Pub Date : 2024-07-04DOI: 10.1007/s11244-024-01985-x
Huynh Thanh Quang, Hoang Ai Le Pham, Nguyen Van Cuong, Huu Phuc Dang, Nguyen Thi Hong Anh
We synthesized a bismuth-MOFs@CNTs (BiBTC@CNTs) catalyst using a microwave-assisted solvothermal method. The mass ratios of CNTs and BiBTC varied from 0 to 2, 5, and 10% (denoted as BiBTC@CNTs-x, x = 0 to 2, 5, and 10). The characteristics of the catalyst were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and diffuse reflectance spectroscopy (UV-Vis DRS). The catalytic activity of the material was tested by photodegradation of rhodamine B. The structure of BiBTC@CNTs-x displayed a UU-200 and CNT structure with rod-shaped interweaving between the CNT fibers. The results indicated that BiBTC@CNTs-2 had the most significant ability to degrade RhB, achieving 98% degradation in 180 min. The increased separation of electron-hole pairs via a built-in electric field between CNT and BiBTC is responsible for the improved photocatalytic degradation of RhB, as observed in the XPS spectrum, transient photocurrent response, electrochemical impedance spectroscopy (EIS), and Mott-Schottky plots. In addition, the catalyst mass, dye concentration, pH of the medium, and radical scavengers were investigated. Furthermore, free radicals (O2−) and electrons (e-) played the primary and most influential role in the photocatalytic degradation of both dyes, with a minor contribution from the photogenerated holes (h+). Kinetic study of the dye degradation process followed a first-order kinetic model.
{"title":"Rapid Synthesis of Bismuth MOF @Carbon Nanotube Composite by microwave-assisted Solvothermal for Photodegrading RhB","authors":"Huynh Thanh Quang, Hoang Ai Le Pham, Nguyen Van Cuong, Huu Phuc Dang, Nguyen Thi Hong Anh","doi":"10.1007/s11244-024-01985-x","DOIUrl":"10.1007/s11244-024-01985-x","url":null,"abstract":"<div><p>We synthesized a bismuth-MOFs@CNTs (BiBTC@CNTs) catalyst using a microwave-assisted solvothermal method. The mass ratios of CNTs and BiBTC varied from 0 to 2, 5, and 10% (denoted as BiBTC@CNTs-x, x = 0 to 2, 5, and 10). The characteristics of the catalyst were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and diffuse reflectance spectroscopy (UV-Vis DRS). The catalytic activity of the material was tested by photodegradation of rhodamine B. The structure of BiBTC@CNTs-x displayed a UU-200 and CNT structure with rod-shaped interweaving between the CNT fibers. The results indicated that BiBTC@CNTs-2 had the most significant ability to degrade RhB, achieving 98% degradation in 180 min. The increased separation of electron-hole pairs via a built-in electric field between CNT and BiBTC is responsible for the improved photocatalytic degradation of RhB, as observed in the XPS spectrum, transient photocurrent response, electrochemical impedance spectroscopy (EIS), and Mott-Schottky plots. In addition, the catalyst mass, dye concentration, pH of the medium, and radical scavengers were investigated. Furthermore, free radicals (O<sup>2−</sup>) and electrons (e-) played the primary and most influential role in the photocatalytic degradation of both dyes, with a minor contribution from the photogenerated holes (h+). Kinetic study of the dye degradation process followed a first-order kinetic model.</p></div>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"67 17-18","pages":"1155 - 1168"},"PeriodicalIF":2.8,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1007/s11244-024-01986-w
Muhammad Asif Muneer, Sumaya Fatima, Nazim Hussain, Tebogo Mashifana, Aniqa Sayed, Grzegorz Boczkaj, Muhammad Shahid Riaz Rajoka
Enzymes have revolutionized conventional industrial catalysts as more efficient, eco-friendly, and sustainable substitutes that can be used in different biotechnological processes, food, and pharmaceutical industries. Yet, the enzymes from nature are engineered to make them adapt and enhance their durability in the industrial environment. One promising approach involves the combined use of multiple enzymes that catalyze highly selective and sequential reactions in a single reaction vessel. The multi-enzymatic biocatalytic systems, achieved through gene fusion, fusion proteins, DNA manipulation and bioconjugation, protein engineering, or attachment to solid support materials for immobilization, such as protein-polymer, silica, metal organic framework, Carbon nanotubes or graphene based hybrids, have found widespread utility across various sectors, including the food industry, wastewater treatment, drug delivery, biosensors and methanol production. Enzyme conjugation enables the creation of novel enzymes with improved kinetics and synergistic effects. Researchers can evolve fusion proteins by fusion enzymes which can evolve novel catalytic activities in Biotechnological processes. These engineered enzymes can contribute in synthetic Biology in construction of synthetic system for various applications. Enzyme conjugation helps in metabolic engineering by optimization of pathways. Researchers can develop pathways for production of Bio-sensors, pharmaceuticals, biofuels and other valuable industrial products. This review comprehensively explores the techniques and applications of enzyme conjugation, highlighting its pivotal role in advancing the field of bio-catalysis.
{"title":"Enzyme Conjugation - A Promising Tool for Bio-catalytic and Biotransformation Applications – A Review","authors":"Muhammad Asif Muneer, Sumaya Fatima, Nazim Hussain, Tebogo Mashifana, Aniqa Sayed, Grzegorz Boczkaj, Muhammad Shahid Riaz Rajoka","doi":"10.1007/s11244-024-01986-w","DOIUrl":"https://doi.org/10.1007/s11244-024-01986-w","url":null,"abstract":"<p>Enzymes have revolutionized conventional industrial catalysts as more efficient, eco-friendly, and sustainable substitutes that can be used in different biotechnological processes, food, and pharmaceutical industries. Yet, the enzymes from nature are engineered to make them adapt and enhance their durability in the industrial environment. One promising approach involves the combined use of multiple enzymes that catalyze highly selective and sequential reactions in a single reaction vessel. The multi-enzymatic biocatalytic systems, achieved through gene fusion, fusion proteins, DNA manipulation and bioconjugation, protein engineering, or attachment to solid support materials for immobilization, such as protein-polymer, silica, metal organic framework, Carbon nanotubes or graphene based hybrids, have found widespread utility across various sectors, including the food industry, wastewater treatment, drug delivery, biosensors and methanol production. Enzyme conjugation enables the creation of novel enzymes with improved kinetics and synergistic effects. Researchers can evolve fusion proteins by fusion enzymes which can evolve novel catalytic activities in Biotechnological processes. These engineered enzymes can contribute in synthetic Biology in construction of synthetic system for various applications. Enzyme conjugation helps in metabolic engineering by optimization of pathways. Researchers can develop pathways for production of Bio-sensors, pharmaceuticals, biofuels and other valuable industrial products. This review comprehensively explores the techniques and applications of enzyme conjugation, highlighting its pivotal role in advancing the field of bio-catalysis.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"42 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1007/s11244-024-01974-0
Nguyen Huu Hieu, Dang Thanh Cong Minh, Phan Nguyen Minh, Che Quang Cong, Nguyen Thanh Hoai Nam, Nguyen Huu Hieu, Nguyen Tuong Vy, Tran Do Dat, Nguyen Minh Dat, Mai Thanh Phong
In this study, iron oxide nanofins (Fe2O3 NFs) were synthesized using Elaeocarpus hygrophilus leaves extract and decorated on graphitic carbon nitride (gCN) substrate to form the Fe2O3/gCN composite, as a photocatalytic candidate to degrade Rhodamine B (RhB) and produce hydrogen peroxide (H2O2). The morphological, structural, electrochemical, and optical properties of Fe2O3/gCN were determined via analytical methods, including scanning electron microscopy, energy dispersive X-ray, scanning electron microscopy field emission, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, photoluminescence spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy (UV-DRS), electrochemical impedance spectroscopy, and photocurrent repones. As a result, the band gap of Fe2O3/gCN was determined to be 2.79 eV through UV-DRS and Kubelka–Munk function, which is lower than that of pure gCN (2.82 eV). Such phenomenon provides an RhB photodegradation efficiency of 99.23% within 120 min at pH 4, as well as an H2O2 concentration of 4237.03 μM/g h under visible light radiation, over the 1.0Fe2O3/gCN sample. Further insights elucidate that ⋅O2– plays an important part in the photocatalysis, contributing to light-driven RhB degradation and H2O2 production. The catalytic performance of 1.0Fe2O3/gCN was also maintained after 4 consecutive cycles, which indicates a high potential for environmental remediation and cleaner production processes using light as the driving force.