Pub Date : 2023-12-16DOI: 10.1007/s41061-023-00446-5
Veronika Šlachtová, Marek Chovanec, Michal Rahm, Milan Vrabel
While bioorthogonal reactions are routinely employed in living cells and organisms, their application within individual organelles remains limited. In this review, we highlight diverse examples of bioorthogonal reactions used to investigate the roles of biomolecules and biological processes as well as advanced imaging techniques within cellular organelles. These innovations hold great promise for therapeutic interventions in personalized medicine and precision therapies. We also address existing challenges related to the selectivity and trafficking of subcellular dynamics. Organelle-targeted bioorthogonal reactions have the potential to significantly advance our understanding of cellular organization and function, provide new pathways for basic research and clinical applications, and shape the direction of cell biology and medical research.
{"title":"Bioorthogonal Chemistry in Cellular Organelles","authors":"Veronika Šlachtová, Marek Chovanec, Michal Rahm, Milan Vrabel","doi":"10.1007/s41061-023-00446-5","DOIUrl":"10.1007/s41061-023-00446-5","url":null,"abstract":"<div><p>While bioorthogonal reactions are routinely employed in living cells and organisms, their application within individual organelles remains limited. In this review, we highlight diverse examples of bioorthogonal reactions used to investigate the roles of biomolecules and biological processes as well as advanced imaging techniques within cellular organelles. These innovations hold great promise for therapeutic interventions in personalized medicine and precision therapies. We also address existing challenges related to the selectivity and trafficking of subcellular dynamics. Organelle-targeted bioorthogonal reactions have the potential to significantly advance our understanding of cellular organization and function, provide new pathways for basic research and clinical applications, and shape the direction of cell biology and medical research.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"382 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41061-023-00446-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138688241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-13DOI: 10.1007/s41061-023-00447-4
Heyang Zhang, Ming Fang, Qing Lin
Light-induced bioorthogonal reactions offer spatiotemporal control over selective biomolecular labeling. This review covers the recent advances in the design of photo-activatable reagents for bioorthogonal conjugation reactions in living systems. These reagents are stable in the absence of light, but transformed into reactive species upon light illumination, which then undergo rapid ligation reactions. The light wavelength has been tuned from ultraviolet to near infrared to enable efficient photo-activation in reactions in deep tissues. The most prominent photo-activatable reagents are presented, including tetrazoles, tetrazines, 9,10-phenanthrenequinone, diarylsydnones, and others. A particular focus is on the strategies for improving reaction kinetics and biocompatibility accomplished through careful molecular engineering. The utilities of these photo-activatable reagents are illustrated through a broad range of biological applications, including in vivo protein labeling, positron emission tomography (PET) imaging, responsive hydrogels, and fluorescence microscopy. The further development and optimization of these biocompatible photo-activatable reagents should lead to new chemical biology strategies for studying biomolecular structure and function in living systems.
{"title":"Photo-activatable Reagents for Bioorthogonal Ligation Reactions","authors":"Heyang Zhang, Ming Fang, Qing Lin","doi":"10.1007/s41061-023-00447-4","DOIUrl":"10.1007/s41061-023-00447-4","url":null,"abstract":"<div><p>Light-induced bioorthogonal reactions offer spatiotemporal control over selective biomolecular labeling. This review covers the recent advances in the design of photo-activatable reagents for bioorthogonal conjugation reactions in living systems. These reagents are stable in the absence of light, but transformed into reactive species upon light illumination, which then undergo rapid ligation reactions. The light wavelength has been tuned from ultraviolet to near infrared to enable efficient photo-activation in reactions in deep tissues. The most prominent photo-activatable reagents are presented, including tetrazoles, tetrazines, 9,10-phenanthrenequinone, diarylsydnones, and others. A particular focus is on the strategies for improving reaction kinetics and biocompatibility accomplished through careful molecular engineering. The utilities of these photo-activatable reagents are illustrated through a broad range of biological applications, including in vivo protein labeling, positron emission tomography (PET) imaging, responsive hydrogels, and fluorescence microscopy. The further development and optimization of these biocompatible photo-activatable reagents should lead to new chemical biology strategies for studying biomolecular structure and function in living systems.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"382 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138627767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-22DOI: 10.1007/s41061-023-00445-6
Florian M. Zielke, Floris P. J. T. Rutjes
The desire to create biomolecules modified with functionalities that go beyond nature’s toolbox has resulted in the development of biocompatible and selective methodologies and reagents, each with different scope and limitations. In this overview, we highlight recent advances in the field of bioconjugation from 2016 to 2023. First, (metal-mediated) protein functionalization by exploiting the specific reactivity of amino acids will be discussed, followed by novel bioorthogonal reagents for bioconjugation of modified biomolecules.
{"title":"Recent Advances in Bioorthogonal Ligation and Bioconjugation","authors":"Florian M. Zielke, Floris P. J. T. Rutjes","doi":"10.1007/s41061-023-00445-6","DOIUrl":"10.1007/s41061-023-00445-6","url":null,"abstract":"<div><p>The desire to create biomolecules modified with functionalities that go beyond nature’s toolbox has resulted in the development of biocompatible and selective methodologies and reagents, each with different scope and limitations. In this overview, we highlight recent advances in the field of bioconjugation from 2016 to 2023. First, (metal-mediated) protein functionalization by exploiting the specific reactivity of amino acids will be discussed, followed by novel bioorthogonal reagents for bioconjugation of modified biomolecules.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"381 6","pages":""},"PeriodicalIF":8.6,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665463/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138292421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-08DOI: 10.1007/s41061-023-00443-8
Xin Zhao, Bowen Li, Wenhao Zhang, Jiahui Ding, Kuoteng Wang, Yitong Chao, Mei Wu, Weichuan Xu, Jinlong Jiang, Haifeng Han
Metal nanoparticles (NPs) are widely used in biomedicine, catalysis, environment, electronics, and other fields, which is closely related to its structural form. For this purpose, researchers have been looking for a simple, green, and controllable way to mass produce metal nanomaterials with desired characteristics (shape, size, stability, etc.). Due to the surface plasmon resonance (SPR) effect of metal nanoparticles, photoreduction method can control the morphology of metal nanoparticles well, which is also simple, large-scalable, and energy-saving. This review provides an overview of the photoreduction method for the synthesis of metal nanoparticles and discusses the factors such as the light source, pH value, reagents, and temperature on the morphology of the nanoparticles. Finally, the challenges and development trends in the controlled preparation of nanomaterials are proposed.
{"title":"Progress of Metal Nanomaterial Controllable Preparation by Photoreduction","authors":"Xin Zhao, Bowen Li, Wenhao Zhang, Jiahui Ding, Kuoteng Wang, Yitong Chao, Mei Wu, Weichuan Xu, Jinlong Jiang, Haifeng Han","doi":"10.1007/s41061-023-00443-8","DOIUrl":"10.1007/s41061-023-00443-8","url":null,"abstract":"<div><p>Metal nanoparticles (NPs) are widely used in biomedicine, catalysis, environment, electronics, and other fields, which is closely related to its structural form. For this purpose, researchers have been looking for a simple, green, and controllable way to mass produce metal nanomaterials with desired characteristics (shape, size, stability, etc.). Due to the surface plasmon resonance (SPR) effect of metal nanoparticles, photoreduction method can control the morphology of metal nanoparticles well, which is also simple, large-scalable, and energy-saving. This review provides an overview of the photoreduction method for the synthesis of metal nanoparticles and discusses the factors such as the light source, pH value, reagents, and temperature on the morphology of the nanoparticles. Finally, the challenges and development trends in the controlled preparation of nanomaterials are proposed.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"381 6","pages":""},"PeriodicalIF":8.6,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71491056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-03DOI: 10.1007/s41061-023-00442-9
Mengyan Guo, Panke Zhang, Er-Qing Li
Palladium-catalyzed allylation cyclization reaction has recently emerged as an efficient and powerful synthetic platform for the construction of diverse and valuable carbo- and heterocycles. Thus the development of new allylic motifs for achieving this type of transformations in high reactivity and selectivity is of great importance. Generally, these substrates have been utilized as 1,3-, 1,4-, 1,5-, 1,6-dipoles in many reactions, which are applied to prepare highly functionalized products with complete control of chemo-, regio-, diastereo-, and enantioselectivity. In this review, we focus our attention on the development of palladium-catalyzed [4 + n] cycloaddition of allylic motifs and describe a comprehensive and impressive advances in this area. Meanwhile, the related mechanism and the application of these annulation strategies in natural product total synthesis will be highlighted in detail.