Pub Date : 2024-11-01Epub Date: 2024-11-07DOI: 10.1146/annurev-micro-032421-110850
A R Muok, F A Olsthoorn, A Briegel
The bacterial chemotaxis system is one of the best-understood cellular pathways and serves as the model for signal transduction systems. Most chemotaxis research has been conducted with transmembrane chemotaxis systems from Escherichia coli and has established paradigms of the system that were thought to be universal. However, emerging research has revealed that many bacteria possess alternative features of their chemotaxis system, demonstrating that these systems are likely more complex than previously assumed. Here, we compare the canonical chemotaxis system of E. coli with systems that diverge in supramolecular architecture, sensory mechanisms, and protein composition. The alternative features have likely evolved to accommodate chemical specificities of natural niches and cell morphologies. Collectively, these studies demonstrate that bacterial chemotaxis systems are a rapidly expanding field that offers many new opportunities to explore this exceedingly diverse system.
{"title":"Unpacking Alternative Features of the Bacterial Chemotaxis System.","authors":"A R Muok, F A Olsthoorn, A Briegel","doi":"10.1146/annurev-micro-032421-110850","DOIUrl":"10.1146/annurev-micro-032421-110850","url":null,"abstract":"<p><p>The bacterial chemotaxis system is one of the best-understood cellular pathways and serves as the model for signal transduction systems. Most chemotaxis research has been conducted with transmembrane chemotaxis systems from <i>Escherichia coli</i> and has established paradigms of the system that were thought to be universal. However, emerging research has revealed that many bacteria possess alternative features of their chemotaxis system, demonstrating that these systems are likely more complex than previously assumed. Here, we compare the canonical chemotaxis system of <i>E. coli</i> with systems that diverge in supramolecular architecture, sensory mechanisms, and protein composition. The alternative features have likely evolved to accommodate chemical specificities of natural niches and cell morphologies. Collectively, these studies demonstrate that bacterial chemotaxis systems are a rapidly expanding field that offers many new opportunities to explore this exceedingly diverse system.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":" ","pages":"169-189"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1146/annurev-micro-041222-014330
Lianrong Wang, Yaqian Tang, Zixin Deng, Shi Chen
In contrast to the well-known DNA methylation of nucleobases, DNA phosphorothioate (PT) modification occurs in the DNA sugar-phosphate backbone. The non-bridging oxygen is replaced by a sulfur atom, which increases the nuclease tolerance of the DNA. In recent years, we have witnessed advances in understanding of PT modification enzymes, the features of PT modification across prokaryotic genomes, and PT-related physiological functions. Although only a small fraction of modifiable recognition sites across bacterial genomes undergo PT modification, enzymes such as DndFGH and SspE can use this modification as a recognition marker to differentiate between self- and non-self-DNA, thus destroying PT-lacking invasive DNA and preventing autoimmunity. We highlight the molecular mechanisms of PT modification-associated defense systems. We also describe notable applications of PT systems in the engineering of phage-resistant bacterial strains, RNA editing, and nucleic acid detection.
与众所周知的 DNA 核碱基甲基化不同,DNA 硫代磷酸酯(PT)修饰发生在 DNA 糖-磷酸骨架上。非桥接氧被硫原子取代,从而提高了 DNA 的核酸酶耐受性。近年来,我们对PT修饰酶、原核生物基因组中PT修饰的特征以及与PT相关的生理功能的认识都有了很大的进步。虽然细菌基因组中只有一小部分可修饰识别位点发生了PT修饰,但DndFGH和SspE等酶可以利用这种修饰作为识别标记来区分自体DNA和非自体DNA,从而破坏缺乏PT的入侵DNA,防止自身免疫。我们重点介绍了PT修饰相关防御系统的分子机制。我们还介绍了 PT 系统在噬菌体抗性菌株工程、RNA 编辑和核酸检测方面的显著应用。
{"title":"DNA Phosphorothioate Modification Systems and Associated Phage Defense Systems.","authors":"Lianrong Wang, Yaqian Tang, Zixin Deng, Shi Chen","doi":"10.1146/annurev-micro-041222-014330","DOIUrl":"10.1146/annurev-micro-041222-014330","url":null,"abstract":"<p><p>In contrast to the well-known DNA methylation of nucleobases, DNA phosphorothioate (PT) modification occurs in the DNA sugar-phosphate backbone. The non-bridging oxygen is replaced by a sulfur atom, which increases the nuclease tolerance of the DNA. In recent years, we have witnessed advances in understanding of PT modification enzymes, the features of PT modification across prokaryotic genomes, and PT-related physiological functions. Although only a small fraction of modifiable recognition sites across bacterial genomes undergo PT modification, enzymes such as DndFGH and SspE can use this modification as a recognition marker to differentiate between self- and non-self-DNA, thus destroying PT-lacking invasive DNA and preventing autoimmunity. We highlight the molecular mechanisms of PT modification-associated defense systems. We also describe notable applications of PT systems in the engineering of phage-resistant bacterial strains, RNA editing, and nucleic acid detection.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":"78 1","pages":"447-462"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1146/annurev-micro-041222-125931
Mariana G Pinho, Simon J Foster
Bacterial cell growth and division require temporal and spatial coordination of multiple processes to ensure viability and morphogenesis. These mechanisms both determine and are determined by dynamic cellular structures and components, from within the cytoplasm to the cell envelope. The characteristic morphological changes during the cell cycle are largely driven by the architecture and mechanics of the cell wall. A constellation of proteins governs growth and division in Staphylococcus aureus, with counterparts also found in other organisms, alluding to underlying conserved mechanisms. Here, we review the status of knowledge regarding the cell cycle of this important pathogen and describe how this informs our understanding of the action of antibiotics and the specter of antimicrobial resistance.
{"title":"Cell Growth and Division of <i>Staphylococcus aureus</i>.","authors":"Mariana G Pinho, Simon J Foster","doi":"10.1146/annurev-micro-041222-125931","DOIUrl":"10.1146/annurev-micro-041222-125931","url":null,"abstract":"<p><p>Bacterial cell growth and division require temporal and spatial coordination of multiple processes to ensure viability and morphogenesis. These mechanisms both determine and are determined by dynamic cellular structures and components, from within the cytoplasm to the cell envelope. The characteristic morphological changes during the cell cycle are largely driven by the architecture and mechanics of the cell wall. A constellation of proteins governs growth and division in <i>Staphylococcus aureus</i>, with counterparts also found in other organisms, alluding to underlying conserved mechanisms. Here, we review the status of knowledge regarding the cell cycle of this important pathogen and describe how this informs our understanding of the action of antibiotics and the specter of antimicrobial resistance.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":"78 1","pages":"293-310"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-07DOI: 10.1146/annurev-micro-041522-094053
Kelvin Kho, Thimoro Cheng, Nienke Buddelmeijer, Ivo G Boneca
Peptidoglycan (PGN) and associated surface structures such as secondary polymers and capsules have a central role in the physiology of bacteria. The exoskeletal PGN heteropolymer is the major determinant of cell shape and allows bacteria to withstand cytoplasmic turgor pressure. Thus, its assembly, expansion, and remodeling during cell growth and division need to be highly regulated to avoid compromising cell survival. Similarly, regulation of the assembly impacts bacterial cell shape; distinct shapes enhance fitness in different ecological niches, such as the host. Because bacterial cell wall components, in particular PGN, are exposed to the environment and unique to bacteria, these have been coopted during evolution by eukaryotes to detect bacteria. Furthermore, the essential role of the cell wall in bacterial survival has made PGN an important signaling molecule in the dialog between host and microbes and a target of many host responses. Millions of years of coevolution have resulted in a pivotal role for PGN fragments in shaping host physiology and in establishing a long-lasting symbiosis between microbes and the host. Thus, perturbations of this dialog can lead to pathologies such as chronic inflammatory diseases. Similarly, pathogens have devised sophisticated strategies to manipulate the system to enhance their survival and growth.
{"title":"When the Host Encounters the Cell Wall and Vice Versa.","authors":"Kelvin Kho, Thimoro Cheng, Nienke Buddelmeijer, Ivo G Boneca","doi":"10.1146/annurev-micro-041522-094053","DOIUrl":"10.1146/annurev-micro-041522-094053","url":null,"abstract":"<p><p>Peptidoglycan (PGN) and associated surface structures such as secondary polymers and capsules have a central role in the physiology of bacteria. The exoskeletal PGN heteropolymer is the major determinant of cell shape and allows bacteria to withstand cytoplasmic turgor pressure. Thus, its assembly, expansion, and remodeling during cell growth and division need to be highly regulated to avoid compromising cell survival. Similarly, regulation of the assembly impacts bacterial cell shape; distinct shapes enhance fitness in different ecological niches, such as the host. Because bacterial cell wall components, in particular PGN, are exposed to the environment and unique to bacteria, these have been coopted during evolution by eukaryotes to detect bacteria. Furthermore, the essential role of the cell wall in bacterial survival has made PGN an important signaling molecule in the dialog between host and microbes and a target of many host responses. Millions of years of coevolution have resulted in a pivotal role for PGN fragments in shaping host physiology and in establishing a long-lasting symbiosis between microbes and the host. Thus, perturbations of this dialog can lead to pathologies such as chronic inflammatory diseases. Similarly, pathogens have devised sophisticated strategies to manipulate the system to enhance their survival and growth.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":" ","pages":"233-253"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-07DOI: 10.1146/annurev-micro-032421-121423
Edouard Evangelisti, Francine Govers
Filamentous plant pathogens threaten global food security and ecosystem resilience. In recent decades, significant strides have been made in deciphering the molecular basis of plant-pathogen interactions, especially the interplay between pathogens' molecular weaponry and hosts' defense machinery. Stemming from interdisciplinary investigations into the infection cell biology of filamentous plant pathogens, recent breakthrough discoveries have provided a new impetus to the field. These advances include the biophysical characterization of a novel invasion mechanism (i.e., naifu invasion) and the unraveling of novel effector secretion routes. On the plant side, progress includes the identification of components of cellular networks involved in the uptake of intracellular effectors. This exciting body of research underscores the pivotal role of logistics management by the pathogen throughout the infection cycle, encompassing the precolonization stages up to tissue invasion. More insight into these logistics opens new avenues for developing environmentally friendly crop protection strategies in an era marked by an imperative to reduce the use of agrochemicals.
{"title":"Roadmap to Success: How Oomycete Plant Pathogens Invade Tissues and Deliver Effectors.","authors":"Edouard Evangelisti, Francine Govers","doi":"10.1146/annurev-micro-032421-121423","DOIUrl":"10.1146/annurev-micro-032421-121423","url":null,"abstract":"<p><p>Filamentous plant pathogens threaten global food security and ecosystem resilience. In recent decades, significant strides have been made in deciphering the molecular basis of plant-pathogen interactions, especially the interplay between pathogens' molecular weaponry and hosts' defense machinery. Stemming from interdisciplinary investigations into the infection cell biology of filamentous plant pathogens, recent breakthrough discoveries have provided a new impetus to the field. These advances include the biophysical characterization of a novel invasion mechanism (i.e., naifu invasion) and the unraveling of novel effector secretion routes. On the plant side, progress includes the identification of components of cellular networks involved in the uptake of intracellular effectors. This exciting body of research underscores the pivotal role of logistics management by the pathogen throughout the infection cycle, encompassing the precolonization stages up to tissue invasion. More insight into these logistics opens new avenues for developing environmentally friendly crop protection strategies in an era marked by an imperative to reduce the use of agrochemicals.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":" ","pages":"493-512"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-07DOI: 10.1146/annurev-micro-041522-091507
Bixi He, John D Helmann
Cell physiology requires innumerable metalloenzymes supported by the selective import of metal ions. Within the crowded cytosol, most enzymes acquire their cognate cofactors from a buffered labile pool. Metalation of membrane-bound and secreted exoenzymes is more problematic since metal concentrations are highly variable outside the cell. Here, we focus on metalloenzymes involved in cell envelope homeostasis. Peptidoglycan synthesis often relies on Zn-dependent hydrolases, and metal-dependent β-lactamases play important roles in antibiotic resistance. In gram-positive bacteria, lipoteichoic acid synthesis requires Mn, with TerC family Mn exporters in a supporting role. For some exoenzymes, metalation occurs in the cytosol, and metalated enzymes are exported through the TAT secretion system. For others, metalation is facilitated by metal exporters, metallochaperones, or partner proteins that enhance metal affinity. To help ensure function, some metalloenzymes can function with multiple metals. Thus, cells employ a diversity of strategies to ensure metalation of enzymes functioning outside the cytosol.
细胞的生理功能需要无数的金属酶通过选择性输入金属离子来支持。在拥挤的细胞质中,大多数酶都能从缓冲的可变池中获得它们的同源辅因子。膜结合型和分泌型外酶的金属化问题更大,因为细胞外的金属浓度变化很大。在这里,我们重点研究参与细胞膜平衡的金属酶。肽聚糖的合成通常依赖于锌依赖性水解酶,而金属依赖性β-内酰胺酶在抗生素耐药性中发挥着重要作用。在革兰氏阳性细菌中,脂联素合成需要锰,TerC 家族的锰输出器起辅助作用。对于某些外源酶来说,金属化发生在细胞质中,金属化的酶通过 TAT 分泌系统输出。对于其他外酵素,金属化则是通过金属输出体、金属合体或增强金属亲和力的伙伴蛋白来实现的。为了确保功能,一些金属酶可以与多种金属一起发挥作用。因此,细胞采用了多种策略来确保在细胞质外发挥作用的酶的金属化。
{"title":"Metalation of Extracytoplasmic Proteins and Bacterial Cell Envelope Homeostasis.","authors":"Bixi He, John D Helmann","doi":"10.1146/annurev-micro-041522-091507","DOIUrl":"10.1146/annurev-micro-041522-091507","url":null,"abstract":"<p><p>Cell physiology requires innumerable metalloenzymes supported by the selective import of metal ions. Within the crowded cytosol, most enzymes acquire their cognate cofactors from a buffered labile pool. Metalation of membrane-bound and secreted exoenzymes is more problematic since metal concentrations are highly variable outside the cell. Here, we focus on metalloenzymes involved in cell envelope homeostasis. Peptidoglycan synthesis often relies on Zn-dependent hydrolases, and metal-dependent β-lactamases play important roles in antibiotic resistance. In gram-positive bacteria, lipoteichoic acid synthesis requires Mn, with TerC family Mn exporters in a supporting role. For some exoenzymes, metalation occurs in the cytosol, and metalated enzymes are exported through the TAT secretion system. For others, metalation is facilitated by metal exporters, metallochaperones, or partner proteins that enhance metal affinity. To help ensure function, some metalloenzymes can function with multiple metals. Thus, cells employ a diversity of strategies to ensure metalation of enzymes functioning outside the cytosol.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":" ","pages":"83-102"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-07DOI: 10.1146/annurev-micro-041522-092911
Reyvin M Reyes, Amy C Rosenzweig
Methanobactins (Mbns) are ribosomally synthesized and posttranslationally modified peptide natural products released by methanotrophic bacteria under conditions of copper scarcity. Mbns bind Cu(I) with high affinity via nitrogen-containing heterocycles and thioamide groups installed on a precursor peptide, MbnA, by a core biosynthetic enzyme complex, MbnBC. Additional stabilizing modifications are enacted by other, less universal biosynthetic enzymes. Copper-loaded Mbn is imported into the cell by TonB-dependent transporters called MbnTs, and copper is mobilized by an unknown mechanism. The machinery to biosynthesize and transport Mbn is encoded in operons that are also found in the genomes of nonmethanotrophic bacteria. In this review, we provide an update on the state of the Mbn field, highlighting recent discoveries regarding Mbn structure, biosynthesis, and handling as well as the emerging roles of Mbns in the environment and their potential use as therapeutics.
{"title":"Methanobactins: Structures, Biosynthesis, and Microbial Diversity.","authors":"Reyvin M Reyes, Amy C Rosenzweig","doi":"10.1146/annurev-micro-041522-092911","DOIUrl":"10.1146/annurev-micro-041522-092911","url":null,"abstract":"<p><p>Methanobactins (Mbns) are ribosomally synthesized and posttranslationally modified peptide natural products released by methanotrophic bacteria under conditions of copper scarcity. Mbns bind Cu(I) with high affinity via nitrogen-containing heterocycles and thioamide groups installed on a precursor peptide, MbnA, by a core biosynthetic enzyme complex, MbnBC. Additional stabilizing modifications are enacted by other, less universal biosynthetic enzymes. Copper-loaded Mbn is imported into the cell by TonB-dependent transporters called MbnTs, and copper is mobilized by an unknown mechanism. The machinery to biosynthesize and transport Mbn is encoded in operons that are also found in the genomes of nonmethanotrophic bacteria. In this review, we provide an update on the state of the Mbn field, highlighting recent discoveries regarding Mbn structure, biosynthesis, and handling as well as the emerging roles of Mbns in the environment and their potential use as therapeutics.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":" ","pages":"383-401"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619078/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1146/annurev-micro-041522-092522
Emmeline van Roosmalen, Charissa de Bekker
Parasite manipulation of host behavior, as an effective strategy to establish transmission, has evolved multiple times across taxa, including fungi. Major strides have been made to propose molecular mechanisms that underlie manipulative parasite-host interactions including the manipulation of carpenter ant behavior by Ophiocordyceps. This research suggests that the secretion of parasite proteins and light-driven biological rhythms are likely involved in the infection and manipulation biology of Ophiocordyceps and other manipulating parasites. Here, we discuss research on Ophiocordyceps considering findings from other (fungal) parasites that either are relatively closely related (e.g., other insect- and plant-infecting Hypocreales) or also manipulate insect behavior (e.g., Entomophthorales). As such, this review aims to put forward this question: Are the mechanisms behind Ophiocordyceps manipulation and infection unique, or did they convergently evolve? From this discussion, we pose functional hypotheses about the infection biology of Ophiocordyceps that will need to be addressed in future studies.
{"title":"Mechanisms Underlying Ophiocordyceps Infection and Behavioral Manipulation of Ants: Unique or Ubiquitous?","authors":"Emmeline van Roosmalen, Charissa de Bekker","doi":"10.1146/annurev-micro-041522-092522","DOIUrl":"https://doi.org/10.1146/annurev-micro-041522-092522","url":null,"abstract":"Parasite manipulation of host behavior, as an effective strategy to establish transmission, has evolved multiple times across taxa, including fungi. Major strides have been made to propose molecular mechanisms that underlie manipulative parasite-host interactions including the manipulation of carpenter ant behavior by Ophiocordyceps. This research suggests that the secretion of parasite proteins and light-driven biological rhythms are likely involved in the infection and manipulation biology of Ophiocordyceps and other manipulating parasites. Here, we discuss research on Ophiocordyceps considering findings from other (fungal) parasites that either are relatively closely related (e.g., other insect- and plant-infecting Hypocreales) or also manipulate insect behavior (e.g., Entomophthorales). As such, this review aims to put forward this question: Are the mechanisms behind Ophiocordyceps manipulation and infection unique, or did they convergently evolve? From this discussion, we pose functional hypotheses about the infection biology of Ophiocordyceps that will need to be addressed in future studies.","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":"98 1","pages":""},"PeriodicalIF":10.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1146/annurev-micro-041522-101729
Ruth Y. Isenberg, Mark J. Mandel
Cyclic diguanylate (c-di-GMP) is a near-ubiquitous signaling molecule that regulates the motility-to-sessility transition in many bacterial species. Among the phenotypes influenced by c-di-GMP are biofilm formation, motility, cell cycle, and virulence. The hallmark phenotypes regulated by c-di-GMP—biofilm formation and motility—are key determinants of host–bacterial interactions. A large body of research has identified the roles of c-di-GMP in regulating phenotypes in culture. While numerous studies have investigated roles for c-di-GMP during the establishment and maintenance of pathogenic host–bacterial associations, considerably less attention has been devoted to defining the roles of c-di-GMP during beneficial and commensal associations. This review describes the known roles of c-di-GMP in regulating phenotypes that contribute to host colonization, with a focus on knowledge gaps and future prospects for examining c-di-GMP during beneficial colonization.
{"title":"Cyclic Diguanylate in the Wild: Roles During Plant and Animal Colonization","authors":"Ruth Y. Isenberg, Mark J. Mandel","doi":"10.1146/annurev-micro-041522-101729","DOIUrl":"https://doi.org/10.1146/annurev-micro-041522-101729","url":null,"abstract":"Cyclic diguanylate (c-di-GMP) is a near-ubiquitous signaling molecule that regulates the motility-to-sessility transition in many bacterial species. Among the phenotypes influenced by c-di-GMP are biofilm formation, motility, cell cycle, and virulence. The hallmark phenotypes regulated by c-di-GMP—biofilm formation and motility—are key determinants of host–bacterial interactions. A large body of research has identified the roles of c-di-GMP in regulating phenotypes in culture. While numerous studies have investigated roles for c-di-GMP during the establishment and maintenance of pathogenic host–bacterial associations, considerably less attention has been devoted to defining the roles of c-di-GMP during beneficial and commensal associations. This review describes the known roles of c-di-GMP in regulating phenotypes that contribute to host colonization, with a focus on knowledge gaps and future prospects for examining c-di-GMP during beneficial colonization.","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":"52 1","pages":""},"PeriodicalIF":10.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1146/annurev-micro-032521-014507
Wee Boon Tan, Shu-Sin Chng
Gram-negative bacteria build an asymmetric outer membrane (OM), with lipopolysaccharides (LPS) and phospholipids (PLs) occupying the outer and inner leaflets, respectively. This distinct lipid arrangement is widely conserved within the Bacteria domain and confers strong protection against physical and chemical insults. The OM is physically separated from the inner membrane and the cytoplasm, where most cellular resources are located; therefore, the cell faces unique challenges in the assembly and maintenance of this asymmetric bilayer. Here, we present a framework for how gram-negative bacteria initially establish and continuously maintain OM lipid asymmetry, discussing the state-of-the-art knowledge of specialized lipid transport machines that place LPS and PLs directly into their corresponding leaflets in the OM, prevent excess PL accumulation and mislocalization, and correct any lipid asymmetry defects. We critically assess current studies, or the lack thereof, and highlight important future directions for research on OM lipid transport, homeostasis, and asymmetry.
革兰氏阴性细菌具有不对称的外膜(OM),脂多糖(LPS)和磷脂(PL)分别占据外叶和内叶。这种独特的脂质排列方式在细菌领域内广泛保留,可有效抵御物理和化学损伤。外膜与内膜和细胞质在物理上是分离的,而大多数细胞资源都位于细胞质中;因此,细胞在组装和维护这种不对称双分子层时面临着独特的挑战。在此,我们提出了革兰氏阴性细菌如何最初建立并持续维持OM脂质不对称的框架,讨论了有关专门脂质运输机器的最新知识,这些机器可将LPS和PL直接放入OM中相应的小叶,防止PL过度积累和错位,并纠正任何脂质不对称缺陷。我们对目前的研究或缺乏研究的情况进行了批判性评估,并强调了有关 OM 脂质转运、平衡和不对称性的重要未来研究方向。
{"title":"How Bacteria Establish and Maintain Outer Membrane Lipid Asymmetry","authors":"Wee Boon Tan, Shu-Sin Chng","doi":"10.1146/annurev-micro-032521-014507","DOIUrl":"https://doi.org/10.1146/annurev-micro-032521-014507","url":null,"abstract":"Gram-negative bacteria build an asymmetric outer membrane (OM), with lipopolysaccharides (LPS) and phospholipids (PLs) occupying the outer and inner leaflets, respectively. This distinct lipid arrangement is widely conserved within the Bacteria domain and confers strong protection against physical and chemical insults. The OM is physically separated from the inner membrane and the cytoplasm, where most cellular resources are located; therefore, the cell faces unique challenges in the assembly and maintenance of this asymmetric bilayer. Here, we present a framework for how gram-negative bacteria initially establish and continuously maintain OM lipid asymmetry, discussing the state-of-the-art knowledge of specialized lipid transport machines that place LPS and PLs directly into their corresponding leaflets in the OM, prevent excess PL accumulation and mislocalization, and correct any lipid asymmetry defects. We critically assess current studies, or the lack thereof, and highlight important future directions for research on OM lipid transport, homeostasis, and asymmetry.","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":"41 1","pages":""},"PeriodicalIF":10.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}