Cancer is a disease that claims millions of lives each year, often because early symptoms go unnoticed, a situation which severely impacts society. Point-of-care biosensors using metal–organic frameworks (MOFs) have the power to transform cancer biomarker detection due to their exceptional structural and conductive properties. This review discusses the electrochemical sensor’s design and development of electroactive MOF materials with mechanistic insights. It highlights recent advancements in utilizing MOF composites to effectively detect cancer biomarkers in real samples. The emphasis on the critical application of MOFs in breast cancer biomarker detection presents its importance for women’s health. The review thoroughly examines the adjustable structures, porosity, and fabrication capabilities of MOFs in identifying cancer biomarkers. It provides a detailed analysis of methods to enhance the sensitivity and applicability of MOF composites for cancer detection. Furthermore, the review explores strategies to boost sensor performance, tackles existing challenges head-on, and outlines promising prospects. It emphasizes the urgent need for advanced cancer detection tools and aims to motivate researchers to develop innovative solutions.
Graphical Abstract
The paper discusses cancer’s impact, electrochemical sensing with MOFs, and recent advances in detecting biomarkers in real samples. It focuses on using MOFs for breast cancer detection in women, highlighting their potential in identifying cancer biomarkers. It also explores strategies to enhance sensor capacity, address challenges, and outline prospects to inspire researchers to develop advanced cancer detection tools.