Pub Date : 2023-09-15Epub Date: 2023-06-07DOI: 10.1146/annurev-micro-041020-024616
Mark Hochstrasser
Among endosymbiotic bacteria living within eukaryotic cells, Wolbachia is exceptionally widespread, particularly in arthropods. Inherited through the female germline, it has evolved ways to increase the fraction of bacterially infected offspring by inducing parthenogenesis, feminization, male killing, or, most commonly, cytoplasmic incompatibility (CI). In CI, Wolbachia infection of males causes embryonic lethality unless they mate with similarly infected females, creating a relative reproductive advantage for infected females. A set of related Wolbachia bicistronic operons encodes the CI-inducing factors. The downstream gene encodes a deubiquitylase or nuclease and is responsible for CI induction by males, while the upstream product when expressed in females binds its sperm-introduced cognate partner and rescues viability. Both toxin-antidote and host-modification mechanisms have been proposed to explain CI. Interestingly, male killing by either Spiroplasma or Wolbachia endosymbionts involves deubiquitylases as well. Interference with the host ubiquitin system may therefore be a common theme among endosymbiont-mediated reproductive alterations.
{"title":"Molecular Biology of Cytoplasmic Incompatibility Caused by <i>Wolbachia</i> Endosymbionts.","authors":"Mark Hochstrasser","doi":"10.1146/annurev-micro-041020-024616","DOIUrl":"10.1146/annurev-micro-041020-024616","url":null,"abstract":"<p><p>Among endosymbiotic bacteria living within eukaryotic cells, <i>Wolbachia</i> is exceptionally widespread, particularly in arthropods. Inherited through the female germline, it has evolved ways to increase the fraction of bacterially infected offspring by inducing parthenogenesis, feminization, male killing, or, most commonly, cytoplasmic incompatibility (CI). In CI, <i>Wolbachia</i> infection of males causes embryonic lethality unless they mate with similarly infected females, creating a relative reproductive advantage for infected females. A set of related <i>Wolbachia</i> bicistronic operons encodes the CI-inducing factors. The downstream gene encodes a deubiquitylase or nuclease and is responsible for CI induction by males, while the upstream product when expressed in females binds its sperm-introduced cognate partner and rescues viability. Both toxin-antidote and host-modification mechanisms have been proposed to explain CI. Interestingly, male killing by either <i>Spiroplasma</i> or <i>Wolbachia</i> endosymbionts involves deubiquitylases as well. Interference with the host ubiquitin system may therefore be a common theme among endosymbiont-mediated reproductive alterations.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":"77 ","pages":"299-316"},"PeriodicalIF":10.5,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10644958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-15Epub Date: 2023-04-26DOI: 10.1146/annurev-micro-032521-030537
Kenji Kai
Ralstonia solanacearum species complex (RSSC) strains are devastating plant pathogens distributed worldwide. The primary cell density-dependent gene expression system in RSSC strains is phc quorum sensing (QS). It regulates the expression of about 30% of all genes, including those related to cellular activity, primary and secondary metabolism, pathogenicity, and more. The phc regulatory elements encoded by the phcBSRQ operon and phcA gene play vital roles. RSSC strains use methyl 3-hydroxymyristate (3-OH MAME) or methyl 3-hydroxypalmitate (3-OH PAME) as the QS signal. Each type of RSSC strain has specificity in generating and receiving its QS signal, but their signaling pathways might not differ significantly. In this review, I describe the genetic and biochemical factors involved in QS signal input and the regulatory network and summarize control of the phc QS system, new cell-cell communications, and QS-dependent interactions with soil fungi.
{"title":"The <i>phc</i> Quorum-Sensing System in <i>Ralstonia solanacearum</i> Species Complex.","authors":"Kenji Kai","doi":"10.1146/annurev-micro-032521-030537","DOIUrl":"10.1146/annurev-micro-032521-030537","url":null,"abstract":"<p><p><i>Ralstonia solanacearum</i> species complex (RSSC) strains are devastating plant pathogens distributed worldwide. The primary cell density-dependent gene expression system in RSSC strains is <i>phc</i> quorum sensing (QS). It regulates the expression of about 30% of all genes, including those related to cellular activity, primary and secondary metabolism, pathogenicity, and more. The <i>phc</i> regulatory elements encoded by the <i>phcBSRQ</i> operon and <i>phcA</i> gene play vital roles. RSSC strains use methyl 3-hydroxymyristate (3-OH MAME) or methyl 3-hydroxypalmitate (3-OH PAME) as the QS signal. Each type of RSSC strain has specificity in generating and receiving its QS signal, but their signaling pathways might not differ significantly. In this review, I describe the genetic and biochemical factors involved in QS signal input and the regulatory network and summarize control of the <i>phc</i> QS system, new cell-cell communications, and QS-dependent interactions with soil fungi.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":"77 ","pages":"213-231"},"PeriodicalIF":10.5,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10644412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-15DOI: 10.1146/annurev-micro-032521-024017
Beatrice I Herrmann, James P Grayczyk, Igor E Brodsky
The immune system of multicellular organisms protects them from harmful microbes. To establish an infection in the face of host immune responses, pathogens must evolve specific strategies to target immune defense mechanisms. One such defense is the formation of intracellular protein complexes, termed inflammasomes, that are triggered by the detection of microbial components and the disruption of homeostatic processes that occur during bacterial infection. Formation of active inflammasomes initiates programmed cell death pathways via activation of inflammatory caspases and cleavage of target proteins. Inflammasome-activated cell death pathways such as pyroptosis lead to proinflammatory responses that protect the host. Bacterial infection has the capacity to influence inflammasomes in two distinct ways: activation and perturbation. In this review, we discuss how bacterial activities influence inflammasomes, and we discuss the consequences of inflammasome activation or evasion for both the host and pathogen.
{"title":"Collab or Cancel? Bacterial Influencers of Inflammasome Signaling.","authors":"Beatrice I Herrmann, James P Grayczyk, Igor E Brodsky","doi":"10.1146/annurev-micro-032521-024017","DOIUrl":"10.1146/annurev-micro-032521-024017","url":null,"abstract":"<p><p>The immune system of multicellular organisms protects them from harmful microbes. To establish an infection in the face of host immune responses, pathogens must evolve specific strategies to target immune defense mechanisms. One such defense is the formation of intracellular protein complexes, termed inflammasomes, that are triggered by the detection of microbial components and the disruption of homeostatic processes that occur during bacterial infection. Formation of active inflammasomes initiates programmed cell death pathways via activation of inflammatory caspases and cleavage of target proteins. Inflammasome-activated cell death pathways such as pyroptosis lead to proinflammatory responses that protect the host. Bacterial infection has the capacity to influence inflammasomes in two distinct ways: activation and perturbation. In this review, we discuss how bacterial activities influence inflammasomes, and we discuss the consequences of inflammasome activation or evasion for both the host and pathogen.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":"77 ","pages":"451-477"},"PeriodicalIF":10.5,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10650408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-15Epub Date: 2023-07-05DOI: 10.1146/annurev-micro-032421-120540
Ian M Lamb, Ijeoma C Okoye, Michael W Mather, Akhil B Vaidya
Apicomplexan parasites constitute more than 6,000 species infecting a wide range of hosts. These include important pathogens such as those causing malaria and toxoplasmosis. Their evolutionary emergence coincided with the dawn of animals. Mitochondrial genomes of apicomplexan parasites have undergone dramatic reduction in their coding capacity, with genes for only three proteins and ribosomal RNA genes present in scrambled fragments originating from both strands. Different branches of the apicomplexans have undergone rearrangements of these genes, with Toxoplasma having massive variations in gene arrangements spread over multiple copies. The vast evolutionary distance between the parasite and the host mitochondria has been exploited for the development of antiparasitic drugs, especially those used to treat malaria, wherein inhibition of the parasite mitochondrial respiratory chain is selectively targeted with little toxicity to the host mitochondria. We describe additional unique characteristics of the parasite mitochondria that are being investigated and provide greater insights into these deep-branching eukaryotic pathogens.
{"title":"Unique Properties of Apicomplexan Mitochondria.","authors":"Ian M Lamb, Ijeoma C Okoye, Michael W Mather, Akhil B Vaidya","doi":"10.1146/annurev-micro-032421-120540","DOIUrl":"10.1146/annurev-micro-032421-120540","url":null,"abstract":"<p><p>Apicomplexan parasites constitute more than 6,000 species infecting a wide range of hosts. These include important pathogens such as those causing malaria and toxoplasmosis. Their evolutionary emergence coincided with the dawn of animals. Mitochondrial genomes of apicomplexan parasites have undergone dramatic reduction in their coding capacity, with genes for only three proteins and ribosomal RNA genes present in scrambled fragments originating from both strands. Different branches of the apicomplexans have undergone rearrangements of these genes, with <i>Toxoplasma</i> having massive variations in gene arrangements spread over multiple copies. The vast evolutionary distance between the parasite and the host mitochondria has been exploited for the development of antiparasitic drugs, especially those used to treat malaria, wherein inhibition of the parasite mitochondrial respiratory chain is selectively targeted with little toxicity to the host mitochondria. We describe additional unique characteristics of the parasite mitochondria that are being investigated and provide greater insights into these deep-branching eukaryotic pathogens.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":"77 ","pages":"541-560"},"PeriodicalIF":10.5,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11156254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10279540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-15DOI: 10.1146/annurev-micro-032421-113254
Susannah M Porter, Leigh Anne Riedman
The origin of modern eukaryotes is one of the key transitions in life's history, and also one of the least understood. Although the fossil record provides the most direct view of this process, interpreting the fossils of early eukaryotes and eukaryote-grade organisms is not straightforward. We present two end-member models for the evolution of modern (i.e., crown) eukaryotes-one in which modern eukaryotes evolved early, and another in which they evolved late-and interpret key fossils within these frameworks, including where they might fit in eukaryote phylogeny and what they may tell us about the evolution of eukaryotic cell biology and ecology. Each model has different implications for understanding the rise of complex life on Earth, including different roles of Earth surface oxygenation, and makes different predictions that future paleontological studies can test.
{"title":"Frameworks for Interpreting the Early Fossil Record of Eukaryotes.","authors":"Susannah M Porter, Leigh Anne Riedman","doi":"10.1146/annurev-micro-032421-113254","DOIUrl":"10.1146/annurev-micro-032421-113254","url":null,"abstract":"<p><p>The origin of modern eukaryotes is one of the key transitions in life's history, and also one of the least understood. Although the fossil record provides the most direct view of this process, interpreting the fossils of early eukaryotes and eukaryote-grade organisms is not straightforward. We present two end-member models for the evolution of modern (i.e., crown) eukaryotes-one in which modern eukaryotes evolved early, and another in which they evolved late-and interpret key fossils within these frameworks, including where they might fit in eukaryote phylogeny and what they may tell us about the evolution of eukaryotic cell biology and ecology. Each model has different implications for understanding the rise of complex life on Earth, including different roles of Earth surface oxygenation, and makes different predictions that future paleontological studies can test.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":"77 ","pages":"173-191"},"PeriodicalIF":10.5,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10285350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-15Epub Date: 2023-04-17DOI: 10.1146/annurev-micro-032521-015202
Ferran Garcia-Pichel
Biological soil crusts are thin, inconspicuous communities along the soil atmosphere ecotone that, until recently, were unrecognized by ecologists and even more so by microbiologists. In its broadest meaning, the term biological soil crust (or biocrust) encompasses a variety of communities that develop on soil surfaces and are powered by photosynthetic primary producers other than higher plants: cyanobacteria, microalgae, and cryptogams like lichens and mosses. Arid land biocrusts are the most studied, but biocrusts also exist in other settings where plant development is constrained. The minimal requirement is that light impinge directly on the soil; this is impeded by the accumulation of plant litter where plants abound. Since scientists started paying attention, much has been learned about their microbial communities, their composition, ecological extent, and biogeochemical roles, about how they alter the physical behavior of soils, and even how they inform an understanding of early life on land. This has opened new avenues for ecological restoration and agriculture.
{"title":"The Microbiology of Biological Soil Crusts.","authors":"Ferran Garcia-Pichel","doi":"10.1146/annurev-micro-032521-015202","DOIUrl":"10.1146/annurev-micro-032521-015202","url":null,"abstract":"<p><p>Biological soil crusts are thin, inconspicuous communities along the soil atmosphere ecotone that, until recently, were unrecognized by ecologists and even more so by microbiologists. In its broadest meaning, the term biological soil crust (or biocrust) encompasses a variety of communities that develop on soil surfaces and are powered by photosynthetic primary producers other than higher plants: cyanobacteria, microalgae, and cryptogams like lichens and mosses. Arid land biocrusts are the most studied, but biocrusts also exist in other settings where plant development is constrained. The minimal requirement is that light impinge directly on the soil; this is impeded by the accumulation of plant litter where plants abound. Since scientists started paying attention, much has been learned about their microbial communities, their composition, ecological extent, and biogeochemical roles, about how they alter the physical behavior of soils, and even how they inform an understanding of early life on land. This has opened new avenues for ecological restoration and agriculture.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":"77 ","pages":"149-171"},"PeriodicalIF":10.5,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10281183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-15Epub Date: 2023-04-27DOI: 10.1146/annurev-micro-032521-013159
Melene A Alakavuklar, Aretha Fiebig, Sean Crosson
The cell envelope is a multilayered structure that insulates the interior of bacterial cells from an often chaotic outside world. Common features define the envelope across the bacterial kingdom, but the molecular mechanisms by which cells build and regulate this critical barrier are diverse and reflect the evolutionary histories of bacterial lineages. Intracellular pathogens of the genus Brucella exhibit marked differences in cell envelope structure, regulation, and biogenesis when compared to more commonly studied gram-negative bacteria and therefore provide an excellent comparative model for study of the gram-negative envelope. We review distinct features of the Brucella envelope, highlighting a conserved regulatory system that links cell cycle progression to envelope biogenesis and cell division. We further discuss recently discovered structural features of the Brucella envelope that ensure envelope integrity and that facilitate cell survival in the face of host immune stressors.
{"title":"The <i>Brucella</i> Cell Envelope.","authors":"Melene A Alakavuklar, Aretha Fiebig, Sean Crosson","doi":"10.1146/annurev-micro-032521-013159","DOIUrl":"10.1146/annurev-micro-032521-013159","url":null,"abstract":"<p><p>The cell envelope is a multilayered structure that insulates the interior of bacterial cells from an often chaotic outside world. Common features define the envelope across the bacterial kingdom, but the molecular mechanisms by which cells build and regulate this critical barrier are diverse and reflect the evolutionary histories of bacterial lineages. Intracellular pathogens of the genus <i>Brucella</i> exhibit marked differences in cell envelope structure, regulation, and biogenesis when compared to more commonly studied gram-negative bacteria and therefore provide an excellent comparative model for study of the gram-negative envelope. We review distinct features of the <i>Brucella</i> envelope, highlighting a conserved regulatory system that links cell cycle progression to envelope biogenesis and cell division. We further discuss recently discovered structural features of the <i>Brucella</i> envelope that ensure envelope integrity and that facilitate cell survival in the face of host immune stressors.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":"77 ","pages":"233-253"},"PeriodicalIF":10.5,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10331094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-15Epub Date: 2023-04-26DOI: 10.1146/annurev-micro-041320-032304
Alexander L Jaffe, Cindy J Castelle, Jillian F Banfield
Related groups of microbes are widely distributed across Earth's habitats, implying numerous dispersal and adaptation events over evolutionary time. However, relatively little is known about the characteristics and mechanisms of these habitat transitions, particularly for populations that reside in animal microbiomes. Here, we review the literature concerning habitat transitions among a variety of bacterial and archaeal lineages, considering the frequency of migration events, potential environmental barriers, and mechanisms of adaptation to new physicochemical conditions, including the modification of protein inventories and other genomic characteristics. Cells dependent on microbial hosts, particularly bacteria from the Candidate Phyla Radiation, have undergone repeated habitat transitions from environmental sources into animal microbiomes. We compare their trajectories to those of both free-living cells-including the Melainabacteria, Elusimicrobia, and methanogenic archaea-and cellular endosymbionts and bacteriophages, which have made similar transitions. We conclude by highlighting major related topics that may be worthy of future study.
{"title":"Habitat Transition in the Evolution of Bacteria and Archaea.","authors":"Alexander L Jaffe, Cindy J Castelle, Jillian F Banfield","doi":"10.1146/annurev-micro-041320-032304","DOIUrl":"10.1146/annurev-micro-041320-032304","url":null,"abstract":"<p><p>Related groups of microbes are widely distributed across Earth's habitats, implying numerous dispersal and adaptation events over evolutionary time. However, relatively little is known about the characteristics and mechanisms of these habitat transitions, particularly for populations that reside in animal microbiomes. Here, we review the literature concerning habitat transitions among a variety of bacterial and archaeal lineages, considering the frequency of migration events, potential environmental barriers, and mechanisms of adaptation to new physicochemical conditions, including the modification of protein inventories and other genomic characteristics. Cells dependent on microbial hosts, particularly bacteria from the Candidate Phyla Radiation, have undergone repeated habitat transitions from environmental sources into animal microbiomes. We compare their trajectories to those of both free-living cells-including the <i>Melainabacteria</i>, <i>Elusimicrobia</i>, and methanogenic archaea-and cellular endosymbionts and bacteriophages, which have made similar transitions. We conclude by highlighting major related topics that may be worthy of future study.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":"77 ","pages":"193-212"},"PeriodicalIF":10.5,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10644413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-15DOI: 10.1146/annurev-micro-032521-041956
Nicolas L Louw, Kasturi Lele, Ruby Ye, Collin B Edwards, Benjamin E Wolfe
For thousands of years, humans have enjoyed the novel flavors, increased shelf-life, and nutritional benefits that microbes provide in fermented foods and beverages. Recent sequencing surveys of ferments have mapped patterns of microbial diversity across space, time, and production practices. But a mechanistic understanding of how fermented food microbiomes assemble has only recently begun to emerge. Using three foods as case studies (surface-ripened cheese, sourdough starters, and fermented vegetables), we use an ecological and evolutionary framework to identify how microbial communities assemble in ferments. By combining in situ sequencing surveys with in vitro models, we are beginning to understand how dispersal, selection, diversification, and drift generate the diversity of fermented food communities. Most food producers are unaware of the ecological processes occurring in their production environments, but the theory and models of ecology and evolution can provide new approaches for managing fermented food microbiomes, from farm to ferment.
{"title":"Microbiome Assembly in Fermented Foods.","authors":"Nicolas L Louw, Kasturi Lele, Ruby Ye, Collin B Edwards, Benjamin E Wolfe","doi":"10.1146/annurev-micro-032521-041956","DOIUrl":"10.1146/annurev-micro-032521-041956","url":null,"abstract":"<p><p>For thousands of years, humans have enjoyed the novel flavors, increased shelf-life, and nutritional benefits that microbes provide in fermented foods and beverages. Recent sequencing surveys of ferments have mapped patterns of microbial diversity across space, time, and production practices. But a mechanistic understanding of how fermented food microbiomes assemble has only recently begun to emerge. Using three foods as case studies (surface-ripened cheese, sourdough starters, and fermented vegetables), we use an ecological and evolutionary framework to identify how microbial communities assemble in ferments. By combining in situ sequencing surveys with in vitro models, we are beginning to understand how dispersal, selection, diversification, and drift generate the diversity of fermented food communities. Most food producers are unaware of the ecological processes occurring in their production environments, but the theory and models of ecology and evolution can provide new approaches for managing fermented food microbiomes, from farm to ferment.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":"77 ","pages":"381-402"},"PeriodicalIF":10.5,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10285345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}