Pub Date : 2024-11-01Epub Date: 2024-11-07DOI: 10.1146/annurev-micro-041522-094613
Nathan C Rockwell, J Clark Lagarias
Widespread phytochrome photoreceptors use photoisomerization of linear tetrapyrrole (bilin) chromophores to measure the ratio of red to far-red light. Cyanobacteria also contain distantly related cyanobacteriochrome (CBCR) proteins that share the bilin-binding GAF domain of phytochromes but sense other colors of light. CBCR photocycles are extremely diverse, ranging from the near-UV to the near-IR. Photoisomerization of the bilin triggers photoconversion of the CBCR input, thereby modulating the biochemical signaling state of output domains such as histidine kinase bidomains that can interface with cellular signal transduction pathways. CBCRs thus can regulate several aspects of cyanobacterial photobiology, including phototaxis, metabolism of cyclic nucleotide second messengers, and optimization of the cyanobacterial light-harvesting apparatus. This review examines spectral tuning, photoconversion, and photobiology of CBCRs and recent developments in understanding their evolution and in applying them in synthetic biology.
广泛存在的植物色素感光器利用线性四吡咯(bilin)发色团的光异构化来测量红光和远红光的比例。蓝藻还含有远亲的蓝藻色素(CBCR)蛋白质,它们与植物色素具有相同的卣素结合 GAF 结构域,但能感知其他颜色的光。CBCR 的光周期极为多样,从近紫外到近红外。双硫键的光异构化会引发 CBCR 输入的光电转换,从而调节组氨酸激酶双域等输出域的生化信号状态,这些输出域可以与细胞信号传导途径对接。因此,CBCR 可调控蓝藻光生物学的多个方面,包括趋光性、环核苷酸第二信使的新陈代谢以及蓝藻采光装置的优化。这篇综述探讨了 CBCR 的光谱调谐、光电转换和光生物学,以及在理解其进化和将其应用于合成生物学方面的最新进展。
{"title":"Cyanobacteriochromes: A Rainbow of Photoreceptors.","authors":"Nathan C Rockwell, J Clark Lagarias","doi":"10.1146/annurev-micro-041522-094613","DOIUrl":"10.1146/annurev-micro-041522-094613","url":null,"abstract":"<p><p>Widespread phytochrome photoreceptors use photoisomerization of linear tetrapyrrole (bilin) chromophores to measure the ratio of red to far-red light. Cyanobacteria also contain distantly related cyanobacteriochrome (CBCR) proteins that share the bilin-binding GAF domain of phytochromes but sense other colors of light. CBCR photocycles are extremely diverse, ranging from the near-UV to the near-IR. Photoisomerization of the bilin triggers photoconversion of the CBCR input, thereby modulating the biochemical signaling state of output domains such as histidine kinase bidomains that can interface with cellular signal transduction pathways. CBCRs thus can regulate several aspects of cyanobacterial photobiology, including phototaxis, metabolism of cyclic nucleotide second messengers, and optimization of the cyanobacterial light-harvesting apparatus. This review examines spectral tuning, photoconversion, and photobiology of CBCRs and recent developments in understanding their evolution and in applying them in synthetic biology.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":" ","pages":"61-81"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578781/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141287662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-07DOI: 10.1146/annurev-micro-041522-105358
Jiatao Xie, Daohong Jiang
Mycoviruses are widely distributed among various kinds of fungi. Over the past 10 years, more novel mycoviruses have been discovered with the use of high-throughput sequencing techniques, and research on mycoviruses has made fantastic progress, promoting our understanding of the diversity, classification, evolution, and ecology of the entire virosphere. Mycoviruses affect the biological and ecological functions of their hosts, for example, by suppressing or improving hosts' virulence and reproduction ability, and subsequently affect the microbiological community where their hosts live; hence, we may develop mycoviruses to regulate the health of environments, plants, animals, and human beings. In this review, we introduce recently discovered mycoviruses from fungi of humans, animals, plants, and environments, and their diversity, evolution, and ecological characteristics. We also present the potential application of mycoviruses by describing the latest progress on using mycoviruses to control plant diseases. Finally, we discuss the main issues facing mycovirus research in the future.
{"title":"Understanding the Diversity, Evolution, Ecology, and Applications of Mycoviruses.","authors":"Jiatao Xie, Daohong Jiang","doi":"10.1146/annurev-micro-041522-105358","DOIUrl":"10.1146/annurev-micro-041522-105358","url":null,"abstract":"<p><p>Mycoviruses are widely distributed among various kinds of fungi. Over the past 10 years, more novel mycoviruses have been discovered with the use of high-throughput sequencing techniques, and research on mycoviruses has made fantastic progress, promoting our understanding of the diversity, classification, evolution, and ecology of the entire virosphere. Mycoviruses affect the biological and ecological functions of their hosts, for example, by suppressing or improving hosts' virulence and reproduction ability, and subsequently affect the microbiological community where their hosts live; hence, we may develop mycoviruses to regulate the health of environments, plants, animals, and human beings. In this review, we introduce recently discovered mycoviruses from fungi of humans, animals, plants, and environments, and their diversity, evolution, and ecological characteristics. We also present the potential application of mycoviruses by describing the latest progress on using mycoviruses to control plant diseases. Finally, we discuss the main issues facing mycovirus research in the future.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":" ","pages":"595-620"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-07DOI: 10.1146/annurev-micro-112723-083001
Aisha T Burton, Rilee Zeinert, Gisela Storz
Bacterial proteins of ≤50 amino acids, denoted small proteins or microproteins, have been traditionally understudied and overlooked, as standard computational, biochemical, and genetic approaches often do not detect proteins of this size. However, with the realization that small proteins are stably expressed and have important cellular roles, there has been increased identification of small proteins in bacteria and eukaryotes. Gradually, the functions of a few of these small proteins are being elucidated. Many interact with larger protein products to modulate their subcellular localization, stabilities, or activities. Here, we provide an overview of these diverse functions in bacteria, highlighting generalities among bacterial small proteins and similarly sized proteins in eukaryotic organisms and discussing questions for future research.
{"title":"Large Roles of Small Proteins.","authors":"Aisha T Burton, Rilee Zeinert, Gisela Storz","doi":"10.1146/annurev-micro-112723-083001","DOIUrl":"10.1146/annurev-micro-112723-083001","url":null,"abstract":"<p><p>Bacterial proteins of ≤50 amino acids, denoted small proteins or microproteins, have been traditionally understudied and overlooked, as standard computational, biochemical, and genetic approaches often do not detect proteins of this size. However, with the realization that small proteins are stably expressed and have important cellular roles, there has been increased identification of small proteins in bacteria and eukaryotes. Gradually, the functions of a few of these small proteins are being elucidated. Many interact with larger protein products to modulate their subcellular localization, stabilities, or activities. Here, we provide an overview of these diverse functions in bacteria, highlighting generalities among bacterial small proteins and similarly sized proteins in eukaryotic organisms and discussing questions for future research.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":" ","pages":"1-22"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141074622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-07DOI: 10.1146/annurev-micro-112123-100908
Chungyu Chang, Nicholas A Ramirez, Aadil H Bhat, Minh T Nguyen, Poonam Kumari, HyLam Ton-That, Asis Das, Hung Ton-That
A unique class of multimeric proteins made of covalently linked subunits known as pili, or fimbriae, are assembled and displayed on the gram-positive bacterial cell surface by a conserved transpeptidase enzyme named pilus-specific sortase. Sortase-assembled pili are produced by a wide range of gram-positive commensal and pathogenic bacteria inhabiting diverse niches such as the human oral cavity, gut, urogenital tract, and skin. These surface appendages serve many functions, including as molecular adhesins, immuno-modulators, and virulence determinants, that significantly contribute to both the commensal and pathogenic attributes of producer microbes. Intensive genetic, biochemical, physiological, and structural studies have been devoted to unveiling the assembly mechanism and functions, as well as the utility of these proteins in vaccine development and other biotechnological applications. We provide a comprehensive review of these topics and discuss the current status and future prospects of the field.
{"title":"Biogenesis and Functionality of Sortase-Assembled Pili in Gram-Positive Bacteria.","authors":"Chungyu Chang, Nicholas A Ramirez, Aadil H Bhat, Minh T Nguyen, Poonam Kumari, HyLam Ton-That, Asis Das, Hung Ton-That","doi":"10.1146/annurev-micro-112123-100908","DOIUrl":"10.1146/annurev-micro-112123-100908","url":null,"abstract":"<p><p>A unique class of multimeric proteins made of covalently linked subunits known as pili, or fimbriae, are assembled and displayed on the gram-positive bacterial cell surface by a conserved transpeptidase enzyme named pilus-specific sortase. Sortase-assembled pili are produced by a wide range of gram-positive commensal and pathogenic bacteria inhabiting diverse niches such as the human oral cavity, gut, urogenital tract, and skin. These surface appendages serve many functions, including as molecular adhesins, immuno-modulators, and virulence determinants, that significantly contribute to both the commensal and pathogenic attributes of producer microbes. Intensive genetic, biochemical, physiological, and structural studies have been devoted to unveiling the assembly mechanism and functions, as well as the utility of these proteins in vaccine development and other biotechnological applications. We provide a comprehensive review of these topics and discuss the current status and future prospects of the field.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":" ","pages":"403-423"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-07DOI: 10.1146/annurev-micro-041522-102901
Ashton N Combs, Thomas J Silhavy
Envelope biogenesis and homeostasis in gram-negative bacteria are exceptionally intricate processes that require a multitude of periplasmic chaperones to ensure cellular survival. Remarkably, these chaperones perform diverse yet specialized functions entirely in the absence of external energy such as ATP, and as such have evolved sophisticated mechanisms by which their activities are regulated. In this article, we provide an overview of the predominant periplasmic chaperones that enable efficient outer membrane biogenesis and envelope homeostasis in Escherichia coli. We also discuss stress responses that act to combat unfolded protein stress within the cell envelope, highlighting the periplasmic chaperones involved and the mechanisms by which envelope homeostasis is restored.
革兰氏阴性细菌的包膜生物生成和平衡是一个异常复杂的过程,需要大量的外质合体来确保细胞存活。值得注意的是,这些合体完全是在缺乏 ATP 等外部能量的情况下执行各种特殊功能的,因此它们的活动受到了复杂机制的调控。在本文中,我们将概述大肠杆菌中实现高效外膜生物生成和包膜稳态的主要外质合体。我们还讨论了在细胞包膜内对抗未折叠蛋白应激的应激反应,重点介绍了所涉及的外质合体以及恢复包膜平衡的机制。
{"title":"Periplasmic Chaperones: Outer Membrane Biogenesis and Envelope Stress.","authors":"Ashton N Combs, Thomas J Silhavy","doi":"10.1146/annurev-micro-041522-102901","DOIUrl":"10.1146/annurev-micro-041522-102901","url":null,"abstract":"<p><p>Envelope biogenesis and homeostasis in gram-negative bacteria are exceptionally intricate processes that require a multitude of periplasmic chaperones to ensure cellular survival. Remarkably, these chaperones perform diverse yet specialized functions entirely in the absence of external energy such as ATP, and as such have evolved sophisticated mechanisms by which their activities are regulated. In this article, we provide an overview of the predominant periplasmic chaperones that enable efficient outer membrane biogenesis and envelope homeostasis in <i>Escherichia coli</i>. We also discuss stress responses that act to combat unfolded protein stress within the cell envelope, highlighting the periplasmic chaperones involved and the mechanisms by which envelope homeostasis is restored.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":" ","pages":"191-211"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-07DOI: 10.1146/annurev-micro-041222-024843
Samuel J Hobbs, Philip J Kranzusch
Bacteria encode an arsenal of diverse systems that defend against phage infection. A common theme uniting many prevalent antiphage defense systems is the use of specialized nucleotide signals that function as second messengers to activate downstream effector proteins and inhibit viral propagation. In this article, we review the molecular mechanisms controlling nucleotide immune signaling in four major families of antiphage defense systems: CBASS, Pycsar, Thoeris, and type III CRISPR immunity. Analyses of the individual steps connecting phage detection, nucleotide signal synthesis, and downstream effector function reveal shared core principles of signaling and uncover system-specific strategies used to augment immune defense. We compare recently discovered mechanisms used by phages to evade nucleotide immune signaling and highlight convergent strategies that shape host-virus interactions. Finally, we explain how the evolutionary connection between bacterial antiphage defense and eukaryotic antiviral immunity defines fundamental rules that govern nucleotide-based immunity across all kingdoms of life.
细菌编码了一系列不同的系统来抵御噬菌体感染。许多流行的抗噬菌体防御系统的一个共同主题是利用专门的核苷酸信号作为第二信使激活下游效应蛋白并抑制病毒传播。在这篇文章中,我们回顾了四大抗虹吸虫防御系统家族中控制核苷酸免疫信号转导的分子机制:CBASS、Pycsar、Thoeris 和 III 型 CRISPR 免疫。通过分析连接噬菌体检测、核苷酸信号合成和下游效应器功能的各个步骤,我们发现了信号传递的共同核心原理,并揭示了用于增强免疫防御的系统特异性策略。我们比较了最近发现的噬菌体用于规避核苷酸免疫信号的机制,并强调了形成宿主-病毒相互作用的趋同策略。最后,我们解释了细菌抗噬菌体防御与真核生物抗病毒免疫之间的进化联系如何定义了所有生命王国基于核苷酸的免疫的基本规则。
{"title":"Nucleotide Immune Signaling in CBASS, Pycsar, Thoeris, and CRISPR Antiphage Defense.","authors":"Samuel J Hobbs, Philip J Kranzusch","doi":"10.1146/annurev-micro-041222-024843","DOIUrl":"10.1146/annurev-micro-041222-024843","url":null,"abstract":"<p><p>Bacteria encode an arsenal of diverse systems that defend against phage infection. A common theme uniting many prevalent antiphage defense systems is the use of specialized nucleotide signals that function as second messengers to activate downstream effector proteins and inhibit viral propagation. In this article, we review the molecular mechanisms controlling nucleotide immune signaling in four major families of antiphage defense systems: CBASS, Pycsar, Thoeris, and type III CRISPR immunity. Analyses of the individual steps connecting phage detection, nucleotide signal synthesis, and downstream effector function reveal shared core principles of signaling and uncover system-specific strategies used to augment immune defense. We compare recently discovered mechanisms used by phages to evade nucleotide immune signaling and highlight convergent strategies that shape host-virus interactions. Finally, we explain how the evolutionary connection between bacterial antiphage defense and eukaryotic antiviral immunity defines fundamental rules that govern nucleotide-based immunity across all kingdoms of life.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":" ","pages":"255-276"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141858874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-07DOI: 10.1146/annurev-micro-041522-103400
Betül Kaçar
For more than 3.5 billion years, life experienced dramatic environmental extremes on Earth. These include shifts from oxygen-less to overoxygenated atmospheres and cycling between hothouse conditions and global glaciations. Meanwhile, an ecological revolution took place. Earth evolved from one dominated by microbial life to one containing the plants and animals that are most familiar today. Many key cellular features evolved early in the history of life, collectively defining the nature of our biosphere and underpinning human survival. Recent advances in molecular biology and bioinformatics have greatly improved our understanding of microbial evolution across deep time. However, the incorporation of molecular genetics, population biology, and evolutionary biology approaches into the study of Precambrian biota remains a significant challenge. This review synthesizes our current knowledge of early microbial life with an emphasis on ancient metabolisms. It also outlines the foundations of an emerging interdisciplinary area that integrates microbiology, paleobiology, and evolutionary synthetic biology to reconstruct ancient biological innovations.
{"title":"Reconstructing Early Microbial Life.","authors":"Betül Kaçar","doi":"10.1146/annurev-micro-041522-103400","DOIUrl":"10.1146/annurev-micro-041522-103400","url":null,"abstract":"<p><p>For more than 3.5 billion years, life experienced dramatic environmental extremes on Earth. These include shifts from oxygen-less to overoxygenated atmospheres and cycling between hothouse conditions and global glaciations. Meanwhile, an ecological revolution took place. Earth evolved from one dominated by microbial life to one containing the plants and animals that are most familiar today. Many key cellular features evolved early in the history of life, collectively defining the nature of our biosphere and underpinning human survival. Recent advances in molecular biology and bioinformatics have greatly improved our understanding of microbial evolution across deep time. However, the incorporation of molecular genetics, population biology, and evolutionary biology approaches into the study of Precambrian biota remains a significant challenge. This review synthesizes our current knowledge of early microbial life with an emphasis on ancient metabolisms. It also outlines the foundations of an emerging interdisciplinary area that integrates microbiology, paleobiology, and evolutionary synthetic biology to reconstruct ancient biological innovations.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":" ","pages":"463-492"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-07DOI: 10.1146/annurev-micro-041522-102707
Célia Souque, Indra González Ojeda, Michael Baym
Tackling the challenge created by antibiotic resistance requires understanding the mechanisms behind its evolution. Like any evolutionary process, the evolution of antimicrobial resistance (AMR) is driven by the underlying variation in a bacterial population and the selective pressures acting upon it. Importantly, both selection and variation will depend on the scale at which resistance evolution is considered (from evolution within a single patient to the host population level). While laboratory experiments have generated fundamental insights into the mechanisms underlying antibiotic resistance evolution, the technological advances in whole genome sequencing now allow us to probe antibiotic resistance evolution beyond the lab and directly record it in individual patients and host populations. Here we review the evolutionary forces driving antibiotic resistance at each of these scales, highlight gaps in our current understanding of AMR evolution, and discuss future steps toward evolution-guided interventions.
要应对抗生素耐药性带来的挑战,就必须了解其进化背后的机制。与任何进化过程一样,抗菌药耐药性(AMR)的进化也是由细菌种群的潜在变异和作用于细菌种群的选择压力所驱动的。重要的是,选择和变异都取决于考虑耐药性进化的规模(从单个病人体内的进化到宿主群体水平)。虽然实验室实验已经让我们对抗生素耐药性进化的机制有了基本的了解,但现在全基因组测序技术的进步让我们能够超越实验室,直接记录单个患者和宿主群体的抗生素耐药性进化。在此,我们回顾了在这些尺度上驱动抗生素耐药性的进化力量,强调了我们目前对 AMR 进化认识的差距,并讨论了未来以进化为指导的干预措施。
{"title":"From Petri Dishes to Patients to Populations: Scales and Evolutionary Mechanisms Driving Antibiotic Resistance.","authors":"Célia Souque, Indra González Ojeda, Michael Baym","doi":"10.1146/annurev-micro-041522-102707","DOIUrl":"10.1146/annurev-micro-041522-102707","url":null,"abstract":"<p><p>Tackling the challenge created by antibiotic resistance requires understanding the mechanisms behind its evolution. Like any evolutionary process, the evolution of antimicrobial resistance (AMR) is driven by the underlying variation in a bacterial population and the selective pressures acting upon it. Importantly, both selection and variation will depend on the scale at which resistance evolution is considered (from evolution within a single patient to the host population level). While laboratory experiments have generated fundamental insights into the mechanisms underlying antibiotic resistance evolution, the technological advances in whole genome sequencing now allow us to probe antibiotic resistance evolution beyond the lab and directly record it in individual patients and host populations. Here we review the evolutionary forces driving antibiotic resistance at each of these scales, highlight gaps in our current understanding of AMR evolution, and discuss future steps toward evolution-guided interventions.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":" ","pages":"361-382"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-07DOI: 10.1146/annurev-micro-041222-011539
Ross G Douglas, Robert W Moon, Friedrich Frischknecht
Apicomplexan parasites are a group of eukaryotic protozoans with diverse biology that have affected human health like no other group of parasites. These obligate intracellular parasites rely on their cytoskeletal structures for giving them form, enabling them to replicate in unique ways and to migrate across tissue barriers. Recent progress in transgenesis and imaging tools allowed detailed insights into the components making up and regulating the actin and microtubule cytoskeleton as well as the alveolate-specific intermediate filament-like cytoskeletal network. These studies revealed interesting details that deviate from the cell biology of canonical model organisms. Here we review the latest developments in the field and point to a number of open questions covering the most experimentally tractable parasites: Plasmodium, the causative agent of malaria; Toxoplasma gondii, the causative agent of toxoplasmosis; and Cryptosporidium, a major cause of diarrhea.
{"title":"Cytoskeleton Organization in Formation and Motility of Apicomplexan Parasites.","authors":"Ross G Douglas, Robert W Moon, Friedrich Frischknecht","doi":"10.1146/annurev-micro-041222-011539","DOIUrl":"10.1146/annurev-micro-041222-011539","url":null,"abstract":"<p><p>Apicomplexan parasites are a group of eukaryotic protozoans with diverse biology that have affected human health like no other group of parasites. These obligate intracellular parasites rely on their cytoskeletal structures for giving them form, enabling them to replicate in unique ways and to migrate across tissue barriers. Recent progress in transgenesis and imaging tools allowed detailed insights into the components making up and regulating the actin and microtubule cytoskeleton as well as the alveolate-specific intermediate filament-like cytoskeletal network. These studies revealed interesting details that deviate from the cell biology of canonical model organisms. Here we review the latest developments in the field and point to a number of open questions covering the most experimentally tractable parasites: <i>Plasmodium</i>, the causative agent of malaria; <i>Toxoplasma gondii</i>, the causative agent of toxoplasmosis; and <i>Cryptosporidium</i>, a major cause of diarrhea.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":" ","pages":"311-335"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}