首页 > 最新文献

Topics in Catalysis最新文献

英文 中文
Novel Application of 2 H-MoS2/g-C3N4 Nanocomposite in Piezo-Catalytic Degradation of Rhodamine B Under Ultrasonic Irradiation 2 H-MoS2/g-C3N4 纳米复合材料在超声波辐照下压电催化降解罗丹明 B 的新应用
IF 2.8 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-06-04 DOI: 10.1007/s11244-024-01965-1
Thuy Lac Yen Nguyen, Minh Dai To, Minh Thu Le, Chi Thien Nguyen, Nguyet Thi Nhu Pham, Hoa Cong Nguyen, Hoang Long Ngo, Tan Le Hoang Doan, Thanh Tung Nguyen, Viet Hai Le, Thai Hoang Nguyen

In the recent years, piezocatalysis process is attracting extensive attention as an emerging technology to remove persistent organic pollutants. Its advantage is that it relies on mechanical energy and is independent of electricity and light source, unlike electrocatalysis or photocatalysis processes. In this research, 2H-MoS2/g-C3N4 heterojunction materials were successfully fabricated via the hydrothermal method and utilized as piezocatalyst in the treatment of Rhodamine B. This material exhibited a highly efficient piezo-catalyst effect, with the piezo-response amplitudes of 78.8 mV, almost doubled compared to 39.8 mV of 2H-MoS2. The degradation of Rhodamine B by ultrasonic irradiation could reach 75.4% only after 5 s and then 94.9% in 60 s without light assistance. This ultra-rapid degradation rate is attributed to the electron–hole pairs and transfer of the charge-carriers on the surface of 2H-MoS2 and g-C3N4 via S-scheme heterojunction model, which was confirmed by density functional theory study. The piezo-catalytic ability of the material can still be improved for better treatment of other organic pollutants in aqueous environment.

近年来,压电催化工艺作为一种新兴的去除持久性有机污染物的技术受到广泛关注。与电催化或光催化过程不同,它的优势在于依靠机械能,不受电力和光源的影响。本研究通过水热法成功制备了 2H-MoS2/g-C3N4 异质结材料,并将其用作压电催化剂处理罗丹明 B。该材料表现出高效的压电催化剂效应,压电响应振幅达 78.8 mV,与 2H-MoS2 的 39.8 mV 相比几乎翻了一番。在超声波照射下,罗丹明 B 的降解率在 5 秒钟后就达到了 75.4%,在没有光辅助的情况下,60 秒钟后就达到了 94.9%。这种超高速降解率归因于 2H-MoS2 和 g-C3N4 表面通过 S 型异质结模型产生的电子-空穴对和载流子转移,密度泛函理论研究证实了这一点。该材料的压电催化能力仍有待提高,以更好地处理水环境中的其他有机污染物。
{"title":"Novel Application of 2 H-MoS2/g-C3N4 Nanocomposite in Piezo-Catalytic Degradation of Rhodamine B Under Ultrasonic Irradiation","authors":"Thuy Lac Yen Nguyen,&nbsp;Minh Dai To,&nbsp;Minh Thu Le,&nbsp;Chi Thien Nguyen,&nbsp;Nguyet Thi Nhu Pham,&nbsp;Hoa Cong Nguyen,&nbsp;Hoang Long Ngo,&nbsp;Tan Le Hoang Doan,&nbsp;Thanh Tung Nguyen,&nbsp;Viet Hai Le,&nbsp;Thai Hoang Nguyen","doi":"10.1007/s11244-024-01965-1","DOIUrl":"10.1007/s11244-024-01965-1","url":null,"abstract":"<div><p>In the recent years, piezocatalysis process is attracting extensive attention as an emerging technology to remove persistent organic pollutants. Its advantage is that it relies on mechanical energy and is independent of electricity and light source, unlike electrocatalysis or photocatalysis processes. In this research, 2H-MoS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunction materials were successfully fabricated via the hydrothermal method and utilized as piezocatalyst in the treatment of Rhodamine B. This material exhibited a highly efficient piezo-catalyst effect, with the piezo-response amplitudes of 78.8 mV, almost doubled compared to 39.8 mV of 2H-MoS<sub>2</sub>. The degradation of Rhodamine B by ultrasonic irradiation could reach 75.4% only after 5 s and then 94.9% in 60 s without light assistance. This ultra-rapid degradation rate is attributed to the electron–hole pairs and transfer of the charge-carriers on the surface of 2H-MoS<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub> via S-scheme heterojunction model, which was confirmed by density functional theory study. The piezo-catalytic ability of the material can still be improved for better treatment of other organic pollutants in aqueous environment.</p></div>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"67 17-18","pages":"1141 - 1154"},"PeriodicalIF":2.8,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141255644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enzymatic Extract from Luffa-Immobilized Pleurotus sajor-caju: A Promising Biocatalyst for Agro-Industrial Pollutant Reduction and Toxicity Mitigation 从丝瓜中提取的酶提取物:用于减少农业工业污染物和减轻毒性的前景广阔的生物催化剂
IF 3.6 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-05-31 DOI: 10.1007/s11244-024-01970-4
Clara Dourado Fernandes, Vera Lucia Scherholz Salgado de Castro, José Henrique Vallim, Atif Khurshid Wani, Juliana Heloisa Pinê Américo-Pinheiro, Teresa Serejo, Rinaldo Wellerson Pereira, Silvia Maria Egues, Luiz Fernando Romanholo Ferreira

In biotechnological methods for biodegradation, the effectiveness of detoxifying xenobiotics and recalcitrant substances in soil and water has sparked significant interest. Our study takes a unique approach by focusing on immobilizing the white-rot fungus (WRF) Pleurotus sajor-caju onto a Luffa cylindrica plant support. This innovative method aims to facilitate the mycoremediation of agro-industrial pollutant pulp wash generated by the orange industry. The immobilization process significantly increased MnP enzymatic activity, reaching 23 IU.mL−1 and Lac activity at approximately 40.5 IU.mL−1. Qualitative SEM and FTIR analyses provided insights into the microorganism’s attachment mechanism to the support, suggesting that aggregation occurs due to an affinity to the lignocellulosic structure, enhancing the production of polysaccharides responsible for biocatalyst adherence and potential reusability. Furthermore, the production of an enzymatic extract rich in ligninolytic enzymes from P. sajor-caju showcased its ability to reduce the toxicity of pulp wash. An exploration into the toxicity of citrus effluent revealed the generation of embryos with severe deformities and the inhibition of Lactuca sativa germination, even at low concentrations. Notably, post-treatment with the enzymatic extract resulted in a remarkable 90% reduction in toxicity to the trophic level of Danio rerio and lettuce seeds. This research significantly contributes to understanding fungal immobilization strategies in environmental biotechnology, emphasizing the potential of agricultural residues as sustainable inducers for enzyme production and their pivotal role in mitigating the environmental impact of agro-industrial waste.

在生物降解的生物技术方法中,对土壤和水中的异种生物和难降解物质进行解毒的有效性引起了人们的极大兴趣。我们的研究采用了一种独特的方法,将白腐真菌(WRF)Pleurotus sajor-caju固定在丝瓜植物支架上。这种创新方法旨在促进对橘子产业产生的农用工业污染物浆洗的菌体修复。固定化过程大大提高了 MnP 酶活性,达到 23 IU.mL-1,Lac 活性约为 40.5 IU.mL-1。扫描电子显微镜和傅立叶变换红外光谱的定性分析深入揭示了微生物附着在载体上的机制,表明由于对木质纤维素结构的亲和力而发生了聚集,从而提高了多糖的产生,促进了生物催化剂的附着和潜在的可重复使用性。此外,从 P. sajor-caju 中提取富含木质素分解酶的酶提取物,显示了其降低纸浆洗涤毒性的能力。对柑橘废水毒性的研究表明,即使在低浓度下,也会产生严重畸形的胚胎,并抑制莴苣的发芽。值得注意的是,用酶提取物进行后处理后,对营养级的小白鼠和莴苣种子的毒性显著降低了 90%。这项研究极大地促进了对环境生物技术中真菌固定化策略的理解,强调了农业残留物作为酶生产的可持续诱导剂的潜力,以及它们在减轻农业工业废物对环境影响方面的关键作用。
{"title":"Enzymatic Extract from Luffa-Immobilized Pleurotus sajor-caju: A Promising Biocatalyst for Agro-Industrial Pollutant Reduction and Toxicity Mitigation","authors":"Clara Dourado Fernandes, Vera Lucia Scherholz Salgado de Castro, José Henrique Vallim, Atif Khurshid Wani, Juliana Heloisa Pinê Américo-Pinheiro, Teresa Serejo, Rinaldo Wellerson Pereira, Silvia Maria Egues, Luiz Fernando Romanholo Ferreira","doi":"10.1007/s11244-024-01970-4","DOIUrl":"https://doi.org/10.1007/s11244-024-01970-4","url":null,"abstract":"<p>In biotechnological methods for biodegradation, the effectiveness of detoxifying xenobiotics and recalcitrant substances in soil and water has sparked significant interest. Our study takes a unique approach by focusing on immobilizing the white-rot fungus (WRF) <i>Pleurotus sajor-caju</i> onto a <i>Luffa cylindrica</i> plant support. This innovative method aims to facilitate the mycoremediation of agro-industrial pollutant <i>pulp wash</i> generated by the orange industry. The immobilization process significantly increased MnP enzymatic activity, reaching 23 IU.mL<sup>−1</sup> and Lac activity at approximately 40.5 IU.mL<sup>−1</sup>. Qualitative SEM and FTIR analyses provided insights into the microorganism’s attachment mechanism to the support, suggesting that aggregation occurs due to an affinity to the lignocellulosic structure, enhancing the production of polysaccharides responsible for biocatalyst adherence and potential reusability. Furthermore, the production of an enzymatic extract rich in ligninolytic enzymes from <i>P. sajor-caju</i> showcased its ability to reduce the toxicity of <i>pulp wash</i>. An exploration into the toxicity of citrus effluent revealed the generation of embryos with severe deformities and the inhibition of <i>Lactuca sativa</i> germination, even at low concentrations. Notably, post-treatment with the enzymatic extract resulted in a remarkable 90% reduction in toxicity to the trophic level of <i>Danio rerio</i> and lettuce seeds. This research significantly contributes to understanding fungal immobilization strategies in environmental biotechnology, emphasizing the potential of agricultural residues as sustainable inducers for enzyme production and their pivotal role in mitigating the environmental impact of agro-industrial waste.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"40 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141190150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photocatalytic Degradation of Methyl Orange from Aqueous Solution Using ZnO by Response Surface Methodology 响应面方法学:利用氧化锌对水溶液中的甲基橙进行光催化降解
IF 3.6 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-05-30 DOI: 10.1007/s11244-024-01969-x
Muhammad Asif, Muhammad Shafiq, Faiza Imtiaz, Sheraz Ahmed, Abdulrahman Ali Alazba, Hafiz Nawaz Hussain, Farah Nemat Butt, Syeda Alvia Zainab, Muhammad Kashif Khan, Muhammad Bilal

Pollution from dye-containing industrial wastewater is a major health hazard in many nations, necessitating modern remediation approaches. Herein, zinc oxide (ZnO) was employed to degrade methyl orange (MO) as an organic dye pollutant under UV light irradiation. The performance was observed experimentally and theoretically under optimized conditions including the pH (11), the concentration of the nanoparticle solution (900 ppm), and time (3 h), resulting in a degradation efficiency of 89.6%. Furthermore, the influence of various parameters on MO degradation was evaluated by response surface methodology (RSM). X-ray diffraction (XRD) and transmission electron microscopy (TEM) was performed to investigate the crystallinity and morphological behavior of ZnO-NPs. In addition, the surface chemical composition was evaluated by the XPS analysis. This study evaluates the degradation efficiency of ~ 90% using single metal oxide to degrade MO, opening new opportunities for environmental applications.

在许多国家,含染料工业废水的污染是对健康的一大危害,因此需要采用现代化的治理方法。本文采用氧化锌(ZnO)在紫外光照射下降解有机染料污染物甲基橙(MO)。在 pH 值(11)、纳米粒子溶液浓度(900 ppm)和时间(3 h)等优化条件下,实验和理论观察了其性能,结果表明降解效率为 89.6%。此外,还利用响应面法(RSM)评估了各种参数对 MO 降解的影响。通过 X 射线衍射(XRD)和透射电子显微镜(TEM)研究了 ZnO-NPs 的结晶度和形态行为。此外,还通过 XPS 分析评估了表面化学成分。这项研究评估了使用单一金属氧化物降解 MO 的降解效率约为 90%,为环境应用带来了新的机遇。
{"title":"Photocatalytic Degradation of Methyl Orange from Aqueous Solution Using ZnO by Response Surface Methodology","authors":"Muhammad Asif, Muhammad Shafiq, Faiza Imtiaz, Sheraz Ahmed, Abdulrahman Ali Alazba, Hafiz Nawaz Hussain, Farah Nemat Butt, Syeda Alvia Zainab, Muhammad Kashif Khan, Muhammad Bilal","doi":"10.1007/s11244-024-01969-x","DOIUrl":"https://doi.org/10.1007/s11244-024-01969-x","url":null,"abstract":"<p>Pollution from dye-containing industrial wastewater is a major health hazard in many nations, necessitating modern remediation approaches. Herein, zinc oxide (ZnO) was employed to degrade methyl orange (MO) as an organic dye pollutant under UV light irradiation. The performance was observed experimentally and theoretically under optimized conditions including the pH (11), the concentration of the nanoparticle solution (900 ppm), and time (3 h), resulting in a degradation efficiency of 89.6%. Furthermore, the influence of various parameters on MO degradation was evaluated by response surface methodology (RSM). X-ray diffraction (XRD) and transmission electron microscopy (TEM) was performed to investigate the crystallinity and morphological behavior of ZnO-NPs. In addition, the surface chemical composition was evaluated by the XPS analysis. This study evaluates the degradation efficiency of ~ 90% using single metal oxide to degrade MO, opening new opportunities for environmental applications.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"2010 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141190106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorization of Furfural to Obtain High Value-Added Products with ZrO2- and Al2O3-Pillared Clays 利用 ZrO2- 和 Al2O3-柱状粘土对糠醛进行增值处理以获得高附加值产品
IF 3.6 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-05-28 DOI: 10.1007/s11244-024-01971-3
Salima Es Sih, Francisco Franco-Duro, Cristina García-Sancho, Francisco José García-Mateos, Juana María Rosas, Ramón Moreno-Tost, Pedro Maireles-Torres, Juan Antonio Cecilia

Two phyllosilicates (montmorillonite and saponite) have been selected as starting materials to synthesize ZrO2- and Al2O3-pillared clays by the insertion of polyoxocations and subsequent calcination. These pillared clays display higher surface area, porosity and available acid sites in comparison to their respective raw clays. These samples were tested in the one-pot process to transform furfural into obtain valuable products. The incorporation of ZrO2 allows to reach the highest furfural conversion values, with high yields towards furfuryl alcohol (FOL) at shorter reaction times, whereas the formation of i-propyl furfuryl ether (iPFE) is favored at longer times, attaining iPFE yields of about 50% after 24 h at 170 ºC, using isopropanol as sacrificing alcohol.

我们选择了两种绿硅酸盐(蒙脱石和皂石)作为起始材料,通过插入多氧杂环和随后的煅烧,合成出 ZrO2- 和 Al2O3-柱状粘土。与各自的原始粘土相比,这些柱状粘土具有更高的表面积、孔隙率和可用酸位点。这些样品在将糠醛转化为有价值产品的单锅工艺中进行了测试。加入 ZrO2 可使糠醛转化率达到最高值,在较短的反应时间内可获得较高的糠醇 (FOL) 产率,而在较长的反应时间内则有利于形成 i-丙基糠醇醚 (iPFE),使用异丙醇作为牺牲醇,在 170 ºC 温度下反应 24 小时后,iPFE 产率约为 50%。
{"title":"Valorization of Furfural to Obtain High Value-Added Products with ZrO2- and Al2O3-Pillared Clays","authors":"Salima Es Sih, Francisco Franco-Duro, Cristina García-Sancho, Francisco José García-Mateos, Juana María Rosas, Ramón Moreno-Tost, Pedro Maireles-Torres, Juan Antonio Cecilia","doi":"10.1007/s11244-024-01971-3","DOIUrl":"https://doi.org/10.1007/s11244-024-01971-3","url":null,"abstract":"<p>Two phyllosilicates (montmorillonite and saponite) have been selected as starting materials to synthesize ZrO<sub>2</sub>- and Al<sub>2</sub>O<sub>3</sub>-pillared clays by the insertion of polyoxocations and subsequent calcination. These pillared clays display higher surface area, porosity and available acid sites in comparison to their respective raw clays. These samples were tested in the one-pot process to transform furfural into obtain valuable products. The incorporation of ZrO<sub>2</sub> allows to reach the highest furfural conversion values, with high yields towards furfuryl alcohol (FOL) at shorter reaction times, whereas the formation of i-propyl furfuryl ether (iPFE) is favored at longer times, attaining iPFE yields of about 50% after 24 h at 170 ºC, using isopropanol as sacrificing alcohol.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"22 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141169493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Waste Water Treatment Using Piezoelectric Materials: A Review on Piezo-photocatalysis 利用压电材料处理废水:压电光催化综述
IF 2.8 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-05-27 DOI: 10.1007/s11244-024-01966-0
Karambir Singh, Ritesh Verma, Ankush Chauhan, Rohit Jasrotia, Shobhit Saini, Pankaj Thakur, Vinod Kumar, Preeti Thakur, Atul Thakur

Over time, industrialization, population expansion, building, and other human-related activities have made water contamination a major problem. As a result, steps towards waste water treatment must be taken. By using piezoelectric materials in the purifying process, a new area of waste water treatment known as piezo-photocatalysis has emerged. To improve the material’s water purification effectiveness, the piezoelectric action is paired with sun irradiation in this case. Up until this point, photocatalysis has served as a sophisticated method for purification. Thus, the piezoelectric materials became the center of attention in the quest for cutting-edge technologies for water purification. Piezoelectric materials have other potential applications outside of water treatment, including hydrogen production and carbon dioxide adsorption. The lead, barium, KNN, and bismuth perovskite compounds that have seen extensive usage in wastewater treatment are covered in this paper. These materials have the potential to achieve an efficiency of almost 100% when they combine the effects of piezoelectricity with photocatalysis. Consequently, the function of piezoelectric materials in wastewater treatment and the mechanism of piezo-photocatalysis are covered extensively in this paper.

随着时间的推移,工业化、人口膨胀、建筑和其他与人类相关的活动已使水污染成为一个主要问题。因此,必须采取废水处理措施。通过在净化过程中使用压电材料,一个被称为压电光催化的废水处理新领域应运而生。为了提高材料的净水效果,在这种情况下,压电作用与太阳光照射相结合。在此之前,光催化一直是一种复杂的净化方法。因此,压电材料成为了寻求水净化尖端技术的关注焦点。压电材料在水处理之外还有其他潜在应用,包括制氢和二氧化碳吸附。本文将介绍在废水处理中得到广泛应用的铅、钡、KNN 和铋包晶化合物。当这些材料将压电效应和光催化效应结合在一起时,其效率几乎可以达到 100%。因此,本文广泛介绍了压电材料在废水处理中的功能以及压电光催化的机理。
{"title":"Waste Water Treatment Using Piezoelectric Materials: A Review on Piezo-photocatalysis","authors":"Karambir Singh,&nbsp;Ritesh Verma,&nbsp;Ankush Chauhan,&nbsp;Rohit Jasrotia,&nbsp;Shobhit Saini,&nbsp;Pankaj Thakur,&nbsp;Vinod Kumar,&nbsp;Preeti Thakur,&nbsp;Atul Thakur","doi":"10.1007/s11244-024-01966-0","DOIUrl":"10.1007/s11244-024-01966-0","url":null,"abstract":"<div><p>Over time, industrialization, population expansion, building, and other human-related activities have made water contamination a major problem. As a result, steps towards waste water treatment must be taken. By using piezoelectric materials in the purifying process, a new area of waste water treatment known as piezo-photocatalysis has emerged. To improve the material’s water purification effectiveness, the piezoelectric action is paired with sun irradiation in this case. Up until this point, photocatalysis has served as a sophisticated method for purification. Thus, the piezoelectric materials became the center of attention in the quest for cutting-edge technologies for water purification. Piezoelectric materials have other potential applications outside of water treatment, including hydrogen production and carbon dioxide adsorption. The lead, barium, KNN, and bismuth perovskite compounds that have seen extensive usage in wastewater treatment are covered in this paper. These materials have the potential to achieve an efficiency of almost 100% when they combine the effects of piezoelectricity with photocatalysis. Consequently, the function of piezoelectric materials in wastewater treatment and the mechanism of piezo-photocatalysis are covered extensively in this paper.</p></div>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"67 17-18","pages":"1101 - 1128"},"PeriodicalIF":2.8,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141169491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Clay Based Electrocatalyst for Lactate Detection in Saliva and Blood Samples during Exercise in Athletes 一种基于粘土的新型电催化剂,用于检测运动员运动时唾液和血液样本中的乳酸盐含量
IF 3.6 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-05-27 DOI: 10.1007/s11244-024-01967-z
Hao Liu, Najmeh Zare

In this research, a new non-enzymatic amperometric sensor has been developed for the determination of lactate based on a sepiolite@Pt electrocatalyst. The uniform dispersion of small-sized platinum nanoparticles (NPs) leads to optimized electron transfer kinetics, thereby low lactate detection ability of the modified carbon paste electrode (CPE). The innovative sensing platform demonstrates a linear response to lactate concentrations ranging from 10 to 1100 µM. By using a signal-to-noise ratio of 3σ, a detection limit of 2 µM was established. Moreover, the precise analysis of lactate in human fluids suggests that the proposed method is a highly specific tool for lactate monitoring. Notably, the sensor’s capabilities were extended to include the measurement of lactate concentrations in saliva samples obtained during sport practice. The proposed method offers a cost-effective and efficient means of lactate monitoring, enabling rapid analysis times and streamlined clinical testing procedures.

本研究开发了一种基于sepiolite@Pt电催化剂的新型非酶安培传感器,用于测定乳酸盐。小尺寸铂纳米颗粒(NPs)的均匀分散优化了电子传递动力学,从而降低了改性碳浆电极(CPE)的乳酸盐检测能力。该创新型传感平台对 10 至 1100 µM 的乳酸盐浓度具有线性响应。信噪比为 3σ,检测限为 2 µM。此外,对人体液中乳酸盐的精确分析表明,所提出的方法是一种高度特异性的乳酸盐监测工具。值得注意的是,该传感器的功能已扩展到测量体育锻炼时唾液样本中的乳酸盐浓度。所提出的方法提供了一种经济高效的乳酸盐监测手段,可实现快速分析和简化临床检测程序。
{"title":"A Novel Clay Based Electrocatalyst for Lactate Detection in Saliva and Blood Samples during Exercise in Athletes","authors":"Hao Liu, Najmeh Zare","doi":"10.1007/s11244-024-01967-z","DOIUrl":"https://doi.org/10.1007/s11244-024-01967-z","url":null,"abstract":"<p>In this research, a new non-enzymatic amperometric sensor has been developed for the determination of lactate based on a sepiolite@Pt electrocatalyst. The uniform dispersion of small-sized platinum nanoparticles (NPs) leads to optimized electron transfer kinetics, thereby low lactate detection ability of the modified carbon paste electrode (CPE). The innovative sensing platform demonstrates a linear response to lactate concentrations ranging from 10 to 1100 µM. By using a signal-to-noise ratio of 3σ, a detection limit of 2 µM was established. Moreover, the precise analysis of lactate in human fluids suggests that the proposed method is a highly specific tool for lactate monitoring. Notably, the sensor’s capabilities were extended to include the measurement of lactate concentrations in saliva samples obtained during sport practice. The proposed method offers a cost-effective and efficient means of lactate monitoring, enabling rapid analysis times and streamlined clinical testing procedures.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"129 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141169490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Treating NOx gas Pollution by Visible Light Photocatalytic Reaction of S-doped TiO2 Nanotubes 利用掺杂 S 的二氧化钛纳米管的可见光光催化反应处理氮氧化物气体污染
IF 2.8 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-05-23 DOI: 10.1007/s11244-024-01972-2
Pho Thi Le, Thi Minh Cao, Tin Chanh Duc Doan, Viet Van Pham

The TiO2 nanomaterial is a traditional photocatalyst that was applied externally in environmental and energy fields. However, a large band gap of TiO2 is a limitation of this material in applications in visible-light regions. Sulfur (S) doped TiO2 nanotubes were synthesized with different weight ratios of the S precursor and TiO2 nanotubes by a thermal diffusion process. Techniques including Fourier transform infrared (FTIR), UV-vis diffuse reflection spectroscopy (DRS), photoluminescence spectroscopy (PL), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) were used to confirm the successful doping of the S-TiO2 nanotubes. The treatment of nitrogen oxide (NOx) gas through photocatalysis using S-doped TiO2 nanotubes represents an innovative and environmentally friendly approach. Sulfur doping narrows the band gap of TiO2 nanotubes (from 3.22 to 3.14 eV), allowing for better absorption of visible light. Furthermore, the photocatalytic NOx removal performance of S-TiO2 nanotubes was significantly enhanced with more than 40% NO at 500 ppb, and the efficiency of NO emission decreased significantly after five cycling tests.

二氧化钛纳米材料是一种传统的光催化剂,被广泛应用于环境和能源领域。然而,TiO2 的带隙较大,限制了这种材料在可见光区域的应用。通过热扩散工艺,用不同重量比的硫前驱体和二氧化钛纳米管合成了掺硫(S)的二氧化钛纳米管。傅立叶变换红外光谱(FTIR)、紫外-可见漫反射光谱(DRS)、光致发光光谱(PL)、X 射线衍射(XRD)和 X 射线光电子能谱(XPS)等技术被用来确认 S-TiO2 纳米管的成功掺杂。利用掺硫二氧化钛纳米管进行光催化处理氮氧化物(NOx)气体是一种创新的环保方法。硫掺杂使二氧化钛纳米管的带隙变窄(从 3.22 到 3.14 eV),从而能更好地吸收可见光。此外,S-TiO2 纳米管的光催化去除氮氧化物性能显著提高,在 500 ppb 的条件下,氮氧化物的去除率超过 40%,而且经过五次循环测试后,氮氧化物的排放效率明显降低。
{"title":"Treating NOx gas Pollution by Visible Light Photocatalytic Reaction of S-doped TiO2 Nanotubes","authors":"Pho Thi Le,&nbsp;Thi Minh Cao,&nbsp;Tin Chanh Duc Doan,&nbsp;Viet Van Pham","doi":"10.1007/s11244-024-01972-2","DOIUrl":"10.1007/s11244-024-01972-2","url":null,"abstract":"<div><p>The TiO<sub>2</sub> nanomaterial is a traditional photocatalyst that was applied externally in environmental and energy fields. However, a large band gap of TiO<sub>2</sub> is a limitation of this material in applications in visible-light regions. Sulfur (S) doped TiO<sub>2</sub> nanotubes were synthesized with different weight ratios of the S precursor and TiO<sub>2</sub> nanotubes by a thermal diffusion process. Techniques including Fourier transform infrared (FTIR), UV-vis diffuse reflection spectroscopy (DRS), photoluminescence spectroscopy (PL), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) were used to confirm the successful doping of the S-TiO<sub>2</sub> nanotubes. The treatment of nitrogen oxide (NO<sub>x</sub>) gas through photocatalysis using S-doped TiO<sub>2</sub> nanotubes represents an innovative and environmentally friendly approach. Sulfur doping narrows the band gap of TiO<sub>2</sub> nanotubes (from 3.22 to 3.14 eV), allowing for better absorption of visible light. Furthermore, the photocatalytic NO<sub>x</sub> removal performance of S-TiO<sub>2</sub> nanotubes was significantly enhanced with more than 40% NO at 500 ppb, and the efficiency of NO emission decreased significantly after five cycling tests.</p></div>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"67 17-18","pages":"1129 - 1140"},"PeriodicalIF":2.8,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141104281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous Electro-Sensing of Guanine and Adenine on GO/Fe3O4-PMDA@Bi Nanocomposite 在 GO/Fe3O4-PMDA@Bi 纳米复合材料上同时电传感鸟嘌呤和腺嘌呤
IF 3.6 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-05-18 DOI: 10.1007/s11244-024-01960-6
Mehdi Baghayeri, Marzieh Nodehi, Amirhasan Amiri, Habib Ashena, Fatemeh Abedi, Roya Mehrkhah

Herein, we report developing an electrochemical sensor based on a glassy carbon electrode modified by bismuth nanoparticles, graphene oxide, iron oxide, and poly-methyldopa namely Bi@Fe3O4-PMDA/GO/GCE for detecting guanine and adenine. Under optimized conditions (5 μL of Fe3O4-PMDA/GO, 0.5 mg mL−1 of Fe3O4-PMDA/GO solution, water as solvent of Fe3O4-PMDA/GO and acetate buffer (0.1 M, pH 6) as electrolytes), the electrochemical behaviors of guanine and adenine on the prepared modified electrode were investigated by cyclic voltammetry and differential pulse voltammetry. With a high specific surface area and numerous active sites, Bi@Fe3O4-PMDA/GO/GCE exhibited outstanding electrocatalytic properties enabling the determination of guanine and adenine over a wide concentration range with the low detection limit. The Bi@Fe3O4-PMDA/GO/GCE possessed the advantages of simplicity, speed, good sensitivity, and anti-interference performance. Using the DPV method, the resulting sensor exhibited an excellent response with a wide linear ranges from 0.5 to 300 μM for both analytes with LODs 0.027 and 0.032 µM for adenine and guanine, respectively. The designed electrode was satisfactorily employed for the analysis of the real sample. Therefore, Bi@Fe3O4-PMDA/GO/GCE demonstrating sufficient selectivity and sensitivity for the individual and simultaneous study could be applied in widespread fields, including biotechnology or microbiology.

Graphical abstract

在此,我们报告了基于纳米铋、氧化石墨烯、氧化铁和聚甲基多巴修饰的玻璃碳电极(即 Bi@Fe3O4-PMDA/GO/GCE)开发的用于检测鸟嘌呤和腺嘌呤的电化学传感器。在优化的条件下(5 μL Fe3O4-PMDA/GO、0.5 mg mL-1 Fe3O4-PMDA/GO 溶液、水作为 Fe3O4-PMDA/GO 的溶剂、醋酸盐缓冲液(0.1 M,pH 6)作为电解质),通过循环伏安法和差分脉冲伏安法研究了鸟嘌呤和腺嘌呤在制备的修饰电极上的电化学行为。Bi@Fe3O4-PMDA/GO/GCE 具有高比表面积和大量活性位点,表现出卓越的电催化性能,可在较宽的浓度范围内测定鸟嘌呤和腺嘌呤,且检出限较低。Bi@Fe3O4-PMDA/GO/GCE 具有简便、快速、灵敏度高、抗干扰性强等优点。采用 DPV 方法,所设计的传感器具有良好的响应性能,对两种分析物的线性范围都很宽,从 0.5 μM 到 300 μM,对腺嘌呤和鸟嘌呤的检测限分别为 0.027 和 0.032 µM。所设计的电极在实际样品分析中的应用效果令人满意。因此,Bi@Fe3O4-PMDA/GO/GCE 具有足够的选择性和灵敏度,可用于单独和同时研究,可广泛应用于生物技术或微生物学等领域。
{"title":"Simultaneous Electro-Sensing of Guanine and Adenine on GO/Fe3O4-PMDA@Bi Nanocomposite","authors":"Mehdi Baghayeri, Marzieh Nodehi, Amirhasan Amiri, Habib Ashena, Fatemeh Abedi, Roya Mehrkhah","doi":"10.1007/s11244-024-01960-6","DOIUrl":"https://doi.org/10.1007/s11244-024-01960-6","url":null,"abstract":"<p>Herein, we report developing an electrochemical sensor based on a glassy carbon electrode modified by bismuth nanoparticles, graphene oxide, iron oxide, and poly-methyldopa namely Bi@Fe<sub>3</sub>O<sub>4</sub>-PMDA/GO/GCE for detecting guanine and adenine. Under optimized conditions (5 μL of Fe<sub>3</sub>O<sub>4</sub>-PMDA/GO, 0.5 mg mL<sup>−1</sup> of Fe<sub>3</sub>O<sub>4</sub>-PMDA/GO solution, water as solvent of Fe<sub>3</sub>O<sub>4</sub>-PMDA/GO and acetate buffer (0.1 M, pH 6) as electrolytes), the electrochemical behaviors of guanine and adenine on the prepared modified electrode were investigated by cyclic voltammetry and differential pulse voltammetry. With a high specific surface area and numerous active sites, Bi@Fe<sub>3</sub>O<sub>4</sub>-PMDA/GO/GCE exhibited outstanding electrocatalytic properties enabling the determination of guanine and adenine over a wide concentration range with the low detection limit. The Bi@Fe<sub>3</sub>O<sub>4</sub>-PMDA/GO/GCE possessed the advantages of simplicity, speed, good sensitivity, and anti-interference performance. Using the DPV method, the resulting sensor exhibited an excellent response with a wide linear ranges from 0.5 to 300 μM for both analytes with LODs 0.027 and 0.032 µM for adenine and guanine, respectively. The designed electrode was satisfactorily employed for the analysis of the real sample. Therefore, Bi@Fe<sub>3</sub>O<sub>4</sub>-PMDA/GO/GCE demonstrating sufficient selectivity and sensitivity for the individual and simultaneous study could be applied in widespread fields, including biotechnology or microbiology.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"240 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of a New and Effective Heterogeneous Catalyst for Treatment of Organic Pollutant Using Fenton Process 利用 Fenton 工艺制备处理有机污染物的新型有效异相催化剂
IF 3.6 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-05-14 DOI: 10.1007/s11244-024-01959-z
Meng Xu, Qiping Tian, Yuankang Quan, Liya Xu, Melika Namadchian

In the present study, the fabrication and application of a magnetically separable catalyst for degradation of rhodamine B (RhB) dye using Fenton process were explored using an efficient octahedral Fe3O4-graphene oxide (OFe-GO) nanocomposite. By employing a simple ultrasonic process, the OFe-GO catalyst was successfully prepared through the immobilization of OFe onto the GO support. Various characterization methods were used to fully explore the crystalline character, morphological surface, chemical state and magnetic property of the prepared catalyst substances. In the presence of hydrogen peroxide (H2O2) as a green oxidant, the catalytic performance of RhB degradation using the proposed magnetic catalyst was explored. The experimental factors affected on the Fenton performance such as solution pH, catalyst concentration and H2O2 concentration were evaluated and optimized. Using the established protocol, 50 mg mL−1 of RhB can be completely at 15 min reaction time. Additionally, the used OFe-GO catalyst can be regenerated without losing the degradation performance for at least five cycles. Because of notable catalytic efficiency, fast degradation, and operational stability, the OFe-GO can be considered as an effective and separable catalyst for decolorization of dye-containing wastewater.

Graphical Abstract

本研究利用高效八面体 Fe3O4-氧化石墨烯(OFe-GO)纳米复合材料,探索了利用 Fenton 工艺降解罗丹明 B(RhB)染料的磁性可分离催化剂的制备和应用。通过采用简单的超声波工艺,将 OFe 固定在 GO 载体上,成功制备了 OFe-GO 催化剂。研究人员采用多种表征方法对所制备催化剂物质的结晶性质、形貌表面、化学状态和磁性能进行了充分的研究。在过氧化氢(H2O2)作为绿色氧化剂存在的条件下,探讨了利用所提出的磁性催化剂降解 RhB 的催化性能。对影响 Fenton 性能的实验因素(如溶液 pH 值、催化剂浓度和 H2O2 浓度)进行了评估和优化。按照既定方案,在 15 分钟的反应时间内可完全分解 50 mg mL-1 的 RhB。此外,所使用的 OFe-GO 催化剂可以再生,至少可循环使用五次而不会失去降解性能。由于催化效率高、降解速度快、操作稳定,OFe-GO 可被视为一种有效的可分离催化剂,用于含染料废水的脱色。
{"title":"Preparation of a New and Effective Heterogeneous Catalyst for Treatment of Organic Pollutant Using Fenton Process","authors":"Meng Xu, Qiping Tian, Yuankang Quan, Liya Xu, Melika Namadchian","doi":"10.1007/s11244-024-01959-z","DOIUrl":"https://doi.org/10.1007/s11244-024-01959-z","url":null,"abstract":"<p>In the present study, the fabrication and application of a magnetically separable catalyst for degradation of rhodamine B (RhB) dye using Fenton process were explored using an efficient octahedral Fe<sub>3</sub>O<sub>4</sub>-graphene oxide (OFe-GO) nanocomposite. By employing a simple ultrasonic process, the OFe-GO catalyst was successfully prepared through the immobilization of OFe onto the GO support. Various characterization methods were used to fully explore the crystalline character, morphological surface, chemical state and magnetic property of the prepared catalyst substances. In the presence of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) as a green oxidant, the catalytic performance of RhB degradation using the proposed magnetic catalyst was explored. The experimental factors affected on the Fenton performance such as solution pH, catalyst concentration and H<sub>2</sub>O<sub>2</sub> concentration were evaluated and optimized. Using the established protocol, 50 mg mL<sup>−1</sup> of RhB can be completely at 15 min reaction time. Additionally, the used OFe-GO catalyst can be regenerated without losing the degradation performance for at least five cycles. Because of notable catalytic efficiency, fast degradation, and operational stability, the OFe-GO can be considered as an effective and separable catalyst for decolorization of dye-containing wastewater.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"22 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development Trends in Selective Hydrogenation Upgrading of 5-Hydroxymethylfurfural Catalyzed by Heterogeneous Metal Catalysts 异相金属催化剂催化 5-羟甲基糠醛选择性加氢升级的发展趋势
IF 3.6 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-05-09 DOI: 10.1007/s11244-024-01951-7
Shulin Liu, Guowei Zhou, Huizhen Liu, Buxing Han

5-Hydroxymethylfurfural (HMF) is a crucial platform molecule derived from biomass, with the potential for conversion into a wide array of products, intermediates, or monomers through various transformations including hydrogenation, oxidation, reductive amination, etherification, and decarbonylation due to its diverse functional groups (hydroxy, aldehyde, furan ring). Particularly, diverse products can be derived from the hydrogenation of C=O, C=C, and C–OH, posing a significant challenge in developing active and highly selective catalysts. This minireview addresses recent developments in heterogeneous catalysts and their application to HMF hydrogenation. Emphasis is placed on hydrogenation pathways and the construction of catalytic systems. The aim is to provide researchers with a comprehensive understanding of hydrogenation, hydrogenolysis, and dehydrogenation reactions applicable to biomass conversion. Additionally, current challenges and future opportunities are outlined to guide further studies towards more efficient and scalable processes.

5-Hydroxymethylfurfural (HMF) 是一种从生物质中提取的重要平台分子,由于其官能团(羟基、醛、呋喃环)的多样性,可通过氢化、氧化、还原胺化、醚化和脱羰基化等各种转化过程转化为多种产品、中间体或单体。特别是,C=O、C=C 和 C-OH 的氢化反应可产生多种产品,这给开发活性和高选择性催化剂带来了巨大挑战。本微型综述介绍了异质催化剂的最新发展及其在 HMF 加氢反应中的应用。重点是氢化途径和催化体系的构建。目的是让研究人员全面了解适用于生物质转化的氢化、氢解和脱氢反应。此外,还概述了当前的挑战和未来的机遇,以指导进一步研究更高效和可扩展的工艺。
{"title":"Development Trends in Selective Hydrogenation Upgrading of 5-Hydroxymethylfurfural Catalyzed by Heterogeneous Metal Catalysts","authors":"Shulin Liu, Guowei Zhou, Huizhen Liu, Buxing Han","doi":"10.1007/s11244-024-01951-7","DOIUrl":"https://doi.org/10.1007/s11244-024-01951-7","url":null,"abstract":"<p>5-Hydroxymethylfurfural (HMF) is a crucial platform molecule derived from biomass, with the potential for conversion into a wide array of products, intermediates, or monomers through various transformations including hydrogenation, oxidation, reductive amination, etherification, and decarbonylation due to its diverse functional groups (hydroxy, aldehyde, furan ring). Particularly, diverse products can be derived from the hydrogenation of C=O, C=C, and C–OH, posing a significant challenge in developing active and highly selective catalysts. This minireview addresses recent developments in heterogeneous catalysts and their application to HMF hydrogenation. Emphasis is placed on hydrogenation pathways and the construction of catalytic systems. The aim is to provide researchers with a comprehensive understanding of hydrogenation, hydrogenolysis, and dehydrogenation reactions applicable to biomass conversion. Additionally, current challenges and future opportunities are outlined to guide further studies towards more efficient and scalable processes.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"81 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Topics in Catalysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1