the control of the rhaBAD promoter system.
来自水生热菌的 DNA 聚合酶仍然是 DNA 聚合酶中最受欢迎的一种。它被广泛应用于聚合酶链反应(PCR)的各个领域,这意味着这种酶具有很高的商业价值。因此,人们不断尝试获得高产率的 Taq DNA 聚合酶。在本研究中,利用了 L-鼠李糖诱导型启动子 rhaBAD,因为它能在大肠杆菌表达系统中严格控制重组蛋白的产生。我们没有使用全长的 Taq 聚合酶,而是选择了 N 端缺失的 Taq 聚合酶。为了获得高水平的表达,我们尝试通过减少稀有密码子和 GC 含量来优化密码子,并在第二次尝试中优化了蛋白质表达的培养条件。使用最佳培养条件生产的 Taq 聚合酶的表达水平提高了 3 倍。这种方法进一步证明,通过获得纯化的 Taq 聚合酶约 8.5 毫克/升的培养液,可以实现高水平的重组蛋白表达。这是大肠杆菌在 rhaBAD 启动子系统控制下生产 N 端缺失的 Taq 聚合酶的首篇研究论文。
{"title":"High-level expression of codon-optimized Taq DNA polymerase under the control of rhaBAD promoter","authors":"Fina Amreta Laksmi , Kartika Sari Dewi , Isa Nuryana , Siti Eka Yulianti , Kharisma Panji Ramadhan , Moch Irfan Hadi , Yudhi Nugraha","doi":"10.1016/j.ab.2024.115581","DOIUrl":"10.1016/j.ab.2024.115581","url":null,"abstract":"<div><p>A DNA polymerase from <em>Thermus aquaticus</em> remains the most popular among DNA polymerases. It was widely applied in various fields involving the application of polymerase chain reaction (PCR), implying the high commercial value of this enzyme. For this reason, an attempt to obtain a high yield of Taq DNA polymerase is continuously conducted. In this study, the <span>l</span>-rhamnose-inducible promoter rhaBAD was utilized due to its ability to produce recombinant protein under tight control in <em>E. coli</em> expression system. Instead of full-length Taq polymerase, an N-terminal deletion of Taq polymerase was selected. To obtain a high-level expression, we attempted to optimize the codon by reducing the rare codon and GC content, and in a second attempt, we optimized the culture conditions for protein expression. The production of Taq polymerase using the optimum culture condition improved the level of expression by up to 3-fold. This approach further proved that a high level of recombinant protein expression could be achieved by yielding a purified Taq polymerase of about 8.5 mg/L of culture. This is the first research publication on the production of Taq polymerase with N-terminal deletion in <em>E. coli</em> with the control of the rhaBAD promoter system.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"692 ","pages":"Article 115581"},"PeriodicalIF":2.9,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}